776 research outputs found

    Maximizing space utilization in unit-load warehouses.

    Get PDF
    In a unit-load warehouse, products are stored and retrieved in pallet quantities. Examples include retail distribution centers (DC), third-party DCs, and transshipment hubs in freight transportation. Expenses related to space are a significant component of the operational cost of unit-load warehouses; therefore, maximizing space utilization is important. Moreover, the continuing revolution of retail e-commerce is changing the role and design of modern distribution centers (Boysen et al., 2018). An important trend with serious implications for design is the desire of many distributors to locate DCs in or near metropolitan areas in order to support same-day service or better (Thuermer, 2018). Land in these areas is very expensive, so there is a need to make the best use of existing space. The ability to store more products in the same space increases inventory availability and therefore service, and the ability to store the same inventory in a smaller footprint reduces costs. In this dissertation, we propose two strategies to improve space utilization in unit-load warehouses. We aim to minimize what we called loss of vertical space within slots (LVS)—the mismatch between the height of the pallet and the height of the slot where it is stored. LVS is a significant problem because it is standard practice to design storage racks in unit-load warehouses with all slots of equal height (maximum pallet height) such that every pallet can fit in every slot; however, pallet heights vary greatly. We propose the use of storage racks with multiple slot heights so that slot heights can better match the distribution of pallet heights. We analyzed historic (forecasted) inventory levels and the pallet heights to determine a robust design that guarantees a desired storage service level. Our method addresses the new warehouse design decisions that arise when having multiple slot heights: How to arrange the different slot heights in the rack-bays? How to organize the layout? How to avoid storage shortages? How do different slot heights affect travel times? We found that using multiple slot heights in unit-load warehouses has significant benefits in terms of footprint, expected travel time, and racking cost. For a typical warehouse, we expect space savings of 25–35 percent, depending on the number of slot types, and savings of 15–25 percent in annual operating cost. Although using multiple slot heights significantly decreases the loss of vertical space within slots, it does not completely eliminate it, and in warehouses where inventory levels are highly variable or product mixes change rapidly, this wasted space can still be significant. Examples of this situation in practice include warehouses with correlated order profiles, demands with seasonal peaks, new product launches, and distribution network consolidations. For such business environments, we propose pallet racks with dynamic heights as a way to maximize space utilization. Contrary to traditional pallet racks, the uprights and beams of pallet racks with dynamic heights are equipped with a mechanism to adjust slot heights easily. We found that pallet racks with dynamic heights have expected space savings of 16–30 percent when compared to traditional pallet racks

    Dynamic warehouse optimization using predictive analytics.

    Get PDF
    The forward area is a small area of a warehouse with a low picking cost. Two approaches that are investigated for selecting the SKUs of this area and the allocated space are the static and the dynamic approaches. In the case that decisions about the forward area are made periodically (e.g. yearly) and the products\u27 demand patterns are completely ignored, the FRP is static. We developed two heuristics that solve the large discrete assignment, allocation, and sizing problem simultaneously. Replenishing the same product in the same place of the forward area brings about a ``Locked layout of the fast picking area during the planning horizon. By using a dynamic slotting approach, the product pick locations within the warehouse are allowed to change and pick operations can accommodate the variability in the product demand pattern. A dynamic approach can introduce the latest fast movers to the forward area, as an opportunity arises. The primary objective of this dissertation is to formally define the dynamic FRP. One main mission of this research is to define a generic dynamic slotting problem while also demonstrating the strengths of this approach over the static model. Dynamic slotting continuously adjusts the current state of the forward area with real-time decisions in conjunction with demand predictive analytics. Applying different order data with different demand volatility, we show that the dynamic model always outperforms the static model. The benefits attained from the dynamic model over the static model are greater for more volatile warehouses

    Optimization of storage and picking systems in warehouses

    Get PDF
    La croissance du commerce électronique exige une hausse des performances des systèmes d'entreposage, qui sont maintenant repensés pour faire face à un volume massif de demandes à être satisfait le plus rapidement possible. Le système manuel et le système à robots mobile (SRM) sont parmi les plus utilisés pour ces activités. Le premier est un système centré sur l'humain pour réaliser des opérations complexes que les robots actuels ne peuvent pas effectuer. Cependant, les nouvelles générations de robots autonomes mènent à un remplacement progressif par le dernier pour augmenter la productivité. Quel que soit le système utilisé, plusieurs problèmes interdépendants doivent être résolus pour avoir des processus de stockage et de prélèvement efficaces. Les problèmes de stockage concernent les décisions d'où stocker les produits dans l'entrepôt. Les problèmes de prélèvement incluent le regroupement des commandes à exécuter ensemble et les itinéraires que les cueilleurs et les robots doivent suivre pour récupérer les produits demandés. Dans le système manuel, ces problèmes sont traditionnellement résolus à l'aide de politiques simples que les préparateurs peuvent facilement suivre. Malgré l'utilisation de robots, la même stratégie de solution est répliquée aux problèmes équivalents trouvés dans le SRM. Dans cette recherche, nous étudions les problèmes de stockage et de prélèvement rencontrés lors de la conception du système manuel et du SRM. Nous développons des outils d'optimisation pour aider à la prise de décision pour mettre en place leurs processus, en améliorant les mesures de performance typiques de ces systèmes. Certains problèmes traditionnels sont résolus avec des techniques améliorées, tandis que d'autres sont intégrés pour être résolus ensemble au lieu d'optimiser chaque sous-système de manière indépendante. Nous considérons d'abord un système manuel avec un ensemble connu de commandes et intégrons les décisions de stockage et de routage. Le problème intégré et certaines variantes tenant compte des politiques de routage communes sont modélisés mathématiquement. Une métaheuristique générale de recherche de voisinage variable est présentée pour traiter des instances de taille réelle. Des expériences attestent de l'efficience de la métaheuristique proposée par rapport aux modèles exacts et aux politiques de stockage communes. Lorsque les demandes futures sont incertaines, il est courant d'utiliser une stratégie de zonage qui divise la zone de stockage en zones et attribue les produits les plus demandés aux meilleures zones. Les tailles des zones sont à déterminer. Généralement, des dimensions arbitraires sont choisies, mais elles ignorent les caractéristiques de l'entrepôt et des demandes. Nous abordons le problème de dimensionnement des zones pour déterminer quels facteurs sont pertinents pour choisir de meilleures tailles de zone. Les données générées à partir de simulations exhaustives sont utilisées pour trainer quatre modèles de régression d'apprentissage automatique - moindres carrés ordinaire, arbre de régression, forêt aléatoire et perceptron multicouche - afin de prédire les dimensions optimales des zones en fonction de l'ensemble de facteurs pertinents identifiés. Nous montrons que tous les modèles entraînés suggèrent des dimensions sur mesure des zones qui performent meilleur que les dimensions arbitraires couramment utilisées. Une autre approche pour résoudre les problèmes de stockage pour le système manuel et pour le SRM considère les corrélations entre les produits. L'idée est que les produits régulièrement demandés ensemble doivent être stockés près pour réduire les coûts de routage. Cette politique de stockage peut être modélisée comme une variante du problème d'affectation quadratique (PAQ). Le PAQ est un problème combinatoire traditionnel et l'un des plus difficiles à résoudre. Nous examinons les variantes les plus connues du PAQ et développons une puissante métaheuristique itérative de recherche tabou mémétique en parallèle capable de les résoudre. La métaheuristique proposée s'avère être parmi les plus performantes pour le PAQ et surpasse considérablement l'état de l'art pour ses variantes. Les SRM permettent de repositionner facilement les pods d'inventaire pendant les opérations, ce qui peut conduire à un processus de prélèvement plus économe en énergie. Nous intégrons les décisions de repositionnement des pods à l'attribution des commandes et à la sélection des pods à l'aide d'une stratégie de prélèvement par vague. Les pods sont réorganisés en tenant compte du moment et de l'endroit où ils devraient être demandés au futur. Nous résolvons ce problème en utilisant la programmation stochastique en tenant compte de l'incertitude sur les demandes futures et suggérons une matheuristique de recherche locale pour résoudre des instances de taille réelle. Nous montrons que notre schéma d'approximation moyenne de l'échantillon est efficace pour simuler les demandes futures puisque nos méthodes améliorent les solutions trouvées lorsque les vagues sont planifiées sans tenir compte de l'avenir. Cette thèse est structurée comme suit. Après un chapitre d'introduction, nous présentons une revue de la littérature sur le système manuel et le SRM, et les décisions communes prises pour mettre en place leurs processus de stockage et de prélèvement. Les quatre chapitres suivants détaillent les études pour le problème de stockage et de routage intégré, le problème de dimensionnement des zones, le PAQ et le problème de repositionnement de pod. Nos conclusions sont résumées dans le dernier chapitre.The rising of e-commerce is demanding an increase in the performance of warehousing systems, which are being redesigned to deal with a mass volume of demands to be fulfilled as fast as possible. The manual system and the robotic mobile fulfillment system (RMFS) are among the most commonly used for these activities. The former is a human-centered system that handles complex operations that current robots cannot perform. However, newer generations of autonomous robots are leading to a gradual replacement by the latter to increase productivity. Regardless of the system used, several interdependent problems have to be solved to have efficient storage and picking processes. Storage problems concern decisions on where to store products within the warehouse. Picking problems include the batching of orders to be fulfilled together and the routes the pickers and robots should follow to retrieve the products demanded. In the manual system, these problems are traditionally solved using simple policies that pickers can easily follow. Despite using robots, the same solution strategy is being replicated to the equivalent problems found in the RMFS. In this research, we investigate storage and picking problems faced when designing manual and RMFS warehouses. We develop optimization tools to help in the decision-making process to set up their processes and improve typical performance measures considered in these systems. Some classic problems are solved with improved techniques, while others are integrated to be solved together instead of optimizing each subsystem sequentially. We first consider a manual system with a known set of orders and integrate storage and routing decisions. The integrated problem and some variants considering common routing policies are modeled mathematically. A general variable neighborhood search metaheuristic is presented to deal with real-size instances. Computational experiments attest to the effectiveness of the metaheuristic proposed compared to the exact models and common storage policies. When future demands are uncertain, it is common to use a zoning strategy to divide the storage area into zones and assign the most-demanded products to the best zones. Zone sizes are to be determined. Commonly, arbitrary sizes are chosen, which ignore the characteristics of the warehouse and the demands. We approach the zone sizing problem to determine which factors are relevant to choosing better zone sizes. Data generated from exhaustive simulations are used to train four machine learning regression models - ordinary least squares, regression tree, random forest, and multilayer perceptron - to predict the optimal zone sizes given the set of relevant factors identified. We show that all trained models suggest tailor-made zone sizes with better picking performance than the arbitrary ones commonly used. Another approach to solving storage problems, both in the manual and RMFS, considers the correlations between products. The idea is that products constantly demanded together should be stored closer to reduce routing costs. This storage policy can be modeled as a quadratic assignment problem (QAP) variant. The QAP is a traditional combinatorial problem and one of the hardest to solve. We survey the most traditional QAP variants and develop a powerful parallel memetic iterated tabu search metaheuristic capable of solving them. The proposed metaheuristic is shown to be among the best performing ones for the QAP and significantly outperforms the state-of-the-art for its variants. The RMFS allows easy repositioning of inventory pods during operations that can lead to a more energy-efficient picking process. We integrate pod repositioning decisions with order assignment and pod selection using a wave picking strategy such that pods are parked after being requested considering when and where they are expected to be requested next. We solve this integrated problem using stochastic programming considering the uncertainty about future demands and suggest a local search matheuristic to solve real-size instances. We show that our sample average approximation scheme is effective to simulate future demands since our methods improve solutions found when waves are planned without considering the future demands. This thesis is structured as follows. After an introductory chapter, we present a literature review on the manual and RMFS, and common decisions made to set up their storage and picking processes. The next four chapters detail the studies for the integrated storage and routing problem, the zone sizing problem, the QAP, and the pod repositioning problem. Our findings are summarized in the last chapter

    Order picking optimization with order assignment and multiple workstations in KIVA warehouses

    Full text link
    We consider the problem of allocating orders and racks to multiple stations and sequencing their interlinked processing flows at each station in the robot-assisted KIVA warehouse. The various decisions involved in the problem, which are closely associated and must be solved in real time, are often tackled separately for ease of treatment. However, exploiting the synergy between order assignment and picking station scheduling benefits picking efficiency. We develop a comprehensive mathematical model that takes the synergy into consideration to minimize the total number of rack visits. To solve this intractable problem, we develop an efficient algorithm based on simulated annealing and dynamic programming. Computational studies show that the proposed approach outperforms the rule-based policies used in practice in terms of solution quality. Moreover, the results reveal that ignoring the order assignment policy leads to considerable optimality gaps for real-world-sized instances

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    Progress in Material Handling Research: 2012

    Get PDF
    Table of Content

    A Review on Quantitative Approaches for Dock Door Assignment in Cross-Docking

    Get PDF
    Cross docking is a relatively new technique in supply chain operations. It offers limited storage time to maximize the efficiency of goods transshipment. Efficient operation of a cross docking system requires an appropriate coordination of inbound and outbound flows, accurate planning and dynamic scheduling.  The planning strategies at cross docking terminals, which are receiving growing attention today, are the truck-to-door assignment and destination to door assignment problems. This paper provides a comprehensive literature review of quantitative approaches in dock door assignment problems of cross docking planning. The contributions of this paper are to identify the gap of knowledge in operational levels mainly in dock door assignment and to point out the future research direction in cross docking

    Robotized sorting systems: Large-scale scheduling under real-time conditions with limited lookahead

    Get PDF
    A major drawback of most automated warehousing solutions is that fixedly installed hardware makes them inflexible and hardly scalable. In the recent years, numerous robotized warehousing solutions have been innovated, which are more adaptable to varying capacity situations. In this paper, we consider robotized sorting systems where autonomous mobile robots load individual pieces of stock keeping units (SKUs) at a loading station, drive to the collection points temporarily associated with the orders demanding the pieces, and autonomously release them, e.g., by tilting a tray mounted on top of each robot. In these systems, a huge number of products approach the loading station with an interarrival time of very few seconds, so that we face a very challenging scheduling environment in which the following operational decisions must be taken in real time: First, since pieces of the same SKU are interchangeable among orders with a demand for this specific SKU, we have to assign pieces to suitable orders. Furthermore, each order has to be temporarily assigned to a collection point. Finally, we have to match robots and transport jobs, where pieces have to be delivered between loading station and selected collection points. These interdependent decisions become even more involved, since we (typically) do not posses complete knowledge on the arrival sequence but have merely a restricted lookahead of the next approaching products. In this paper, we show that even in such a fierce environment sophisticated optimization, based on a novel two-step multiple-scenario approach applied under real-time conditions, can be a serviceable tool to significantly improve the sortation throughput
    • …
    corecore