2,893 research outputs found

    Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    Get PDF
    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'

    Design, Characterisation and Prospect of Piezoelectric Microfluidic Technology

    Get PDF
    Fluidic driving device plays an important role in the delivery and distribution of minute amount of the liquid in the micro-fluidic system. Due to the unique advantages of simple structure, short response time, and low power consumption, piezoelectric actuation was employed to implement the microfluidic transportation. A piezoelectrically driven microfluidic device, piezoelectric pump, was developed and widely applied in many fields in last three decades. As a kind of displacement pump, piezoelectric pumps is able to realize accurate transportation of the liquid because of per stroke of output fluid is equal to the volumetric change of pumping chamber. And the output flow rate and pressure is easily to be controlled through adjusting the driving voltage or frequency. In this chapter, the design, structure, working principle and the characterisation of piezoelectric pumps with single chamber and multiple chambers are introduced

    Integrated Data Acquisition for State-of-the-Art Large-Bore Engine Test Cell

    Get PDF
    Abstract: Internal combustion engines will have an important role on a road to decarbonization and a sustainable powertrain system in the maritime sector. Electrification of the maritime sector is currently difficult due to its excessive energy density demand. Therefore, internal combustion engines will remain a primary power source for ships in the near future. A novel combustion concept, reactivity-controlled compression ignition (RCCI), can be seen as one of the promising combustion technologies that enables simultaneous ultra-low NOx and soot emissions, as well as high thermal efficiency. Although the concept has been developed for a long time, its feasibility for large-bore engine applications has not been publicly demonstrated. The goal of this thesis was to design and implement a new data acquisition system for the large-bore RCCI test bench in University of Vaasa’s VEBIC engine laboratory, as part of the Clean Propulsion Technologies (CPT) project’s work package 3, novel combustion and advanced aftertreatment. The test bench was instrumented with new sensors, analyzers and data acquisition hardware. Devices required to build the system were acquired and device installations, as well as electrical connections were established and supervised. Additionally, data storing workflow, suitable for the new system, was developed. In order to validate the system performance, a partial system test was carried out due to the inability to start up the engine during the thesis. The results from the partial system test proved that the new data acquisition system is able to measure high sampling frequency signals and record them in reference to crank angle. The system that was designed and implemented in the thesis provided several improvements when compared to the previous system. The number of available high sample frequency channels increased from 8 to 16 and the system provides more flexible real-time post-processing capabilities. The upgraded system also provides a significant improvement in integration, as the high-speed and low-speed measurements can be recorded into a single file. In addition to immediate system improvements, the new system is able to expand according to future requirements of the test bench.Tiivistelmä: Polttomoottoreilla tulee olemaan tärkeä rooli hiilidioksidipäästöjen vähentämisessä ja kestävän voimansiirtojärjestelmän toteuttamisessa merenkulkualalla. Merenkulkualan sähköistäminen on nykyisellään hankalaa valtavan energiantarpeen vuoksi. Sen vuoksi polttomoottorit tulevat pysymään lähitulevaisuudessakin laivojen tärkeimpänä voimanlähteenä. Uutta palamismenetelmää, reaktiivisuudella hallittua puristussytytystä (RCCI), voidaan pitää yhtenä lupaavista polttomoottoriteknologioista, jonka avulla voidaan samanaikaisesti saavuttaa erittäin alhaiset typen oksidi- ja hiukkaspäästöt, sekä korkea hyötysuhde. Vaikka konseptia on kehitetty pitkään, soveltuvuutta isosylinterisissä moottoreissa ei ole osoitettu julkisesti. Tämän opinnäytetyön tavoitteena oli suunnitella ja toteuttaa uusi tiedonkeruujärjestelmä isosylinteriseen RCCI -testipenkkiin Vaasan yliopiston VEBIC moottorilaboratoriossa osana Clean Propulsion Technologies (CPT) -projektin työpakettia 3. Testipenkki instrumentoitiin uusilla antureilla, analysaattoreilla ja tiedonkeruulaitteilla. Järjestelmän rakentamiseen tarvittavat laitteet hankittiin ja laiteasennukset sekä sähköliitännät toteutettiin. Lisäksi mahdollistettiin uuteen järjestelmään soveltuva tiedon tallennusprosessi. Järjestelmän suorituskyvyn arvioimiseksi suoritettiin osittainen järjestelmätesti, koska moottoria ei ollut mahdollista käynnistää vielä opinnäytetyön aikana. Osittaisen järjestelmätestin tulokset osoittivat, että uusi tiedonkeruujärjestelmä kykenee mittaamaan korkealla näytteenottotaajuudella ja tallentamaan mittaukset kampiakselin asennon suhteen. Opinnäytetyössä suunniteltu ja toteutettu järjestelmä tarjosi useita parannuksia edelliseen järjestelmään verrattuna. Käytettävissä olevien korkean näytteenottotaajuuden kanavien lukumäärä kasvoi 8:sta 16:een ja järjestelmä tarjoaa joustavamman reaaliaikaisen tiedon jälkikäsittelyn. Päivitetty järjestelmä tarjoaa myös merkittävän parannuksen datan integroimiseen, koska nopeat ja hitaat mittaukset voidaan tallentaa samaan tiedostoon. Välittömien järjestelmän parannusten lisäksi uusi järjestelmä kykenee mukautumaan tulevaisuuden tarpeiden mukaan

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    Get PDF
    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications

    Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

    Get PDF
    Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs). However, this sensitivity improvement has not been completely matched in terms of limit of detection. The decrease on frequency stability due to the increase of the phase noise, particularly in oscillators, has made it impossible to increase the resolution. A new concept of sensor characterization at constant frequency has been recently proposed based on the phase/mass sensitivity equation: Δφ/Δm ≈ −1/mL, where mL is the liquid mass perturbed by the resonator. The validation of the new concept is presented in this article. An immunosensor application for the detection of a low molecular weight pollutant, the insecticide carbaryl, has been chosen as a validation model

    Towards rapid 3D direct manufacture of biomechanical microstructures

    Get PDF
    The field of stereolithography has developed rapidly over the last 20 years, and commercially available systems currently have sufficient resolution for use in microengineering applications. However, they have not as yet been fully exploited in this field. This thesis investigates the possible microengineering applications of microstereolithography systems, specifically in the areas of active microfluidic devices and microneedles. The fields of micropumps and microvalves, stereolithography and microneedles are reviewed, and a variety of test builds were fabricated using the EnvisionTEC Perfactory Mini Multi-Lens stereolithography system in order to define its capabilities. A number of microneedle geometries were considered. This number was narrowed down using finite element modelling, before another simulation was used to optimise these structures. 9 × 9 arrays of 400 μm tall, 300 μm base diameter microneedles were subjected to mechanical testing. Per needle failure forces of 0.263 and 0.243 N were recorded for the selected geometries, stepped cone and inverted trumpet. The 90 μm needle tips were subjected to between 30 and 32 MPa of pressure at their failure point - more than 10 times the required pressure to puncture average human skin. A range of monolithic micropumps were produced with integrated 4 mm diameter single-layer 70 μm-thick membranes used as the basis for a reciprocating displacement operating principle. The membranes were tested using an oscillating pneumatic actuation, and were found reliable (>1,000,000 cycles) up to 2.0 PSIG. Pneumatic single-membrane nozzle/diffuser rectified devices produced flow rates of up to 1,000 μl/min with backpressures of up to 375 Pa. Another device rectified using active membrane valves was found to self-prime, and produced backpressures of up to 4.9 kPa. These devices and structures show great promise for inclusion in complex, fully integrated and active microfluidic systems fabricated using microstereolithography alone, with implications for both cost of manufacture and lead time

    Development of microcantilever sensors for cell studies

    Get PDF
    Micro- and nano- electromechanical devices such as microcantilevers have paved the way for a large variety of new possibilities, such as the rapid diagnosis of diseases and a high throughput platform for drug discovery. Conventional cell assay methods rely on the addition of reagents, disrupting the measurement, therefore providing only the endpoint data of the cell growth experiment. In addition, these methods are typically slow to provide results and time and cost consuming. Therefore, microcantilever sensors are a great platform to conduct cell culturing experiments for cell culture, viability, proliferation, and cytotoxicity monitoring, providing advantages such as being able to monitor cell kinetics in real time without requiring external reagents, in addition to being low cost and fast, which conventional cell assay methods are unable to provide. This work aims to develop and test different types of microcantilever biosensors for the detection and monitoring of cell proliferation. This approach will overcome many of the current challenges facing microcantilever biosensors, including but not limited to achieving characteristics such as being low cost, rapid, easy to use, highly sensitive, label-free, multiplexed arrays, etc. Microcantilever sensor platforms utilizing both a single and scanning optical beam detection methods were developed and incorporated aspects such as temperature control, calibration, and readout schemes. Arrays of up to 16 or 32 microcantilever sensors can be simultaneously measured with integrated microfluidic channels. The effectiveness of these cantilever platforms are demonstrated through multiple studies, including examples of growth induced bending of polyimide cantilevers for simple real-time yeast cell measurements and a microcantilever array for rapid, sensitive, and real-time measurement of nanomaterial toxicity on the C3A human liver cell line. In addition, other techniques for microcantilever arrays and microfluidics will be presented along with demonstrations for the ability for stem cell growth monitoring and pathogen detection

    Design and development of novel radio frequency identification (RFID) tag structures

    Get PDF
    The objective of the proposed research is to design and develop a series of radio frequency identification (RFID) tag structures that exhibit good performance characteristics with cost optimization and can be realized on flexible substrates such as liquid crystal polymer (LCP), paper-based substrate and magnetic composite material for conformal applications. The demand for flexible RFID tags has recently increased tremendously due to the requirements of automatic identification in various areas. Several major challenges existing in today's RFID technologies need to be addressed before RFID can eventually march into everyone's daily life, such as how to design high performance tag antennas with effective impedance matching for passive RFID IC chips to optimize the power performance, how to fabricate ultra-low-cost RFID tags in order to facilitate mass production, how to integrate sensors with passive RFID tags for pervasive sensing applications, and how to realize battery-free active RFID tags in which changing battery is not longer needed. In this research, different RFID tag designs are realized on flexible substrates. The design techniques presented set the framework for answering these technical challenges for which, the focus will be on RFID tag structure design, characterization and optimization from the perspectives of both costs involved and technical constraints.Ph.D.Committee Chair: Tentzeris, Manos; Committee Member: DeJean, Gerald; Committee Member: Ingram, Mary; Committee Member: Kavadias, Stylianos; Committee Member: Laskar, Jo

    Framework for a space shuttle main engine health monitoring system

    Get PDF
    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available
    corecore