80 research outputs found

    Extracting dualband antenna response from UWB based on current distribution analysis

    Get PDF
    An entirely new design approach has been employed to create the printed dualband monopole antenna that was the subject of this investigation. The printed monopole antenna construction is the primary component of the suggested design. CPW transmission lines with 50 Ohm impedance and a relative dielectric constant of 4.6 were used to power the antennas, which were housed in thin substrates with thicknesses of 1.6 millimeters (mm). In this study, the antennas discussed were modeled and analyzed by Computer Simulation Technique (CST) simulator. Using fractal structures on the radiating element of a dualband antenna can improve the resonance of the antenna as well as the coupling of the resonating bands that emerge from the resonance

    High-Performance Ultra-Compact Dual-Band Bandpass Filter for Global System for Mobile Communication-850/Global System for Mobile Communication-1900 Applications

    Get PDF
    This work presents a novel microstrip dual-band bandpass filter (BPF) using meandros spirals and patch cells, which is proposed for the first time by this work. It occupies a very compact size of 0.0017 λg2. The proposed filter is designed to operate at Fo1=0.85 GHz and Fo2=1.85 GHz for GSM-850/GSM-1900 applications. In addition to the small size, it has several advantages in terms of wide fractional bandwidths (FBW), low insertion losses and high return losses at both channels. The simulated insertion losses at the lower and upper passbands are 0.05 dB and 0.1 dB, respectively. Another advantage of the proposed BPF of this work is the attenuated harmonics, where it is able to suppress 1st, 2nd, 3rd and 4th harmonics (4.11 Fo1) with -20 dB maximum harmonic level

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    A Survey on Reconfigurable Microstrip Filter–Antenna Integration: Recent Developments and Challenges

    Get PDF
    Reconfigurable and tunable radio frequency (RF) and microwave (MW) components have become exciting topics for many researchers and design engineers in recent years. Reconfigurable microstrip filter–antenna combinations have been studied in the literature to handle multifunctional tasks for wireless communication systems. Using such devices can reduce the need for many RF components and minimize the cost of the whole wireless system, since the changes in the performance of these applications are achieved using electronic tuning techniques. However, with the rapid development of current fourth-generation (4G) and fifth-generation (5G) applications, compact and reconfigurable structures with a wide tuning range are in high demand. However, meeting these requirements comes with some challenges, namely the increased design complexity and system size. Accordingly, this paper aims to discuss these challenges and review the recent developments in the design techniques used for reconfigurable filters and antennas, as well as their integration. Various designs for different applications are studied and investigated in terms of their geometrical structures and operational performance. This paper begins with an introduction to microstrip filters, antennas, and filtering antennas (filtennas). Then, performance comparisons between the key and essential structures for these aspects are presented and discussed. Furthermore, a comparison between several RF reconfiguration techniques, current challenges, and future developments is presented and discussed in this review. Among several reconfigurable structures, the most efficient designs with the best attractive features are addressed and highlighted in this paper to improve the performance of RF and MW front end systems

    A dual-mode Q-enhanced RF front-end filter for 5 GHz WLAN and UWB with NB interference rejection

    Get PDF
    The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor communications providing moderate range and speed. Combined with the emerging ultra Wideband standard (UWB) for short range and high speed communications, the two standards promise to fulfil all areas of wireless application needs. However, due to the overlapping of the two spectrums, the stronger 802.11a signals tend to interfere causing degradation to the UWB receiver. This presents one of the main technical challenges preventing the wide acceptance of UWB. The research work presented in this thesis is to propose a low cost RF receiver front-end filter topology that would resolve the narrowband (NB) interference to UWB receiver while being operable in both 802.11a mode and UWB mode. The goal of the dual mode filter design is to reduce cost and complexity by developing a fully integrated front-end filter. The filter design utilizes high Q passive devices and Q-enhancement technique to provide front-end channel-selection in NB mode and NB interference rejection in UWB mode. In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8 dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB. The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2

    A Novel UWB Reconfigurable Filtering Antenna Design With Triple Band-Notched Characteristics By Using U-Shaped Coppers

    Get PDF
    This paper proposed an UWB antenna with triple reconfigurable notch filters. By presenting there U-shaped coppers in the design, the potential triple interference in UWB applications can be rejected. Six PIN diodes are putted on the coppers to represent the OFF and ON tunable status in order to add reconfigurable characteristics to the UWB antenna. By using this ON and OFF tunable method, the current distribution of the proposed design changes and enables the antenna to have eight operation modes. The results prove that the proposed design can operate over the entire UWB frequency range (3.1 GHz to 10.6 GHz) and can filter out the target signals from the WLAN upper band (5.725 to 5.825 GHz), WLAN lower band (5.15 to 5.35 GHz) and X band frequency system (7.9 to 8.4 GHz) in one of the tunable configuration

    Frequency reconfigurable antennas for cognitive radio applications: a review

    Get PDF
    Wireless communication systems undergo tremendous growth these days and devices able to operate in a number of frequencybandsarehighlydemanded. Reconfiguration in antenna characteristic striggered the evolution of antennas that can workin multiple frequency, pattern or polarization environment.The frequency reconfigurable antennas thuse mergedarewell suited in Cognitive Radios which take part in the effective utilization of unused bands of frequencies by continuously interacting with the RF environment. Thus, Cognitive Radios enhancetheutilization of frequency spectrum and establish reliable communication. The most recent research works carried out in the arena of Frequency Reconfigurable Antennas for Cognitive Radio applications are reviewed and summed up in this paper to present the attributes and categorization. Four techniques adopted to attain frequency reconfiguration are extensively compared in this paper to find the advantages and constraints of each methodology. The applications of the works reviewed here are not only limited to Cognitive radios, but extended to a number of wireless communication services like, WLAN, WiMAX, et
    • …
    corecore