48 research outputs found

    Coordinated Multi-Point Clustering Schemes: A Survey

    Full text link

    Self-organised multi-objective network clustering for coordinated communications in future wireless networks

    Get PDF
    The fifth generation (5G) cellular system is being developed with a vision of 1000 times more capacity than the fourth generation (4G) systems to cope with ever increasing mobile data traffic. Interference mitigation plays an important role in improving the much needed overall capacity especially in highly interference-limited dense deployment scenarios envisioned for 5G. Coordinated multi-point (CoMP) is identified as a promising interference mitigation technique where multiple base stations (BS) can cooperate for joint transmission/reception by exchanging user/control data and perform joint signal processing to mitigate inter-cell interference and even exploit it as a useful signal. CoMP is already a key feature of long term evolution-advanced (LTE-A) and envisioned as an essential function for 5G. However, CoMP cannot be realized for the whole network due to its computational complexity, synchronization requirement between coordinating BSs and high backhaul capacity requirement. BSs need to be clustered into smaller groups and CoMP can be activated within these smaller clusters. This PhD thesis aims to investigate optimum dynamic CoMP clustering solutions in 5G and beyond wireless networks with massive small cell (SC) deployment. Truly self-organised CoMP clustering algorithms are investigated, aiming to improve much needed spectral efficiency and other network objectives especially load balancing in future wireless networks. Low complexity, scalable, stable and efficient CoMP clustering algorithms are designed to jointly optimize spectral efficiency, load balancing and limited backhaul availability. Firstly, we provide a self organizing, load aware, user-centric CoMP clustering algorithm in a control and data plane separation architecture (CDSA) proposed for 5G to maximize spectral efficiency and improve load balancing. We introduce a novel re-clustering algorithm for user equipment (UE) served by highly loaded cells and show that unsatisfied UEs due to high load can be significantly reduced with minimal impact on spectral efficiency. Clustering with load balancing algorithm exploits the capacity gain from increase in cluster size and also the traffic shift from highly loaded cells to lightly loaded neighbours. Secondly, we develop a novel, low complexity, stable, network-centric clustering model to jointly optimize load balancing and spectral efficiency objectives and tackle the complexity and scalability issues of user-centric clustering. We show that our clustering model provide high spectral efficiency in low-load scenario and better load distribution in high-load scenario resulting in lower number of unsatisfied users while keeping spectral efficiency at comparably high levels. Unsatisfied UEs due to high load are reduced by 68.5%68.5\% with our algorithm when compared to greedy clustering model. In this context, the unique contribution of this work that it is the first attempt to fill the gap in literature for multi-objective, network-centric CoMP clustering, jointly optimizing load balancing and spectral efficiency. Thirdly, we design a novel multi-objective CoMP clustering algorithm to include backhaul-load awareness and tackle one of the biggest challenges for the realization of CoMP in future networks i.e. the demand for high backhaul bandwidth and very low latency. We fill the gap in literature as the first attempt to design a clustering algorithm to jointly optimize backhaul/radio access load and spectral efficiency and analyze the trade-off between them. We employ 2 novel coalitional game theoretic clustering methods, 1-a novel merge/split/transfer coalitional game theoretic clustering algorithm to form backhaul and load aware BS clusters where spectral efficiency is still kept at high level, 2-a novel user transfer game model to move users between clusters to improve load balancing further. Stability and complexity analysis is provided and simulation results are presented to show the performance of the proposed method under different backhaul availability scenarios. We show that average system throughout is increased by 49.9% with our backhaul-load aware model in high load scenario when compared to a greedy model. Finally, we provide an operator's perspective on deployment of CoMP. Firstly, we present the main motivation and benefits of CoMP from an operator's viewpoint. Next, we present operational requirements for CoMP implementation and discuss practical considerations and challenges of such deployment. Possible solutions for these experienced challenges are reviewed. We then present initial results from a UL CoMP trial and discuss changes in key network performance indicators (KPI) during the trial. Additionally, we propose further improvements to the trialed CoMP scheme for better potential gains and give our perspective on how CoMP will fit into the future wireless networks

    Coordinated Multipoint Communications In Heterogeneous Networks

    Get PDF
    As users' demands on cellular service escalate rapidly, operators are required to deploy technologies with wider and more sophisticated techniques. In order to meet the future service needs, the standardization body 3rd Generation Partnership Project (3GPP) has standardized Long Term Evolution (LTE) and it has been working on enhancement of LTE and LTE-Advanced. The two key enabling technologies of LTE-Advanced are Heterogeneous Networks (HetNets) and Coordinated Multipoint (CoMP) communications. The former is aimed to improve inconsistent user experience and its basic feature is standardized in 3GPP release 11. The latter one where small cells are deployed within macro-cellular networks has been considered to enhance coverage and capacity. This thesis presents a concise literature survey of cooperative communications and CoMP technologies. Furthermore, a detailed Matlab-based simulation study on CoMP between macro and small cells in HetNets is presented. Comparative analyses and evaluations are also made for different CoMP schemes under different deployed scenarios. At the same time, a new CoMP UE selection criterion is proposed to fit the modified round robin scheduling deployed in simulation and optimize the resource allocation among CoMP and non-CoMP UEs

    Mutual Successive Interference Cancellation Strategies in NOMA for Enhancing the Spectral Efficiency of CoMP Systems

    Get PDF
    International audienceThe densification of mobile networks should enable the fifth generation (5G) mobile networks to cope with the ever increasing demand for higher rate traffic, reduced latency, and improved reliability. The large scale deployment of small cells and distributed antenna systems in heterogeneous environments will require more elaborate interference mitigating techniques to increase spectral efficiency and to help unlock the expected performance leaps from the new network topologies. Coordinated multi-point (CoMP) is the most advanced framework for interference management enabling the cooperation between base stations to mitigate inter-cell interference and boost cell-edge user performance. In this paper, we study the combination of CoMP with mutual SIC, an interference cancellation technique based on power-domain non-orthogonal multiple access (NOMA) that enables multiplexed users to simultaneously cancel their corresponding interfering signals. A highly efficient inter-cell interference cancellation scheme is then devised, that can encompass several deployment configurations and coordination techniques. The obtained results prove the superiority of this approach compared to conventional NOMA-CoMP systems

    Multi-Service Radio Resource Management for 5G Networks

    Get PDF

    C-RAN CoMP Methods for MPR Receivers

    Get PDF
    The growth in mobile network traffic due to the increase in MTC (Machine Type Communication) applications, brings along a series of new challenges in traffic routing and management. The goals are to have effective resolution times (less delay), low energy consuption (given that wide sensor networks which are included in the MTC category, are built to last years with respect to their battery consuption) and extremely reliable communication (low Packet Error Rates), following the fifth generation (5G) mobile network demands. In order to deal with this type of dense traffic, several uplink strategies can be devised, where diversity variables like space (several Base Stations deployed), time (number of retransmissions of a given packet per user) and power spreading (power value diversity at the receiver, introducing the concept of SIC and Power-NOMA) have to be handled carefully to fulfill the requirements demanded in Ultra-Reliable Low-Latency Communication (URLLC). This thesis, besides being restricted in terms of transmission power and processing of a User Equipment (UE), works on top of an Iterative Block Decision Feedback Equalization Reciever that allows Multi Packet Reception to deal with the diversity types mentioned earlier. The results of this thesis explore the possibility of fragmenting the processing capabilities in an integrated cloud network (C-RAN) environment through an SINR estimation at the receiver to better understand how and where we can break and distribute our processing needs in order to handle near Base Station users and cell-edge users, the latters being the hardest to deal with in dense networks like the ones deployed in a MTC environment

    A Load-Aware Clustering Model for Coordinated Transmission in Future Wireless Networks

    Get PDF
    Coordinated multi-point (CoMP) transmission is one of the key features for long term evolution advanced (LTE-A) and a promising concept for interference mitigation in 5th generation (5G) and beyond future densely deployed wireless networks. Due to the cost of coordination among many transmission points (TP), radio access network (RAN) needs to be clustered into smaller groups of TPs for coordination. In this paper, we develop a novel, load-aware clustering model by employing a merge/split concept from coalitional game theory. A load-aware utility function is introduced to maximize both spectral efficiency (SE) and load balancing (LB) objectives. We show that proposed load-aware clustering model dynamically adapts into the network load conditions providing high SE in low-load conditions and results in better load distribution with significantly less unsatisfied users in over-load conditions while keeping SE at comparable levels when compared to a greedy clustering model. Simulation results show that the proposed solution can reduce the number of unsatisfied users due to over-load conditions by 68.5% when compared to the greedy clustering algorithm. Furthermore, we analyze the stability of the proposed solution and prove that it converges to a stable partition in both homogeneous network (HN) and random network (RN) with and without hotspot scenarios. In addition, we show the convergence of our algorithm into the unique clustering solution with the best payoff possible when such a solution exists

    MM-Wave HetNet in 5G and beyond Cellular Networks Reinforcement Learning Method to improve QoS and Exploiting Path Loss Model

    Get PDF
    This paper presents High density heterogeneous networks (HetNet) which are the most promising technology for the fifth generation (5G) cellular network. Since 5G will be available for a long time, previous generation networking systems will need customization and updates. We examine the merits and drawbacks of legacy and Q-Learning (QL)-based adaptive resource allocation systems. Furthermore, various comparisons between methods and schemes are made for the purpose of evaluating the solutions for future generation. Microwave macro cells are used to enable extra high capacity such as Long-Term Evolution (LTE), eNodeB (eNB), and Multimedia Communications Wireless technology (MC), in which they are most likely to be deployed. This paper also presents four scenarios for 5G mm-Wave implementation, including proposed system architectures. The WL algorithm allocates optimal power to the small cell base station (SBS) to satisfy the minimum necessary capacity of macro cell user equipment (MUEs) and small cell user equipment (SCUEs) in order to provide quality of service (QoS) (SUEs). The challenges with dense HetNet and the massive backhaul traffic they generate are discussed in this study. Finally, a core HetNet design based on clusters is aimed at reducing backhaul traffic. According to our findings, MM-wave HetNet and MEC can be useful in a wide range of applications, including ultra-high data rate and low latency communications in 5G and beyond. We also used the channel model simulator to examine the directional power delay profile with received signal power, path loss, and path loss exponent (PLE) for both LOS and NLOS using uniform linear array (ULA) 2X2 and 64x16 antenna configurations at 38 GHz and 73 GHz mmWave bands for both LOS and NLOS (NYUSIM). The simulation results show the performance of several path loss models in the mmWave and sub-6 GHz bands. The path loss in the close-in (CI) model at mmWave bands is higher than that of open space and two ray path loss models because it considers all shadowing and reflection effects between transmitter and receiver. We also compared the suggested method to existing models like Amiri, Su, Alsobhi, Iqbal, and greedy (non adaptive), and found that it not only enhanced MUE and SUE minimum capacities and reduced BT complexity, but it also established a new minimum QoS threshold. We also talked about 6G researches in the future. When compared to utilizing the dual slope route loss model alone in a hybrid heterogeneous network, our simulation findings show that decoupling is more visible when employing the dual slope path loss model, which enhances system performance in terms of coverage and data rate

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore