1,673 research outputs found

    Gating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology

    Get PDF
    To explain gating of memory encoding, magnetoencephalography (MEG) was analyzed over multi-regional network of negative correlations between alpha band power during cue (cue-alpha) and gamma band power during item presentation (item-gamma) in Remember (R) and No-remember (NR) condition. Persistent homology with graph filtration on alpha-gamma correlation disclosed topological invariants to explain memory gating. Instruction compliance (R-hits minus NR-hits) was significantly related to negative coupling between the left superior occipital (cue-alpha) and the left dorsolateral superior frontal gyri (item-gamma) on permutation test, where the coupling was stronger in R than NR. In good memory performers (R-hits minus false alarm), the coupling was stronger in R than NR between the right posterior cingulate (cue-alpha) and the left fusiform gyri (item-gamma). Gating of memory encoding was dictated by inter-regional negative alpha-gamma coupling. Our graph filtration over MEG network revealed these inter-regional time-delayed cross-frequency connectivity serve gating of memory encoding

    Single Cell Proteomics in Biomedicine: High-dimensional Data Acquisition, Visualization and Analysis

    Get PDF
    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions

    Cell-type-specific signaling networks in heterocellular organoids

    Get PDF
    Despite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes. Integrating single-cell PTM analysis with thiol-reactive organoid barcoding in situ (TOBis) enables high-throughput comparison of signaling networks between organoid cultures. Cell-type-specific PTM analysis of colorectal cancer organoid cocultures reveals that shApc, KrasG12D and Trp53R172H cell-autonomously mimic signaling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type-specific signaling analysis of healthy and cancerous organoids

    The pause-initiation limit restricts transcription activation in human cells.

    No full text
    Eukaryotic gene transcription is often controlled at the level of RNA polymerase II (Pol II) pausing in the promoter-proximal region. Pausing Pol II limits the frequency of transcription initiation ('pause-initiation limit'), predicting that the pause duration must be decreased for transcriptional activation. To test this prediction, we conduct a genome-wide kinetic analysis of the heat shock response in human cells. We show that the pause-initiation limit restricts transcriptional activation at most genes. Gene activation generally requires the activity of the P-TEFb kinase CDK9, which decreases the duration of Pol II pausing and thereby enables an increase in the productive initiation frequency. The transcription of enhancer elements is generally not pause limited and can be activated without CDK9 activity. Our results define the kinetics of Pol II transcriptional regulation in human cells at all gene classes during a natural transcription response

    3D Organization of Eukaryotic and Prokaryotic Genomes

    Get PDF
    There is a complex mutual interplay between three-dimensional (3D) genome organization and cellular activities in bacteria and eukaryotes. The aim of this thesis is to investigate such structure-function relationships. A main part of this thesis deals with the study of the three-dimensional genome organization using novel techniques for detecting genome-wide contacts using next-generation sequencing. These so called chromatin conformation capture-based methods, such as 5C and Hi-C, give deep insights into the architecture of the genome inside the nucleus, even on a small scale. We shed light on the question how the vastly increasing Hi-C data can generate new insights about the way the genome is organized in 3D. To this end, we first present the typical Hi-C data processing workflow to obtain Hi-C contact maps and show potential pitfalls in the interpretation of such contact maps using our own data pipeline and publicly available Hi-C data sets. Subsequently, we focus on approaches to modeling 3D genome organization based on contact maps. In this context, a computational tool was developed which interactively visualizes contact maps alongside complementary genomic data tracks. Inspired by machine learning with the help of probabilistic graphical models, we developed a tool that detects the compartmentalization structure within contact maps on multiple scales. In a further project, we propose and test one possible mechanism for the observed compartmentalization within contact maps of genomes across multiple species: Dynamic formation of loops within domains. In the context of 3D organization of bacterial chromosomes, we present the first direct evidence for global restructuring by long-range interactions of a DNA binding protein. Using Hi-C and live cell imaging of DNA loci, we show that the DNA binding protein Rok forms insulator-like complexes looping the B. subtilis genome over large distances. This biological mechanism agrees with our model based on dynamic formation of loops affecting domain formation in eukaryotic genomes. We further investigate the spatial segregation of the E. coli chromosome during cell division. In particular, we are interested in the positioning of the chromosomal replication origin region based on its interaction with the protein complex MukBEF. We tackle the problem using a combined approach of stochastic and polymer simulations. Last but not least, we develop a completely new methodology to analyze single molecule localization microscopy images based on topological data analysis. By using this new approach in the analysis of irradiated cells, we are able to show that the topology of repair foci can be categorized depending the distance to heterochromatin

    Modeling glioblastoma heterogeneity as a dynamic network of cell states

    Get PDF
    Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3\ua0weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition
    corecore