10,080 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    CoAP Infrastructure for IoT

    Get PDF
    The Internet of Things (IoT) can be seen as a large-scale network of billions of smart devices. Often IoT devices exchange data in small but numerous messages, which requires IoT services to be more scalable and reliable than ever. Traditional protocols that are known in the Web world does not fit well in the constrained environment that these devices operate in. Therefore many lightweight protocols specialized for the IoT have been studied, among which the Constrained Application Protocol (CoAP) stands out for its well-known REST paradigm and easy integration with existing Web. On the other hand, new paradigms such as Fog Computing emerges, attempting to avoid the centralized bottleneck in IoT services by moving computations to the edge of the network. Since a node of the Fog essentially belongs to relatively constrained environment, CoAP fits in well. Among the many attempts of building scalable and reliable systems, Erlang as a typical concurrency-oriented programming (COP) language has been battle tested in the telecom industry, which has similar requirements as the IoT. In order to explore the possibility of applying Erlang and COP in general to the IoT, this thesis presents an Erlang based CoAP server/client prototype ecoap with a flexible concurrency model that can scale up to an unconstrained environment like the Cloud and scale down to a constrained environment like an embedded platform. The flexibility of the presented server renders the same architecture applicable from Fog to Cloud. To evaluate its performance, the proposed server is compared with the mainstream CoAP implementation on an Amazon Web Service (AWS) Cloud instance and a Raspberry Pi 3, representing the unconstrained and constrained environment respectively. The ecoap server achieves comparable throughput, lower latency, and in general scales better than the other implementation in the Cloud and on the Raspberry Pi. The thesis yields positive results and demonstrates the value of the philosophy of Erlang in the IoT space

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Hunting the hunters:Wildlife Monitoring System

    Get PDF

    A framework for energy based performability models for wireless sensor networks

    Get PDF
    A novel idea of alternating node operations between Active and Sleep modes in Wireless Sensor Network (WSN) has successfully been used to save node power consumption. The idea which started off as a simple implementation of a timer in most protocols has been improved over the years to dynamically change with traffic conditions and the nature of application area. Recently, use of a second low power radio transceiver to triggered Active/Sleep modes has also been made. Active/Sleep operation modes have also been used to separately model and evaluate performance and availability of WSNs. The advancement in technology and continuous improvements of the existing protocols and application implementation demands continue to pose great challenges to the existing performance and availability models. In this study the need for integrating performance and availability studies of WSNs in the presence of both channel and node failures and repairs is investigated. A framework that outlines and characterizes key models required for integration of performance and availability of WSN is in turn outlined. Possible solution techniques for such models are also highlighted. Finally it is shown that the resulting models may be used to comparatively evaluate energy consumption of the existing motes and WSNs as well as deriving required performance measures

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    Intrusion tolerant routing with data consensus in wireless sensor networks

    Get PDF
    DissertaĆ§Ć£o para obtenĆ§Ć£o do Grau de Mestre em Engenharia InformĆ”ticaWireless sensor networks (WSNs) are rapidly emerging and growing as an important new area in computing and wireless networking research. Applications of WSNs are numerous, growing, and ranging from small-scale indoor deployment scenarios in homes and buildings to large scale outdoor deployment settings in natural, industrial, military and embedded environments. In a WSN, the sensor nodes collect data to monitor physical conditions or to measure and pre-process physical phenomena, and forward that data to special computing nodes called Syncnodes or Base Stations (BSs). These nodes are eventually interconnected, as gateways, to other processing systems running applications. In large-scale settings, WSNs operate with a large number of sensors ā€“ from hundreds to thousands of sensor nodes ā€“ organised as ad-hoc multi-hop or mesh networks, working without human supervision. Sensor nodes are very limited in computation, storage, communication and energy resources. These limitations impose particular challenges in designing large scale reliable and secure WSN services and applications. However, as sensors are very limited in their resources they tend to be very cheap. Resilient solutions based on a large number of nodes with replicated capabilities, are possible approaches to address dependability concerns, namely reliability and security requirements and fault or intrusion tolerant network services. This thesis proposes, implements and tests an intrusion tolerant routing service for large-scale dependable WSNs. The service is based on a tree-structured multi-path routing algorithm, establishing multi-hop and multiple disjoint routes between sensors and a group of BSs. The BS nodes work as an overlay, processing intrusion tolerant data consensus over the routed data. In the proposed solution the multiple routes are discovered, selected and established by a self-organisation process. The solution allows the WSN nodes to collect and route data through multiple disjoint routes to the different BSs, with a preventive intrusion tolerance approach, while handling possible Byzantine attacks and failures in sensors and BS with a pro-active recovery strategy supported by intrusion and fault tolerant data-consensus algorithms, performed by the group of Base Stations

    Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms

    Get PDF
    This deliverable describes the work done in task 3.1, Middleware analysis: Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms from work package 3, Middleware Implementation. The document is divided in four parts: The introduction with application scenarios and middleware requirements, Catnets middleware architecture, evaluation of existing middleware toolkits, and conclusions. -- Die Arbeit definiert Anforderungen an Grid und Peer-to-Peer Middleware Architekturen und analysiert diese auf ihre Eignung fĆ¼r die prototypische Umsetzung der Katallaxie. Eine Middleware-Architektur fĆ¼r die Umsetzung der Katallaxie in Application Layer Netzwerken wird vorgestellt.Grid Computing
    • ā€¦
    corecore