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ABSTRACT

The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor

communications providing moderate range and speed. Combined with the emerging

ultra Wideband standard (UWB) for short range and high speed communications,

the two standards promise to fulfil all areas of wireless application needs. However,

due to the overlapping of the two spectrums, the stronger 802.11a signals tend to

interfere causing degradation to the UWB receiver. This presents one of the main

technical challenges preventing the wide acceptance of UWB.

The research work presented in this thesis is to propose a low cost RF receiver

front-end filter topology that would resolve the narrowband (NB) interference to

UWB receiver while being operable in both 802.11a mode and UWB mode. The

goal of the dual mode filter design is to reduce cost and complexity by developing a

fully integrated front-end filter. The filter design utilizes high Q passive devices and

Q-enhancement technique to provide front-end channel-selection in NB mode and NB

interference rejection in UWB mode.

In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8

dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched

at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In

the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The

filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB.

The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW

of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2.
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1. Introduction

1.1 RF Front-End Filter

Research in low cost designs and fabrications of RFIC receivers is everlasting. In

the design front, researchers focus on reducing cost and complexity by moving towards

a fully integrated monolithic receiver design. One of the most challenging blocks to

integrate in the receiver is the RF front-end filter. High performance requirements

such as high linearity, high quality factor (Q) and low noise figure at the front-

end makes the filter challenging to implement monolithically. Most commercial RF

receivers today use off-chip surface acoustic wave (SAW) filter for pre-filtering, while

channel-selection is achieved in the receiver back-end. The use of off-chip components

adds to the overall cost of the receiver and results in a bulky receiver design. Signals

traveling off-chip need to drive large capacitances that are associated with the printed

circuit board (PCB). The requirements of input and output matching circuits also

add complexity and increases power. Hence, the realization of monolithic front-end

filter is important in a low cost receiver design.

1.1.1 Integrated RF Filter Performance

The objective of the front-end filter is to receive and process the intended signal

while rejecting all other interferences. The integrity of the signal is passed on to the

other blocks in the receiver for further processing. As a result, the filter is required

to have good performance as it has the most effect on the overall performance of a

receiver. For low noise and low power requirement, most integrated RF filters are

1



based on parallel inductor and capacitor (LC) resonator topologies. However, these

topologies exhibit poor performance because of the low quality factors of on-chip

inductors. The effect of low Q means channel selection and interference rejection

from nearby channels are difficult.

The important performance criteria for a receiver is noise figure and linearity,

both of which determine the range of signal powers it can receive. Filter selectivity

is also important for channel-selection and interference rejection. The following are

main the specifications that are used to determine the performance of a filter.

Noise Figure

The lowest signal level that a receiver can detect is called the receiver’s sensitivity.

It is determined by the thermal noise floor in the environment along with the receiver’s

noise figure (NF) which is defined as the ratio of how much the signal-to-noise ratio

(SNR) of the signal is degraded as it passes through the receiver.

NF =
SNRin

SNRout

(1.1)

The overall noise figure of a receiver is given by Friis equation below to account for the

power gain (G) contribution of each stage [1]. The equation indicates that the noise

contribution of each stage decreases as the gain in the preceding stage increases. Thus,

a low noise amplifier with high gain is often desired in the first stage in a receiver.

NFtotal = 1 + (NF1 − 1) +
NF2 − 1

G1

+ ... +
NFm − 1

G1 · · ·Gm−1

(1.2)

Linearity

All devices in an RF circuit exert nonlinearity which causes the output signal to

become distorted. The distortion determines the maximum receivable input power

for the receiver. The linearity of an RF circuit is commonly described by the 1-dB

2



compression point or the third-order intercept point (IP3). The 1-dB compression

point is defined as the input signal level that causes the gain to decrease by 1 dB.

Two signals that are offset by some frequency can intermodulate causing distortion.

The IP3 measures the theoretical point where the intermodulation tones are equal

to the amplitudes of the fundamental tones. The location of the 1-dB and the IP3

compression points plot are shown on Figure 1.1.
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Figure 1.1 Noise and Linearity Graph for Input/Output Power

Dynamic Range

The range of input signal level at which the receiver can accommodate while

producing an acceptable signal quality is defined as the dynamic range. As shown

in Figure 1.1, the spurious-free dynamic range (SFDR) is defined as the maximum

input level in which the third-order intermodulation products do not exceed the noise

floor. The dynamic range (DR) is defined as the minimum detectable signal to the

1dB compression point.
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Selectivity

Signals from neighboring channels and other sources close to the intended signal

can interfere causing distortion. The receiver’s ability to select and process the signal

at the presence of interference is called the receiver’s selectivity. The RF block in

the receiver responsible for selectivity is the channel-select filter block. Selectivity

is quantized using the concept of quality factor, Q, which measures the sharpness of

the filter response. Hence, higher Q equals higher selectivity. Mathematically, Q is

defined as the filter’s frequency of operation over the 3 dB bandwidth frequency as

stated in Equation 1.3. The 3 dB point is referenced from the peak or depth of the

filter response as shown in Figure 1.2.

Q3dB =
fo

∆f3dB

(1.3)

fo fo

3dB

3dB
∆f3dB

∆f3dB

frequency

a) bandpass response                           b) notch response

Figure 1.2 Definition of Filter Quality for a) Bandpass b) Notch Response

1.2 Multiple Standards Receiver

The cost of the receiver can be further reduced by designing a receiver that is

compatible with multiple standards. This versatile capability allows a receiver to

4



support various wireless applications in a single device adding more functionality and

market competitiveness. In the area of personal wireless communications, the two

most popular standards today are the 5 GHz Wireless Local Area Network (WLAN)

and the emerging Ultra Wideband (UWB). Implementing a low cost receiver that

supports both the UWB and NB (narrowband) standards will bring in a new wave of

wireless applications in the personal wireless communications market. The challenge

that first needs to be resolved is to eliminate the NB interference on the UWB receiver

to allow the two standards to seamlessly co-exist in the same environment.

1.3 UWB and NB Co-Existence

The Ultrawideband (UWB) spectrum was approved by the Federal Communica-

tion Commission (FCC) on February 14, 2002 for indoor short range communications.

This 7.5 GHz of ultrawide bandwidth opens up the possibility of a cable-free high

speed wireless network in a home or office environment. FCC ruling places limitations

on UWB to ensure interference to existing spectrums is minimal, while not restricting

its capabilities and benefits. As a result, indoor UWB signals are restricted to 3.1

GHz to 10.6 GHz and can emit no more than -41.3 dBm/MHz of power. This level

of emission is comparable to what is allowed for the unintentional radio frequency

energy radiated today by electronic devices such as computers. UWB communication

is ideal for indoor high speed short range data transmissions of up to tens of meters.

The wide UWB bandwidth means that it also overlaps with the same spectrum as

the 802.11a WLAN, as seen in Figure 1.3.

To be defined as UWB, the signals must have either a fractional bandwidth greater

than 20%, or a bandwidth that is more than 500 MHz, whichever is less [2]. The

loose definition of UWB signals means that UWB is a versatile spectrum that can

accommodate multiple independent wireless standards. This flexibility, however, has

given rise to many competing proposals for the UWB standard such as DS-UWB and
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Multiband OFDM [3, 4].

NB 802.11a operates in three distinct 100 MHz regions with different power lim-

itations in the 5 GHz bands. The lower band ranges from 5.15 - 5.25 GHz and has

a power limitation of -3.01 dBm/MHz. The mid band is from 5.25 - 5.35 GHz and

is limited by 3.98 dBm/MHz. The upper band is from 5.725 - 5.825 GHz and is

limited at 10 dBm/Mhz. In the United States, FCC has allocated all 3 bands for

unlicensed usage. While in Europe, only low and mid bands are unlicensed and in

Japan, only the low band is available. Only the lower and mid band is of concern as

both co-exist with the UWB in the indoor environment. Soon after the UWB stan-

dard was approved, it was realized that the interference from the existing NB service,

specifically the 802.11a, presented a problem for the UWB receiver as both spectrums

co-exist in the same environment and overlaps at 5 GHz. As the 802.11a signals are

much stronger, they can block the desired signal causing the receiver to be desensi-

tized. The interference is significant since the 802.11a signals are drastically higher

at -3 dBm/MHz in the lower band to 10 dBm/MHz in the upper band. Studies have

shown that the harmful effects include receiver overloading and desensitivity. The
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magnitude of the effect depends on the probability of the signals overlapping and the

relative distance between the two sources from the UWB receiver. The NB signals can

cause significant interference to the UWB reception and degradation of the attainable

throughput of the UWB system [5, 6]. This is one of the main technical challenges

that have slowed down the wide adoption of UWB into wireless applications.

1.4 Motivation and Contributions

Many areas of research dealing with the NB interference to UWB systems issue

have been investigated in recent years [7, 8, 9]. In [7], a receiver architecture is pro-

posed that employs frequency conversion to isolate and filter the WLAN interference.

Although the method is effective, it also reduces the usable UWB bandwidth to 2.7

GHz. In [8], the author designed a tunable LNA (low noise amplifier) that operates

from 6 to 10 GHz, completely avoiding the 5 GHz interference. By avoiding the in-

terference, however, the usable UWB bandwidth is reduced to only 4 GHz. Resolving

the NB interference at the RF front-end of the UWB receiver by using a notch filter is

another solution. Conventional notch filters are not versatile, however, as they have

a fixed notch frequency and bandwidth and cannot be turned off if required. In [9],

the authors use a stripline filter to provide frequency tunable notching at 5 GHz. The

addition of the passive UWB filter with WLAN notching in the RF front-end adds to

the overall noise figure and receiver complexity. Previous solutions to NB interference

above limits the potential of the UWB spectrum which is to offer a wide bandwidth

resulting in high speed, low cost receiver architecture.

This thesis work covers the study of integrated passive devices for design and

performance optimization applicable to RFIC circuits, particularly focusing in the

area of RF front-end filter design. Q-enhancement filtering technique is adapted to

develop a low cost filter with channel selection and interference rejection capabilities.
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In addition to making the UWB receiver robust to 5 GHz WLAN interference, further

motivation for the research is to take advantage of the co-existence of the 5 GHz and

UWB services and design an RF front-end filter that can support both standards.

Wireless devices can benefit if 5 GHz and UWB services can work together to provide

interoperativity. For example, instead of designing a wireless devices that is either

compatible with a UWB Personal Area Network (PAN) or the 5 GHz WLAN, a dual

mode wireless device can provide more functionality by communicating with both

networks. The dual mode filter concept is shown in Figure 1.4. The filter is to be the
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Figure.  IIP3

3                                          5                                                            10    GHz

NB Bandpass Filter

UWB LNA with NB Rejection
5.15-5.25

5.25-5.35

5.725-5.825

802.11a

UWB

Figure 1.4 Proposed Dual Mode RF Front-End Characteristics

first RF block in the receiver as shown in Figure 1.5. In the absence of interference, the

NB/UWB Receiver
dual
Filter

Figure 1.5 RF Front-end Proposed Dual Filter

filter functions as a wideband LNA without the interference rejection, thus, saving

power for UWB receiver. This design brings in the possibility of a dual standard

802.11a and UWB receiver to be realized in a single chip. This will be a low cost
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solution since it would eliminate many similar front-end components such as preselect

filter, notch filter and LNA.

1.5 Thesis Outline

The thesis work begins with a study of integrated passive devices as they are essen-

tial for the design of low power, low cost and high frequency RFIC circuits. Chapter

2 looks at the design and optimization techniques for the resistor, capacitor, varactor,

inductor and transformer. Chapter 3 introduces the concept of Q-enhancement com-

pensation and active gain to realize a fully monolithic Q-enhanced filter. Since the

filter is to be used at the RF front-end, narrowband and wideband frequency match-

ing techniques are covered. This will then lead into Chapter 4 where a design of a

proposed dual mode filter is presented. The objective of which is to provide further

RFIC integration and robustness to NB interference while providing future wireless

applications to utilize both modes - the 802.11a for wide range WLAN and UWB for

high speed PAN. This is followed by the conclusion and suggestions for future work

in Chapter 5.
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2. Integrated Passive Devices

The resistor, capacitor, varactor, inductor and transformer are necessary passive

devices for the realization of RF circuits. Monolithic devices, however, suffer from

excessive parasitic capacitances and resistances resulting in a low quality factor (Q)

affecting the performance of RF circuits. Q is defined as the ratio of the reactive

divided by the resistance of a device as shown in Equation 2.1.

Q =
|Im(Z)|
|Re(Z)|

(2.1)

Although the integration of the resistor, capacitor and varactor have been done for

quite some time, better processes and research has lead to improved performance.

Because of the complexity of inductor and transformer behavior, only recently has

research made realizing of monolithic inductor and transformer possible. This is

partly contributed to advanced models that accurately predicts the characteristics at

high frequencies. In this chapter, integrated passive device issues, concept and design

examples used in this research work are presented.

2.1 Resistor

Polysilicon resistors are the most popular type of resistor available in a polysilicon-

gate CMOS process due to its high resistance per area [10]. The structure is made

using a strip of poly deposited on top of field oxide exhibiting a sheet resistance, Rs,

of 20 to 30 ohms/square. By making the width thin, a substantial large resistance
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per area is realized without increase in mismatch as shown in Equation 2.2.

R = Rs
L

W
(2.2)

A standard layout of a 10 KΩ polysilicon resistor is shown in Figure 2.1(a). The

resistor is separated by two segments each having a length of 8.3µm and a minimum

width 0.18µm. Guard ring, created from p+ implant, is placed around the device

to reduce substrate noise which are caused by adjacent circuits injecting current into

one another [11]. The simple resistor layout in Figure 2.1(a) is sensitive to process

variation resulting variation as much as 20% making it useful as an RF blocker. Figure

(a) 10 KΩ resistor
(Rg)

(b) 123.7 Ω resistor (RL)

Figure 2.1 (a) Layout of a Simple 10KΩ Resistor (b) Layout of a Matched 123.7 Ω
Resistor

2.1(b) shows a resistor layout that is suitable for use in a voltage biasing circuit or as

a resistor load as it offers improved tolerance against process variations. The layout

contains five resistors each with length of 1.5 µm and a width of 1.8 µm obtaining

a value of 371 Ω. The larger width makes the resistor less susceptible to variation.

Three unit resistors connected in parallel realizes a resistance of 123.7 Ω. The layout

reduces the variation by a factor of 3 since the resistors are connected in parallel.
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Dummy resistors are added to ensure the three unit resistors see the same adjacent

structures improving device matching. The dummy is grounded to reduce noise from

coupling to the resistor.

2.2 Capacitor

A capacitor can be made from any of the metal layers in a process. To reduce die

area, metal-insulator-metal (MIM) capacitor is a popular choice. MIM capacitor is

made from special dual metal layers containing a thin oxide resulting in the highest

capacitance per area available in a CMOS process.

A layout of two MIM capacitors used for different application in an RF circuit is

shown in Figure 2.2. A small 263.2 fF capacitor with a dimension of 16.3 µm by 16.3

µm is shown in Figure 2.2(a). A large capacitor is implemented using multiple unit

capacitors to allow for the capacitor to be matched making it less sensitive to process

variation. Figure 2.2(b) shows a coupling capacitor laid out using multiple unit cells.

A unit cell valued of 410.8 fF was connected in parallel of 9 blocks to realize a 3.70

pF. Each cell unit is 20 µm2 and the total area is 68.9 µm2. When modeling the

(a) Cp (b) Coupling Capacitor

Figure 2.2 a) Cp 263.3 fF Capacitor b) A 3.70 pF Coupling Capacitor

MIM capacitor, substrate effect must also be accounted for. The MIM capacitor can

be modeled with the equivalent circuit shown in Figure 2.3. The series capacitor, Cs,
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represents the inter-metal dielectric capacitance. Rs and Ls account for the parasitics

existing in the electrodes. Cox, Csub1 and Rsub1 are parasitics that represent the

capacitance and resistance to ground due to the bottom plate metal.

Lbot

Ltop

CBM

Oxide

CTM

P1

P2

Rs
P1

Cs

Cox

Ls

Rsub1 Csub1

P2

Figure 2.3 MIM Capacitor Equivalent Circuit

2.3 MOS Varactor

A varactor is essential for RF applications to operate over a range of frequencies

and also to accommodate process variations. It is widely used as part of the par-

allel LC resonator in RF applications to alter the operating frequency of the filter.

Varactors are designed to achieve high Q, sufficient capacitive tuning ratio, low par-

asitic capacitance, high capacitance-to-area ratio and a capacitive tuning curve that

is constant and predictable [12].

Today, the varactor is commonly implemented using a MOSFET device with the

source and drain connected at the same node. The gate capacitance varies as the gate

bias varies from well below to well above the threshold voltage. The most common

MOSFET varactor is the accumulated-mode MOS varactor as shown in Figure 2.4.

The accumulated-mode device is similar to an NMOS device except it is fabricated

in an n-well instead of the normal p-substrate. Accumulation-mode varactor has the

advantage of a linear capacitance tuning curve and high Q. The value of Q in the

range of one hundreds was reported in [12] due to the higher carrier mobility in the
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n-well. Recent researches [12, 13, 14, 15] show that accumulation-mode MOSFET-

based varactors offers better performance benefiting from shrinking technology size

as its tuning range is directly dependent on the oxide thickness of the process.

N+

N-Well

N+

Vtune

Vdd

N+ N+

N-Well

G

S/D

G

S/D

Figure 2.4 Accumulated-Mode MOS Varactor

Accurate modeling of varactor is a challenge because of the structure’s strong de-

pendency on process parameters. Theoretical and SPICE compatible models do not

accurately predict the quality factor-voltage (Q-V) curve since the series resistance

is modeled as a constant value. Accurate modeling requires that the bias dependent

of the series resistance, Rch, be included in the model [16]. One such model based on

semi-empirical equations is shown in Figure 2.5 [17]. In this model, Cs represents the

N-Well
P+ P+ N+

G

S/D

N-Well
P+ P+ N+

G

S/D

S/D

N-Well
N+ N+

G

S/D

(a) (b)

(c)

S/DG

Rsub Csub2

Csub1

Rwell

RsdRchCs

Cf

RpolyLg

Rch=Rs+Racc // Rp

Figure 2.5 A Scalable Equivalent Circuit of an Accumulation-Mode MOS Varactor

series connections of the gate oxide capacitance and the depletion region in the silicon

under the gate oxide. Cf represents the fringing capacitance mainly associated with
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the sidewall of the gate. Lg and Rpoly are the parasitic inductance and distributed

resistance of the gate electrode. The gate bias dependence of the channel resistance

Rch, Racc, Rp, and Rs are also included. Racc represents the resistance of the accumu-

lation layer formed in the channel region. Rp is the n-well resistance in parallel with

Racc and Rs is the gate bias independent resistance of Rch in series with the parallel

connections of Racc and Rp.

2.3.1 MOS Varactor Design

The Q of the varactor is mainly limited by the resistances in the gate and channel.

To reduce gate resistance and area, MOS varactor’s are implemented with multiple

fingers. Since the parasitic resistance scales with the channel length, small length

is used to increase Q. But if length is too small, the channel length resistance will

dominate [17] decreasing Q. Figure 2.6 shows a design of an accumulated-mode var-

actor implemented in an array. Each unit pair has a gate length of 0.5 µm and a unit

width of 2.5 µm. A branch of 39 by 5 groups were used to obtain the varactor with

a nominal capacitance of 3.33 pF.

The characteristic of the varactor is obtained in Figure 2.7 where S/D is connected

to 1.8V and the gate voltage is swept from 0V to 1.8V. The varactor has a maximum

capacitance of 4.9 pF at 1.8V and a minimum of 1.77 pF at 0 V gate voltage. A

capacitance ratio of 2.77 and a tuning range of 147% was achieved. The device layout

was extracted to find the actual Q taken into account of parasitic capacitance and

contact and line resistance. The Q of the varactor ranges from 75 and decreases to

26 as capacitance is increased when simulated at 5 GHz.

2.4 Inductor

Monolithic inductor is an important device governing the performance of many

RFIC circuits. It is essential for the design of low cost, low power supply, high
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operating frequency, low noise levels and high level of integration in a receiver [18].

Monolithic inductor is created by winding a low sheet resistance metal line into a

spiral on a planar surface. The top most layer is often used for the metal line as it is

the thickest layer with lowest sheet resistance furthest from the substrate, reducing
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capacitance coupling to the substrate. In a 6-metal process, the top layer (metal 6)

is interwound to realize an inductor. Metal 5 layer is used to provides the exit from

the inner side of the spiral as shown in Figure 2.8. The physical characteristics of

the inductor are the outer dimension, metal width (w), spacing (s) between adjacent

turns and the number of turns (n) in the spiral.

w

s

Metal 6

Metal 5

Figure 2.8 Monolithic Square Planar Spiral Inductor

For simple analysis, the integrated inductor can be modeled simply as an inductor

with a series resistor, Rs, as shown in Figure 2.9. The Q for the inductor is given in

Equation 2.3. Equivalently, the inductor can be represented using a parallel model

with Lp and Rp. The Q of the inductor for the parallel model is given in Equation

2.4. As will be seen in later chapters, representation of the resistance in parallel is

useful for developing the Q-enhanced resonator concept.

Qs =
ωL

Rs

(2.3)

Qp =
Rp

ωL
(2.4)

The relationship between the series and parallel models can be seen from below. Given

the impedance, Zs, for the inductor , Ls and resistor, Rs in series, the equivalent
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Figure 2.9 A Lossy Inductor a) Series Resistance b) Equivalent Parallel Resistance

parallel inductor, Lp, and resistor, Rp impedance are found.

Zs = Rs + jωLs (2.5)

Ys =
1

Zs

=
Rs − jωLs

R2
s + ω2L2

s

(2.6)

The inverse of the real part of Ys gives the equivalent resistance, Rp,

Rp ==
1

Real(Ys)
=

R2
s + ω2L2

s

Rs

= Rs

(
1 +

ω2L2
s

R2
s

)
= Rs(1 + Q2) (2.7)

The inverse of the imaginary part of Ys gives the equivalent inductance, Lp,

Lp =
1

Img(Ys)
=

R2
s + ω2L2

s

ω2Ls

= Ls

(
R2

s + ω2L2
s

ω2L2
s

)
= Ls

(
Q2 + 1

Q2

)
(2.8)

The calculations above show(s) that the series and parallel inductor models are related

by its Q. For high Q, Lp is approximately equal to Ls.

2.4.1 Inductor Physical Properties

Monolithic inductor suffers from low substrate resistivity of the Si-substrate con-

tributing to low Q in the range of 6 to 10 for most commercial IC processes [19].

At low frequencies, the series resistance of inductor turns dominates the loss of the

inductor. At higher frequencies, the loss is dominated by the eddy currents, which
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decreases the effective area for current flow and increases the heat dissipation losses.

Physical inductor has parasitic capacitances due to the coupling between windings

and coupling to the substrate. The capacitance will resonate with the inductance of

the inductor at a certain high frequency. The frequency at which resonating occurs is

called the self resonating frequency (SRF) of the inductor. At frequencies above this

point, the inductor will no longer have any inductance and will appear capacitance

due to the dominance of the parasitic capacitances. Therefore, the SRF determines

the upper limit for how high of frequency an inductor can operate. The SRF and Q

of an inductor are highly dependent on the metal layer and layout geometry of the

inductor in a process. Optimal physical geometry of an inductor is dependent on the

applications and intended frequency of operation.

In the past, monolithic inductor is uncommonly found in RFIC circuits, as it

requires complex 3-D simulations to precisely describe the behavior at RF and mi-

crowave frequencies. Long simulations and huge processing speed and memory size

were required making it difficult to integrate into the design flow. Researches [19, 20]

in the last decade resulted in simple compact models that precisely predict the be-

havior of the inductor minimizing the requirements for complex 3-D simulations. In

addition, the use of device models provide designers the flexibility to optimize and

characterize the inductor for any given RF application.

A model of an inductor with substrate effect is shown in Figure 2.10. The model

does not consider frequency-dependent resistance caused by the eddy current and

skin effect which limits the accuracy to a narrowband frequency range. The metal

series resistance, Rs represents the eddy current effect at high frequency. Whereas

Cs1 and Cs2 series capacitance represent the overlaps between the spiral and the

connection underpass. Interwinding capacitance between inductor traces is modeled

by CIW . Rsub and Csub represents the ohmic losses in the conductive substrate and

metal-to-substrate capacitance, respectively.
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Figure 2.10 A Narrowband Model of the Inductor

2.4.2 Inductor Optimization

Inductor resistivity is contributed by several factors. The active resistance of the

inductor is caused by the sheet resistance of the metal line. To reduce resistivity, the

thickest metal layer in the process should be used for interwinding. A wide metal

strip width can decrease the spiral resistance, however, skin effect at high frequency

increases if the width is made too wide. Spacing between metal turns should be

as small as allowable in a process to increase the magnetic coupling between the

windings to obtain higher inductance [18]. Conversely, large spacing between windings

decreases magnetic coupling and increases spiral resistance and area. A large outer

diameter will increase parasitic capacitance between the spiral and substrate due to

increase in chip area and results in the inductor having a low SRF. The use of circular

spiral geometry design allows for improved Q as it reduces the spiral resistance, but

is difficult to model and fabricate accurately. A compromise is to use a 45 degree

octagonal shape geometry. Inner shape of the spiral should be left hollow as it has a

higher resistivity than the outer turns at high frequencies due to eddy currents, while

contributing little inductance [21, 19].

The distance of the metal layer to the substrate defines the capacitance between

the spiral and substrate. To minimize capacitance increasing the SRF, inductors are

implemented on the top most layer. Losses in the inductor is also caused by the flow
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of small signal current from the inductor to the substrate through capacitive coupling

and induced through magnetic coupling. A simple technique to minimize the loss is

to place a patterned ground shield (PGS) between the inductor and the substrate

as shown in Figure 2.11. Metal ground shield can be used to eliminate the silicon

parasitics associated with the bottom plate of the capacitors. The metal shield is

patterned with slots orthogonal to the spiral to prevent the flow of image current,

also known as loop current, which is caused by the magnetic field of the spiral. This

loop current reduces the magnetic field in the inductor resulting in a loss of the overall

inductance [22]. To prevent the loop current from flowing along the outer edge of the

plane, the PGS is created from two separate metal planes.

Figure 2.11 A Patterned Ground Shield

2.4.3 Various Inductor Designs

Integrated inductor optimization is a tedious and time consuming task, but can

be aided by a tool called ASITIC (Analysis and Simulation of Spiral Inductors and

Transformers for ICs) [23]. ASITIC assists the designer with inductor structural

optimization by solving Maxwell’s equations saving designers a great amount of time.

The techniques are fairly accurate, taking into account substrate coupling, current
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constriction, and proximity effects. The analysis is also fast and efficient, making it

suitable for computer optimization.

The following figures show various inductor layouts, optimized for applications at

5 GHz and operable above 10.6 GHz. Figure 2.12 shows a 3.316 nH octagonal shape

inductor, implemented on metal-6 with PGS, with a Q of 6.862. Large number of

turns are required to obtain the large inductance. The addition of the PGS reduces

the substrate resistance, Rs1 and Rs2, but increases the substrate capacitance, Cs1

and Cs2 resulting in the SRF of 14.32 GHz. Figure 2.13 shows a layout of a smaller

L1 PGS
 not shown A      B

A

B

Ll (Le)

A      B

LB

Name = L1
radius = 100 μm, sides = 8, n =4
w =9 μm, s =5 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 6.862
L = 3.316 nH R = 9.168 
Cs1 = 37.24 fF Rs1 = 313.6 
Cs2 = 34.2 fF Rs2 = 313.8
Est. Resonance = 14.32 GHz

Name = Ll
length = 60 μm, sides = 4, n =5.25
w =4 μm, s =1 μm, Layer = Metal 4
Pi Model at freq = 5.2 GHz  
Q = 2.056
L = 983.2 pH R = 15.36 
Cs1 = 8.041 fF Rs1 = 1.689 k
Cs2 = 9.173 fF Rs2 = 1.181 k
Est. Resonance = 56.6 GHz

Name = Lg
radius = 80 μm, sides = 8, n =2
w =13 μm, s =3 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 7.397
L = 747.9 pH R = 2.922 
Cs1 = 25.88 fF Rs1 = 840.4
Cs2 = 26.72 fF Rs2 = 809.8
Est. Resonance = 36.18 GHz

Figure 2.12 A 3.316 nH Inductor with PGS

inductor with a value of 747.9 pH. The structure has a smaller inductance due to a

smaller number of turns of two. Hence, parasitic capacitance are reduced resulting

in a high SRF of 36.18 GHz. Larger width in this design also aided to obtain a Q of

7.393. Figure 2.14 shows a single turn inductor realizing a small inductance of 173

pH. Width is made larger to reduce the metal resistance, but Q is slightly lower at

6.063 since inductance is also reduced. The SRF is high since the structure is smaller,

with a radius of only 60 µm. In the previous three inductor designs, the inductors

were optimized mainly for high Q, with very little regard to area. However, as it will

be shown, inductor can be purposely designed for low Q to reduce component count

and die area. For wideband RF application, inductor and series resistance load is
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Name = L1
radius = 100 μm, sides = 8, n =4
w =9 μm, s =5 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 6.862
L = 3.316 nH R = 9.168 
Cs1 = 37.24 fF Rs1 = 313.6 
Cs2 = 34.2 fF Rs2 = 313.8
Est. Resonance = 14.32 GHz

Name = Ll
length = 60 μm, sides = 4, n =5.25
w =4 μm, s =1 μm, Layer = Metal 4
Pi Model at freq = 5.2 GHz  
Q = 2.056
L = 983.2 pH R = 15.36 
Cs1 = 8.041 fF Rs1 = 1.689 k
Cs2 = 9.173 fF Rs2 = 1.181 k
Est. Resonance = 56.6 GHz

Name = Lg
radius = 80 μm, sides = 8, n =2
w =13 μm, s =3 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 7.397
L = 747.9 pH R = 2.922 
Cs1 = 25.88 fF Rs1 = 840.4
Cs2 = 26.72 fF Rs2 = 809.8
Est. Resonance = 36.18 GHz

Figure 2.13 A 747.9 pH Inductor with PGS

A      B

Name = Ls
radius = 60 μm, sides = 8, n =1
w =15 μm, s =2 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 6.063
L = 173 pH R = 925.2 m 
Cs1 = 13.58 fF Rs1 = 964.4
Cs2 = 13.58 fF Rs2 = 964.6
Est. Resonance = 103.8 GHz

Le_BP

Figure 2.14 A 173 pH Inductor with PGS

used to achieve a flat gain throughout the bandwidth. Scarce die area can be saved

by incorporating the series resistance in the design as part of the parasitic resistance

of the inductor. This means that the inductor does not need to have high Q, hence,

it can be designed purposely to obtain the low Q necessary to account for the series

resistance eliminating the need of a resistor. Shown in Figure 2.15, the 985.3 pH

inductor has a Q of only 2.017 and a length of 60 µm. The inductor was laid out

using an un-optimized square structure. The inductor turns was increased to 5.25 to

improve the inductance value. High resistance metal 3 layer was used to create the

metal strip. PGS was not included resulting in a series resistance increase of 15.48

Ω.
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Name = L1
radius = 100 μm, sides = 8, n =4
w =9 μm, s =5 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 6.862
L = 3.316 nH R = 9.168 
Cs1 = 37.24 fF Rs1 = 313.6 
Cs2 = 34.2 fF Rs2 = 313.8
Est. Resonance = 14.32 GHz

Name = Ll
length = 60 μm, sides = 4, n =5.25
w =4 μm, s =1 μm, Layer = Metal 3
Pi Model at freq = 5.2 GHz  
Q = 2.017
L = 985.3 pH R = 15.48 
Cs1 = 6.154 fF Rs1 = 1.705 k
Cs2 = 7.066 fF Rs2 = 1.18 k
Est. Resonance = 64.64 GHz

Name = Lg
radius = 80 μm, sides = 8, n =2
w =13 μm, s =3 μm, Layer = Metal 6
Pi Model at freq = 5.2 GHz  
Q = 7.397
L = 747.9 pH R = 2.922 
Cs1 = 25.88 fF Rs1 = 840.4
Cs2 = 26.72 fF Rs2 = 809.8
Est. Resonance = 36.18 GHz

Figure 2.15 A 983.2 pH Inductor

2.5 Transformer

Transformers are used in RFIC applications in place of two inductors in differ-

ential circuits to obtain higher Q while occupying less die area. They are also used

for single to differential signal conversion, impedance matching, signal coupling and

phase splitting [24]. A transformer is created when two spiral windings, or induc-

tors, magnetically couple due to their close proximity. This causes the impedance

levels, defined as the ratio of the terminal voltage to the current flow, to change

between windings [25]. The transformer characteristics include the self-inductance,

series resistance, mutual coupling coefficient, substrate capacitances, self resonating

frequencies, symmetry and die area. Similar to inductor, the type of transformer

structure influences these characteristics and is selected based on the application us-

age the transformer is intended for. The three common transformer configurations

are shown in Figure 2.16. Figure 2.16 (a) shows a tapped structure consisting of an

inner winding and an outer winding. Mutual coupling between adjacent conductors

contributes mainly to the self-inductance of each winding. The structure is not often

useful as the mutual inductance is small due to very little coupling. Figure 2.16 (b)

shows two spirals interwound in the same plane. The interwound spirals ensures elec-

trical characteristics of primary and secondary are identical, having the same number

of turns. The transformer terminals are located in opposite sides allowing easy ac-
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Figure 2.16 Transformer Physical Structures (a) Tapped (b) Interleaved (c) Stacked

cess for layout. Figure 2.16 (c) shows two spirals stacked in separate metal planes.

The advantage of the structure is a reduced overall area since it is implemented in

different metal layers. The flux linkage between the two windings improve due to

the close coupling. The coupling coefficient, k, can be as high as 0.9 for a stacked

structure [19]. However, the use of separate metal planes results in an asymmetry

between the primary and secondary windings caused by the different thickness and

metal characteristics of the planes. This layout is suitable for low frequency operation

as large capacitance between windings due to the overlap results in a low SRF. The

advantages and disadvantages of each structures are summarized in Table 2.1.

Table 2.1 Transformer Configuration Comparison
Configuration Advantage Disadvantage

Tapped High SRF, Large area and reduced k coupling
Interleaved Symmetrical. Moderate coupling reduced SRF

Stacked Area, high coupling poor SRF

2.5.1 Transformer Model

A lossy transformer can be modeled with an inductor and a resistor in series for

each winding representing the dominating series losses as shown in Figure 2.17. From

the model, the characteristics of the transformer can be described. The impedance
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Figure 2.17 A Lossy Transformer Model

of the primary and secondary windings are,

Z11 = R1 + jωL1 (2.9)

Z22 = R2 + jωL2 (2.10)

The inductance of the primary and secondary windings are,

L1 =
Im(Z11)

jω
(2.11)

L2 =
Im(Z22)

jω
(2.12)

The quality factors of the windings are,

Q1 =
Im(Z22)

Re(Z22)
(2.13)

Q2 =
Im(Z11)

Re(Z11)
(2.14)

To account for the imperfect coupling due to metal ohmic loss, substrate dissipation,

parasitic capacitance and leakage [25], several parameters are defined. The k-factor

represents the strength of the magnetic coupling and M is the mutual inductance

between the primary and secondary windings as defined in Equation 2.15. For a

perfectly coupled transformer, the k-factor is unity. But in a typical process, k is
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between 0.6 and 0.9 for monolithic transformers [25]. The relation between coupling

coefficient, k, and mutual inductance, M, is described in Equation 2.16.

M =
Z12

jω
=

Z21

jω
(2.15)

k =
M√

L1 · L2

(2.16)

2.5.2 Advanced Transformer Model

For accurate simulations, the simple lossy model in Figure 2.17 is not adequate to

predict the behavior of monolithic transformer. A more advance transformer model

is required to account for parasitics and losses specific to the process technology. One

such model is from J. Long [19] and is shown in Figure 2.18. The lumped-element

circuit model is based on extraction from the physical layout and process technology

specifications using the GEMCAP2 computer program.

The core of the model is an ideal linear transformer with mutual inductance Lm

and turn ratio of 1:n, where n = Ls/Lp. Inductances Lp and Ls are placed in series

with the primary and secondary windings of the linear transformer to account for the

imperfect coupling or leakage of the magnetic flux between the windings. Resistors

rp and rs are in series with the leakage inductances represent the ohmic losses in

the windings. The losses are significant due to the relatively thin layers of metal

available in the IC process. Interwinding capacitance is modeled by the capacitors

connected between primary and secondary, Co and Cx. Parasitic capacitances and

dissipation in the substrate are represented by the shunt elements Cox, Csi, and rsi.

Resistor rsi represents the losses caused by dissipation of the electric field in the

substrate [19]. The current distribution across each conducting strip is frequency

dependent due to proximity and skin effects, and introduces additional losses that

increase proportionally to the square root of frequency. Hence, rs is only valid for

a narrow range of frequency. The substrate losses are represented by resistor rsi in
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parallel with Csi as shown. The parasitic capacitances and resistance can be calculated

from the equations found in [26].
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Figure 2.18 1:n Transformer Compact Model

2.5.3 Transformer Optimization

An optimal transformer structure requires attaining the desired bandwidth with

the lowest possible loss while consuming as little chip area as possible. The same

technique for optimizing inductor also applies to the transformer. Circular structure

provides the lowest loss, design rule permitting. The interwinding capacitance intro-

duced by closely spaced conductors is acceptable in most applications. Thicker metal

reduces the ohmic losses in the primary and secondary windings of a planar trans-

former. Minimal spacing should be used between spirals for better magnetic coupling

between primary and secondary windings. The self-inductance and associated para-

sitics at the secondary (Ls and Csox) are determined by the length and the winding

and increase with increasing winding length.
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2.5.4 A Transformer Design

In this work, a transformer was required to have an inductance of 1 nH at the pri-

mary and 390 pH at the secondary winding. The transformer is to be center-tapped,

so symmetrical layout is important. SRF must be high enough as it needs to operate

up to 10.6 GHz. To support center-tapping, a six port transformer model correspond-

ing to the design is used, as seen in Figure 2.19. A center-tapped 2:1 square planar
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Figure 2.19 1:n Center-Tapped Transformer Compact Model

transformer with a dimension of 250 µm by 250 µm is designed to conform to design

requirements as shown in Figure 2.20. The square symmetrical shape assures equal

inductance of both sides of the center-tapped. The planar shape reduces capacitance

improving SRF. The SRF of the primary inductor is located at 16.25 GHz while the

secondary inductor is located at 41.61 GHz. The planar transformer has a coupling

coefficient, k, of 0.6759 and a mutual inductance of 422.1 pH. The widths for both

windings are 20 µm having a total of 3 turns. Minimal spacing of 1 µm allowable in

the process was used to increase self and mutual inductance. The transformer was

implemented on the metal-6 top layer for reduced metal resistivity and used in con-

junction with a PGS to optimal Q. The transformer has a Q of 8.58 for the primary

and 7.889 for the secondary windings. The transformer parameters were extracted
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with the assistance of ASITIC at 5.2 GHz [27].
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Figure 2.20 2:1 Square Planar Transformer

2.6 Summary

Integrated passive devices are essential for the realization of low cost integrated

RF circuits. In this chapter, all the passive devices that are used in RFIC circuits

were presented. Polysilicon resistor is popular due to the high resistance per area

for polysilicon. Integrated capacitor uses large amount of silicon, the use of MIM ca-

pacitor saves valuable area. Design techniques were discussed to minimize the effect

of process variations and mismatch. Accumulation mode MOS varactor offers linear

capacitance tuning curve for better predictability while obtaining high Q and tun-

ing ratio. Inductor and transformer remains the bottle neck for high Q RF circuits,

particularly for integrated filters. The design and optimization of inductor and trans-

former remains a challenging area in RFIC designs. But thanks in part to accurate

models over the last years and improved design tools, monolithic realization of induc-

tor and transformer are becoming mainstream. However, advance 3D simulations of

transformer are still needed for better accuracy for commercialization.
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3. Active Q-enhanced LC Filter

The need for a high-performance, low-cost and single-chip RF receiver requires

LC filters to be integrated. However, integrated LC filters have a low Q characteristic

associated to the lossless monolithic inductor in a process, making it only useful in

the receiver back-end where high Q requirement is not required. For RF front-end

filtering, Q of at least 100 is required for channel-selection or band rejection in the

gigahertz frequency. A requirement that is currently satisfied only by off-chip SAW

filtering, but brings added cost and complexity to the receiver.

Using negative resistance compensation technique, the losses associated with LC

filters can be compensated allowing the realization of a high Q RF front-end mono-

lithic filter. Active Q-enhanced integrated filter uses an LC resonator with a Q

compensation component to cancel the losses and an LNA to provide active gain as

shown in Figure 3.1. At the RF front-end, input impedance matching is critical to

LNA
LC

Resonator

Q-Compensation

receiverantenna

Figure 3.1 An Active Q-enhanced LC Filter

the performance of the filter. In this chapter, active Q-enhanced filter theories are

discussed followed by a discussion of input matching techniques for narrowband and

ultrawideband applications.

31



3.1 LC Resonator Compensation

LC resonator filter relies on some form of loss compensation to increase the quality

factor caused by the lossy on-chip passive devices. A primary method for increasing

the Q is through the use of active devices to create a negative resistance [28] as shown

in Figure 3.2. Rp represents the equivalent losses and - G represents the negative

conductance for compensation. The total equivalent resistance of the resonator is

given as Req as seen in Equation 3.1.

Yin

Zin

(a) (b)

M

Zin

L1

R1

L2

R2

L -GC

Bandpass Q-enhanced Filter 
Concept

rlossGmVin
+
-

i1 i2

Gain50 Ω
Network

Q-enh.
Resonator

Antenna

L -1/GC Rp

Figure 3.2 LC Resonator with Q Compensation

Req = Rp‖ − 1/G =
Rp

1−RpG
(3.1)

By making - G equal to 1/Rp, the resonator loss will be completely canceled resulting

in an infinite Q as shown in Equation 3.2. However, if −G > 1/Rp, the resonator will

oscillate.

Q =
ωo

BW
=

ReqC√
LC

= Req

√
C

L
(3.2)

The cross-coupled MOSFET pair shown in Figure 3.3 is commonly used to gener-

ate the negative transconductance. The impedance as seen between the two terminals

is given as R = −2/gm by using the simple analysis given in Equation 3.3. However,

at high frequencies, device parasitics and input resistance should be considered.

R =
v

i
=

vds1 − vds2

i
=

2vds

−gm · vds

=
−2

gm

=
1

−G
(3.3)
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Figure 3.3 Cross-Coupled MOSFET Negative Transconductance

The transconductance, gm, can be adjusted by varying the bias current, IQ en-

abling for Q of the filter to be tunable. However, care must be taken as the resonator

will oscillate if the negative resistance is greater than the losses in the resonator.

Substituting for G = gm/2 in Equation 3.4 gives the following equivalent impedance

equation for the resonator with Q-compensation.

Req =
Rp

1−RpG
=

Rp

1−Rp(gm/2)
=

2Rp

2−Rpgm

(3.4)

3.1.1 Transformer Q-Enhancement

The Q-enhancement technique can also be used in a transformer to improve the

quality factor of one winding to another. The advantage of transformer over inductor

has been described in the previous chapter due to its mutual inductance. Transformers

also have many uses, particularly in LNA and VCO (voltage controlled oscillator) to

provide further Q improvement via coupling [24, 29]. The Q of the primary winding

of a transformer, shown in Equation 3.5, can be enhanced by a negative generated
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impedance circuit in the secondary winding.

Qpri = RpriωLpri (3.5)

A simple transformer model with equivalent parallel resistance and perfect coupling

used to illustrate the concept is shown in Figure 3.4 where N is the inductance ratio

between the primary and secondary windings, defined as N = Lp/Ls. Assume that

the secondary inductor contains a cross-coupled negative transconductance circuit,

shown in Figure 3.3, the equivalent secondary resistance, Rsec, is equal to,

Rsec =
2Rp

2−Rpgm

(3.6)

When observing the impedance from the primary winding, the secondary impedance

P1

Ctp

P2

S1

S2

Cts

P1

Ctp

P2

S1

S2

Cts

Z11 Z22

R1 R2

L1 L2

Name = xfmr
outer length = 250 μm,  Layer = Metal 6
Primary (L1) secondary (L2)
n1 =2 n2 = 1
w1 =20 μm w2 = 20 μm
Narrowband Model at f = 5 GHz  
Q1 = 8.58 Q2 = 7.889
L1 = 1.047 nH L2 = 388.3 pH
R1 = 3.303 R2 = 1.508
M  = 422.1 pH (k = 675.9 m)
Re(Z12) = 267.7 m

RsecLpri LsecRpriNRsec

Observed
from primary

N

Figure 3.4 Transformer Impedance Transformation

is seen as Rsec ·N as shown in Equation 3.7.

Vp

Ip

=
Vs

√
N

Is/
√

N
=

Vs

Is

·N = Rsec ·N (3.7)

Hence, the total impedance seen in the primary winding is equal to,

Rpri = Rp//(RsecN) =
RpriRsecN

Rpri + RsecN
(3.8)
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Substituting Equation 3.6 into Equation 3.8, the equivalent total resistance becomes,

Rpri =
RpriRpN

Rpri − (gm/2)RpriRp + RpN
(3.9)

The Q of the primary winding then becomes,

Qpri =

[
RpriRpN

Rpri − (gm/2)RpriRp + RpN

]
ωLpri (3.10)

The Q of the primary can be enhanced by increasing gm. Maximum Q is obtained

when gm equals to,

gm = 2 · Rpri + RpN

RpriRp

(3.11)

3.2 Active Gain

The aim of the active gain stage in the filter is to amplify the signal such that

it is suitable for subsequent stages. The active gain component compensates for the

insertion loss in the filter which reduces the overall noise of the receiver as shown in

Equation 1.2.

A cascode low noise amplifier (LNA) topology is an excellent choice for use as

the active gain stage in an RF filter [30]. The cascode LNA configuration, shown

in Figure 3.5, offers the benefits of increased input-output port isolation, good NF,

high stability and gain. Part of the cascode LNA can be used as part of the input

matching network reducing component counts as will be discussed later.

The impedance load, ZL, determines whether the LNA is designed for an NB or

UWB system. For NB, ZL consists of either a high Q inductor or LC resonator for

channel selection. For UWB, the bandwidth requirement is larger so the Q should be

lower. Flat gain can be achieved throughout a wider bandwidth by using a combina-

tion of series resistor and inductor. The resistor provides improved gain at the lower

frequency and the inductor at the upper frequency.
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The transfer function (voltage gain) of the cascode LNA can be found by using the

small signal model shown in Figure 3.6. To simplify the deviations, the body effect

was ignored in the model. The cascode transistor, M2 is assumed to have a current

gain of 1 and phase of zero and can be omitted in the model. The total impedance
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Figure 3.6 Simple Cascode LNA Small Signal Model

seen at the load, Rtotalout is equal to the output impedance looking into D, Rout, in

parallel with ZL.
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The voltage gain of the cascode LNA can be derived by placing a test current itest

at the drain, D. Hence,

Vout = itest ·Rout ‖ ZL (3.12)

Vout = gmvgs ·Rtotalout (3.13)

To calculate the gain, one must first find the Rout and relate vgs to vin.

To find output resistance, add current test at output and ground input:

itest = gmvgs +
vro

ro

(3.14)

vro = (itest − vgsgm)ro (3.15)

itest =
vs

ZS

(3.16)

itest =
−vgs

ZS

(3.17)

vgs = −itest · ZS (3.18)

Substitute vgs.

vro = (itest + itestZSgm)ro (3.19)

vro = (1 + ZSgm) · ro · itest (3.20)

since

vtest = vro + vs (3.21)

vtest = vro − vgs (3.22)
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Hence,

vtest = (1 + ZSgm) · ro · itest + itestZS (3.23)

vtest

itest
= (1 + ZSgm)ro + ZS (3.24)

Rout = ZS + ro + ZSrogm (3.25)

To get voltage gain, add a voltage vin. Hence,

vgs = vin − ioutZS (3.26)

iout = gmvgs (3.27)

iout = gm(vin − ioutZS) (3.28)

= gmvin − gmioutZS (3.29)

iout =
gmvin

1 + gmZS

(3.30)

Substitute:

vgs = vin − (gmvgs)ZS (3.31)

vin = vgs(1 + gmZS) (3.32)

vgs =
vin

1 + gmZS

(3.33)

Substitute:

vout = −gmvgsRout ‖ RL (3.34)

vout = −gm ·
vin

1 + gmZS

Rout ‖ RL (3.35)

vout = −gm ·
vin

1 + gmZS

ZS + ro + ZSrogm ‖ RL (3.36)

Av =
−gm

1 + gmZS

· ZsRL + roRL + ZsrogmRL

Zs + ro + ZsRogm + RL

(3.37)
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ro is the output resistance of the MOSFET and in saturation mode, ro is very large.

Therefore the above equation can be simplified by dividing the top and bottom equa-

tion by ro and assuming ro is infinity.

Av ≈ −gmRL

1 + gmZS

(3.38)

Av ≈ −RL

Zs

(3.39)

Equation 3.39 shows that the gain of the LNA is mainly determined by the load

impedance, RL and the source impedance, Zs.

3.3 Input Impedance Matching

High performance RF receivers require input impedance matching to 50 Ω an-

tenna. Matching minimizes insertion loss and reduces NF. Depending on whether the

application is intended to operate over a narrowband or wideband spectrum, different

matching networks are required.

3.3.1 Narrowband Matching

The technique of simultaneous matching for power and noise for a narrowband

LNA involves the use of an inductor, Lg, at the gate and Ls at the source of the input

MOSFET. The small signal model of Figure 3.5 is shown below with an addition of

Lg. The input of the LNA is matched to Rsource which is equal to 50 Ω.

The analysis can be seen by first applying a test current, ix, to find the input

voltage (vin).

Vin = ix

(
jwLg −

j

wCgs

)
+ ix

(
1 +

gm

jwCgs

)
jwLs (3.40)
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Therefore, the input impedance, Zin is qual to,

Zin =
Vin

ix
= jwLg −

j

wCgs

+ jwLs +
gmLs

Cgs

(3.41)

To be matched, the real part of the input impedance must be equal to the source

resistance Rsource.
gmLs

Cgs

= Rsource (3.42)

Therefore,

Ls =
RsourceCgs

gm

(3.43)

Equation 3.43 shows that by properly selecting the choice of Ls, a real impedance

of 50 Ω can be seen at the input.

To match only to the real impedance, the imaginary part of the input impedance

must equal zero. Therefore,

wLg −
1

wCgs

+ wLs = 0 (3.44)

Lg =
1

ω2Cgs − Ls

(3.45)

Equation 3.45 shows that with proper choice of Lg and Ls, the parasitic capacitance
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at the input can be eliminated leaving only the real impedance.

3.3.2 Wideband Matching

The NB technique demonstrated above is highly dependent on the frequency of

operation, hence cannot be used for matching over a wideband of frequencies. Wide-

band matching presents a challenge, particularly over a 7.5 GHz bandwidth for the

case of UWB. A technique known as wideband LC-Ladder Matching technique has

been demonstrated in [31] that achieves better than -10dB of insertion loss from 3.1

GHz to 10.6 GHz. The technique involves using a second-order low-pass ladder filter

shown in Figure 3.8.

Xfmr

Vbias1

M1 M4wb

s s

o

o

in

Figure 3.8 Second-Order Low-Pass Ladder Filter Section.

By choosing the values of L and C so that

L =
R

wo

(3.46)

C =
1

woR
(3.47)

The input impedance is mainly resistive and equal to R, given in Equation 3.42,

to up to ωo, the low-pass filter cut-off frequency. Using the lowpass to bandpass

transformation ((s/wo) → (s/wo) + (wo/s)), the series inductor is transformed to a

series LC and the shunt capacitor to a parallel LC [31]. In Figure 3.9, the right side of

the bandpass ladder filter circuit is similar to the input impedance of an inductively
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generated LNA. Hence, the input impedance of an LNA can be used as part of the a

wideband impedance matching network circuit.
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Figure 3.10 Input impedance of the Bandpass Filter Versus Frequency

Figure 3.10 shows the input impedance of the fourth-order bandpass ladder filter.

The input impedance is matched to R from the lower frequency, ωL, to the upper

frequency ωU . The approximated equations for choosing the matching inductors and

capacitors are shown in Equations 3.48 and 3.49.

L1 ≈
R

wL

and C2 ≈
1

wLR
(3.48)

L2 ≈
R

wU

and C1 ≈
1

wUR
(3.49)
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3.4 Q-enhanced Filter Summary

Active Q-enhanced filters make the everlasting goal of a complete monolithic

transceiver achievable as it solves the limitation of low Q in integrated filter. The fil-

ter can be utilized in many receiver architectures to improve performance and reduce

receiver component count and complexity. In a heterodyne receiver, filters are used

to provide improved image rejection and channel-selection which eliminates the need

of off-chip filters, allowing the receiver to be fully integrated. In a homodyne receiver,

the preselection filter and LNA can be replaced with an active Q-enhanced filter at

the RF front-end. This will relax the performance requirement of preceding filters.

Q-enhanced filter relies on negative generation technique to compensate for the

loss in the LC filter. The technique can be used directly in parallel with the inductor

or in the secondary winding coupled to the primary winding of a transformer. The

degree of compensation can be varied by adjusting gm which allows for the gain and

bandwidth of the filter to be tunable. However, care must be taken to ensure that

the negative compensating resistance is not larger than the loss as this will lead to

the filter becoming an oscillator.

Input impedance matching is important to the overall performance of the filter.

A matched input impedance reduces insertion loss and minimizes NF. Simultaneous

matching for power and noise is only valid over a small narrowband frequency. For

wider bandwidth matching, the wideband LC-ladder matching technique can be used.

In the next chapter, the conventional active Q-enhanced filter covered in this chapter

will be modified to develop a dual mode Q-enhanced filter providing bandpass filtering

in NB and gain to UWB while rejecting the NB interference at 5 GHz.
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4. A Dual Mode Q-enhanced NB and

UWB Filter with Interference Rejection

Low cost monolithic transceiver solution is the driving force behind today’s re-

search in RFIC designs. A bottle neck preventing fully integrated monolithic design is

the low Q in integrated filter. In the previous chapter, the Q-enhanced active filter has

shown to be the solution. The next area of RFIC research is to make the transceiver

more functional by making it operable over multiple frequencies and standards. This

allows RF applications to benefit by being compatible with multiple technologies.

In this chapter, a Q-enhancement front-end filter is proposed to take advantage

of the co-existence between 802.11a and UWB providing dual mode functionality in

a receiver. Low cost and low complexity are achieved by using a direct sampling

receiver architecture with a Q-enhancement filter for channel selection at the RF

front-end. A Q-enhancement technique using transformer coupling is proposed to

provide the bandpass filtering in an NB system. The same technique is used for

802.11a interference rejection for UWB allowing the receiver to operate from 3.1 GHz

up to 10.6 GHz.

4.1 A Q-enhanced Bandpass Filter

The bandpass filter for 802.11a requires a BW range of 5.15 to 5.35 GHz. The

filter must be able to select and filter out a channel of 20 MHz within the 200 MHz

bandwidth. Good input impedance matching at 5 GHz is required for low noise and

optimal transfer. A proposed topology for the NB bandpass filter consists of a cascode
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Figure 4.1 Q-enhanced Bandpass Filter and Response in NB Mode

LNA with degeneration inductor for high linearity, and a Q-enhanced LC resonator

load is shown in Figure 4.1. The LC resonator uses a cross-coupled pair to provide

the negative resistance equivalent to −2/gm. The resonator is coupled to the LNA

via a transformer to provide a high impedance at 5 GHz resonance frequency. An

accumulation mode varactor, shown in Figure 2.6, is used to provide frequency tuning

from 5.15 GHz to 5.35 GHz. A second stage amplifier with an active load is used to

drive a 50 Ω impedance port and to integrate with the UWB notch filter which will

be discussed later.

The proposed NB bandpass filter has a resonance frequency located at,

fo =
1

2π
√

(L2 + M)Cvar

(4.1)

where

M = k
√

L2 · L1 (4.2)
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Small Signal Analysis

The gain of the filter can be expressed as the gain of the first stage LNA multiplied

by the gain of the second stage as shown in Equation 4.3.

A =
vout

vin

= Av1 · Av2 (4.3)

For the analysis of the first stage, the response of the filter can be expressed as

the small signal equivalent circuit shown in Figure 4.2. To simplify the analysis,

the transformer is assumed to be lossless where k=1. N represents the inductor ratio

between the primary winding, L1, and secondary winding, L2. The parallel equivalent

resistance of L1 is given as r1 and the parallel resistance of L2 and C is equal to r2.

The negative resistance has a value of −2/gm for the cross-coupled pair. Let the
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impedance seen from the load equal to ZL, the gain equation has the form similar to

Equation 3.37. Replacing RL with ZL, the gain equation becomes,

Av1 =
−gm

1 + gmZS

· ZsZL + roZL + ZsrogmZL

Zs + ro + ZsRogm + ZL

(4.4)

At resonance frequency, the high impedance from the secondary winding is trans-
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formed to the primary winding increasing the load impedance of the LNA. To calculate

ZL, at the resonance frequency, the impedance of the secondary winding must first be

transformed to the impedance seen in the primary. Assuming perfect coupling, the

equivalent impedance of the secondary observed from the primary is N · Req. From

Equation 3.4, the equivalent total resistance in the secondary winding is equal to,

Req =
2r2

2− gm

(4.5)

The impedance seen in the primary winding is N ·Req.

Therefore, ZL at resonance equals to

ZL =
r1 ·NReq

r1 + NReq

(4.6)

ZL =
r1N

(
2r2

2−gm

)
r1 + N

(
2r2

2−gm

) (4.7)

which simplifies to,

ZL =
2Nr1r2

2r1 + 2Nr2 − gmr1

(4.8)

Hence, in theory, infinite Q can be obtained when

gm =
2(r1 + r2N)

r1

(4.9)

If the output impedance, ro, of the transistor is omitted and assumed gm2 is large,

which is usually the case for LNA, then the filter response is shown to be dominated

by the load impedance, ZL, and the degeneration impedance, Zs,

Av1 ≈
−gm2ZL

1 + gm2Zs

≈ −ZL

1/gm2 + Zs

≈ −ZL

Zs

(4.10)

Substituting for ZL and ZS, the gain of the first stage filter is approximately given
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as,

Av1 ≈
1

ωLs

· 2Nr1r2

2r1 + 2Nr2 − gmr1

(4.11)

The second gain stage is given by the small signal model shown in Figure 4.3. The

resistance of the current sink, M7, is represented as ro7.

By inspection, the gain is equal to Equation 4.13.

Av2 ≈ gm6 ·
ro6ro7

ro6 + ro7

(4.12)

The total gain of the filter is equal to Equation 4.13.

Atotal = Av1 · Av2 ≈
1

ωLs

· 2Nr1r2

2r1 + 2Nr2 − gmr1

· gm6 ·
ro6ro7

ro6 + ro7

(4.13)

Equation 4.13 states that the gain of the bandpass filter is dominated by the value

of gm in the first stage. The transconductance, gm, needs to be large in order to cancel

the loss in the secondary, r2, and primary, r1, windings. A large inductance ratio, N,

will improve the filter linearity but will require a larger Q current to increase gm. It

also reduces the SRF of the transformer. Hence, an N=2:1 transformer was used for

the design which can be found in Figure 2.20.

48



4.2 A UWB LNA with NB Interference Rejection

A filter topology consisting of a wide band LNA along with a Q-enhanced notch

filter is proposed for the UWB receiver is shown in Figure 4.4(a). The first stage

consists of a wideband LNA with a Q-enhanced resonator coupled at the degeneration

inductor, L1. The resonator is centered at 5 GHz providing notch filtering to the NB

interference. A second stage of the filter is an active load amplifier which provides

additional amplification to the signal of interest and acts as a buffer to drive a 50 Ω

load. The response of the filter is shown in Figure 4.4(b).
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Figure 4.4 An UWB LNA with Notch Filter Topology and Response

The inductor load, Ll, provides gain at high frequencies and the resistor load,

Rl to low frequencies. This will achieve a gain flatness across the wide bandwidth

[32]. Negative mutual coupling across the transformer windings L1, and L2, are used

to reduce the effective inductance of the degeneration inductor. The frequency of
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resonance is therefore given by the following equation.

fo =
1

2π
√

(L2−M)Cvar

(4.14)

Analysis of First and Second Stage Gain

The gain response of the filter at the resonance frequency is analyzed below,
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Figure 4.5 Small Signal Model of First stage LNA with Notch Filtering

From inspection, the gain equation of the first stage has the form of,

Av1 ≈
−gm1ZL

1 + gm1ZS

(4.15)

where ZL = Rl + sL and from Equation 4.8,

ZS =
2Nr1r2

2r1 + 2Nr2 − gmr1

(4.16)

Hence,

Av1 ≈
−gm1(Rl + ωL)

1 + gm1

· 2r1 + 2Nr2 − gmr1

2Nr1r2

(4.17)

For the second gain stage, the gain is simply given as,
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Av2 = gm6(r05||ro6) (4.18)

The total gain is therefore equal to,

G = Av1 · Av2 ≈
−gm1(Rl + ωL)

1 + gm1

· 2r1 + 2Nr2 − gmr1

2Nr1r2

· gm5(r05||ro6) (4.19)

At the resonance frequency, the filter has a notch response. Away from this fre-

quency, the filter will act as an LNA. At frequencies below the resonance frequency,

ZS will appears inductive, approximately equaling to L1 + M . At frequencies above

the resonance frequency, the resonator appears capacitive which makes ZS appear

capacitive.

Equation 4.20 shows that a larger gm value is required to cancel both r2 and r1

to increase the depth of the notch.

G ≈ Av1 · Av2 ≈
−gm1ZL

1 + gm1(r1||ωL1)
· gm5(r05||ro6) (4.20)

This equation shows that the gain above and below the resonance frequency is

obtained both from the first and second stage. Hence, above and below the resonance

frequency, the filter acts as a wideband LNA.

4.3 A Dual Mode Q-Enhanced Filter

The proposed bandpass filter for 5 GHz WLAN and the UWB LNA with NB inter-

ference rejection filter topology is very similar in the first gain stage. The placement

of the Q-enhancement circuit determines its bandpass or notch behavior. Concep-

tually, the two filters can be combined, as shown in Figure 4.6. To develop a dual

mode filter that can provide both bandpass and notch filtering, the two basic filter

topologies is connected together at the switch point. The switch is implemented to
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alternate between Vdd and GND, depending on a mode control signal turning on

either notch or bandpass filtering. The combination results in the use of a single res-

onating circuit for both bandpass filter and notch filter modes. In the design, when

the switch is connected to Vdd, the dual mode filter behaves as a 5 GHz NB bandpass

channel-select filter. When the switch is connected to GND, a wideband LNA with a

5 GHz notch filter to eliminate the NBI in UWB is realized.
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Figure 4.6 (a) A Bandpass and an LNA With a Notch Filter Shown Upside Down
(b) Dual Filter Integration

4.3.1 The Mode Switch

A switch to select the mode of operation for the filter was realized using an NMOS

and PMOS transistor. The gates are connected to a digitally controlled signal that

alternates between 1.8 V and 0 V as shown in Figure 4.7. Similarly to an inverter,

when the gate is at 1.8V, the NMOS pulls the current from ’x’ to ground. When the

gate is at 0V, the current flows from VDD to point ’x’. Thus, the switch provides

a voltage potential which controls the direction of current flow turning on either
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the bandpass or notch filter. Parasitic capacitances and resistances in the MOSFET

switch will affect the switching speed and the RF performance of the filter. The high

frequency behavior of the switch can be modeled with moderate accuracy [33] using

the small-signal model shown in Figure 4.8. When the transistor is on, the drain

to source resistance, ro, is small as it is in the subthreshold region. The switch will

have parasitic capacitance at each junction as modeled by the capacitances gate to

source Cgs, gate to drain Cgd, source to bulk Csb and drain to bulk Cdb. The parasitic

capacitances Csb and Cdb are small as the voltage potential between source, drain and

bulk is very small, in which case, it can be ignored. In this simplified model, the Cgs

and Cgd is approximately equal to,

Cgs = Cgd =
WLCox

2
(4.21)

When the transistor is off, the drain to source resistance, ro, will be large which can

be omitted from the model. Since the channel has disappeared, Cgs and Cgd are much

smaller. The dominating capacitances are the overlap and the infringing capacitances

[33].

Cgs = Cgd = WLovCox (4.22)

At any time, the switch will have one transistor on and one off. The gate (G),

sources (S1 and S2) will act as an AC ground. The simplified model for the transistor,
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derived, is shown in Figure 4.9 for a) NMOS turned on b) PMOS turned off. The
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total equivalent capacitance for an NMOS and PMOS MOSFET in the switch are

equal to,

Ctotaln = Cgdn + Cdbp + Cgdp (4.23)

Ctotalp = Cdbn + Cgdn + Cgdp (4.24)

The dominating capacitance is Cgd for both Ctotaln and Ctotalp since the capacitance

of the transistor that is off is much smaller [33].

The switch resistance will contribute to the series resistance of the primary wind-
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FCC sets the frequency mask for indoor UWB devices as followed:

-41.3dBm/Mhz = -101.3dBm/Hz
Pdbm = 10log(Pwatt/1mW)

Pwatt = 10^(PdBm/10) = 10^(-101.3/10) x 1mW =7.413 x 10^-14 W
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Figure 4.10 Q-enhancement Resonator

ing of the transformer decreasing the Q of the filter. As a result, larger current is

needed to generate the negative resistance required to cancel out the loss. Hence, the

NMOS and PMOS transistors must be made large to decrease the resistance across

the switch. The drawback of large transistor is an increase in parasitic capacitances.

At a particular frequency, the capacitance will resonate with the inductance in the

primary winding providing a low impedance to ground. However, since the resonance

frequency is far away from the operating frequency range, this will not present a

problem.

4.3.2 Q-enhance Resonator

A transformer-based Q-enhancement resonator circuit for the dual mode filter

design is shown in Figure 4.10. The circuit consists of a center-tapped transformer

with 2:1 primary to secondary windings. The center-tap of the primary winding is

used for mode switching. Two accumulated mode MOS varactors are used to tune

the resonant frequency. The Q of the filter is tunable by adjusting the current via

the voltage, Qtune. Essential, the circuit has two separate resonators with the same

tuning points for frequency and Q tuning. The NB resonator consists of Ls2, Cvar
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and a negative impedance, −1/gm. The UWB resonator consists of Lp1, Cvar and a

negative impedance, −1/gm. Since the coupling of Lp2 and Ls2 is positive, the NB

resonance frequency is equal to,

fo =
1

2π
√

(L + M)C
(4.25)

Lp1 and Ls1 is negatively coupled which results in a UWB resonance frequency of,

fo =
1

2π
√

(L−M)C
(4.26)

Because the two resonators will resonate at the same frequency, there will be some

distortion in the response as shown in Figure 4.11. This is because the NB and UWB

resonators are interlinked at the switch. The affect can be further understood by

analyzing the terms in the first stage of the NB and UWB filters in Equation 4.11

and 4.17. The same terms 2r1 + 2Nr2 − gmr1 appear in the nominator for NB and

denominator for UWB. Since the UWB and NB filters are integrated at the switch, the
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same terms appear in both the nominator and denominator of the transfer function

equation causing distortion in the response.

The distortion was resolved by adding a PMOS switch in parallel with each res-

onator, as shown in Figure 4.12, to ensure the resonators don’t resonate at the same

frequency. The same mode control signal can be applied to the gate to select the

appropriate resonator. When ’mode’ equals to 0 V, the PMOS switch is on. This

results in a low resistance in parallel with the resonator which causes the quality

factor to drop, hence disabling the Q-enhancement effect. When ’mode’ is equal to

1.8 V, the PMOS switch is off. At this point, it is equivalent to a large resistor in

parallel with the resonator which has minimal effect on the Q of the resonator. The

PMOS transistor will turn on and odd the resonators isolating them during the NB

and UWB mode switch.

The drawback of using the PMOS switch is that the overall capacitance of the

resonator increases resulting in a smaller tuning range for the MOS varactor. It also

decreases the overall Q of the resonator which requires more current to make gm

larger. One advantage is that the individual PMOS transistor can be sized to allow

the two resonators to resonate with the same matching frequency tuning. That is, the
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primary and secondary windings of the NB resonator has a positive coupling while

the UWB resonator has a negative coupling resulting in a lower overall inductance.

In the design, the transistors M10 and M11 have a width of 632 µm and 592 µm,

respectively. The different sizing accounts for different capacitive parasitics enabling

the two resonators to be tuned at the same frequency.

4.3.3 Input Matching

To simplify the design of the filter and reduce complexity when integrating to a

receiver, the input gates of the NB and UWB LNA are connected together. This will

enable the filter to selectively receive either NB or UWB signals at the same antenna

[34]. This means that only one input impedance matching network is required. For

matching both narrowband at 5 GHz and wideband from 3.1 GHz to 10.6 GHz si-

multaneously, a combination of the wideband LC-Ladder technique and conventional

NB matching technique are used. The matching network and equivalent small signal

model is shown in Figure 4.13.
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In either NB or UWB mode, the MOSFETs, M1 and M2, will alternate between

operating in the subthreshold and the saturation region due to the switching of the

Mode Switch circuit. As the result, the gm of the MOSFET varies from small to large.

Since the two MOSFETs are in parallel, the overall real impedance of the input is

too low to match to the 50 Ω.

Several modifications to the wideband LC Ladder matching network are required

to match the input impedance for both the NB and UWB filter. The inductances,

Ls, must be large enough to cancel the gate to source parasitic capacitances in the

MOSFETs. The consequence of this is that large degeneration inductor results in a

low gain filter. To eliminate the requirement for large degeneration inductor, Lg is

added at the gates of M1 and M2 to provide additional inductance allowing Ls to be

kept small for high filter gain.

In the UWB mode, M2 is in the triode region resulting in a small gm, therefore, it

is difficult to match to 50 Ω input impedance as given in Equation 3.42. Simulation

was used to aid with determining the ideal size for Rg as shown in Figure 4.14. As the
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Figure 4.14 Determining Optimal Rg Value

value of Rg increases, the input impedance matching improves. Adding a resistor to

the gate of M2 increases the NF in the NB mode. However, NF of the UWB decreases
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due to more power being directed towards the gate of M1. The value of Rg was chosen

to balance the NF between the two modes. Overall, the addition of Lg and Rg makes

matching for both modes possible. Capacitor Cp is used for low frequency matching.

To increase C2, Cp was added in parallel with Cgs of M2 to increase the capacitance.

Simulation shows this technique achieves better than -10 dB input matching in UWB

from 3.1 GHz to 10.6 GHz. It also achieves a good matching of better than -15 dB

in NB mode at 5 GHz but at the cost of higher NF.

4.3.4 Final Dual Filter Circuit

The complete dual mode filter schematic with bias circuitries is shown in Figure

4.15. The voltage at Mode is used to control the switch (M8 and M9) and the res-

onators via M10 and M11. When the signal at Mode is LOW, the switch is connected

to 1.8V and the dual filter behaves as a bandpass filter. When Mode is HIGH, the

switch is grounded and the dual filter behaves as an UWB LNA with notch filtering

capability. Both modes share the same input, output, Q tuning and frequency tuning.

To prevent the signals in the resonator and LNA from coupling during filter layout,

the resonator is connected to a separate power supply via Vdd2. A current source

(M7) provides a current of 100 µA to bias M1, M2 and M5. The first stage LNA

consumes 4-5 mA and the second stage consumes 2-3 mA of currents. About 3 to 5

mA of current is required to drive the Q-enhancement resonators depending on the

Q tuning voltage.

Passive Device Parameters

The proposed filter attempts to reduce die area by utilizing only five inductors

and one transformer in the design. The layout and optimization of all the resistors,

capacitors, varactor, inductors and transformer can be found in Chapter 2: Integrated

Passive Devices. Table 4.1 summarizes the values and dimensions.
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Figure 4.15 Final Schematic of the Dual Mode Filter with Bias Circuitry

MOSFET Design Parameters

Proper transistor sizing is crucial for realizing high gain and low noise RF filters

for high speed applications. Two typical figures of merit to describe transistor per-
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Table 4.1 Passive Device Parameters
Passive Device Values Dimension / radius (µm)
Xfmr Lpri 1.047 nH, Lsec 388.3 pH 250 x 250
L1 3.316 nH 100
Lg 747.9 pH 80
Ls 173 pH 60
Ll 985.3 pH 60 x 60
C1 58.6 fF 7.8 x 7.8
Cp 263 fF 16.3 x 16.3
Cvar 3.33 pF nominal 38.5 x 47.4
CC 3.70 pF 20x20
Rg 75 Ω 19.2 x 5.6
Rl 123.7 Ω 16.6 x 2.5
RB 10 KΩ 1.6 x 5.5

formance are fT and fmax. The maximum speed at which a transistor can operate

is defined by the unity gain frequency, fT , and the maximum frequency, fmax, of the

device. fT is defined as the frequency at which the current gain, shown in Equation

4.27, of the device is equal to one.

fT ≈
gm

2π(Cgs + Cgd)
(4.27)

fmax is the maximum frequency at which power gain is achieved and is equal to one

[35] as shown in Equation 4.28.

fmax ≈

√
fT

8πRggCgd

(4.28)

Large MOSFET width (W) is required to obtain high value of gm and to increase the

fT and fmax frequencies. The large gm improves gain and also reduces noise, as the

minimum noise figure of a MOSFET is inversely proportional to the gm as shown in

Equation 4.29 [36], where Rgg is the gate resistance, K2 is the constant and Rs is the
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Table 4.2 Active Device Parameters
MOSFET Width (µm) Length (nm) Unit Width (µm) Fingers
M1 108 180 4 27
M2 108 180 4 27
M3 108 180 4 27
M4 108 180 4 27
M5 64 180 4 16
M6 80 180 4 20
M7 3 180 1 3
M8 600 180 15 40
M9 750 180 15 50
M10 632 180 8 79
M11 592 180 8 74
M12 400 180 25 16
M13 400 180 25 16
M14 32 360 4 8

source resistance.

Fmin = 1 + K2Cgs

√
(Rgg + Rs)

gm

(4.29)

The disadvantage of large W is that the gate resistance, Rgg, also increases. As Rgg

becomes large, fmax will decrease and the minimum noise figure will increase. To

reduce Rgg, and at the same time, keeping gm large, the MOSFET width is broken

down in smaller unit width (Wu) and connected in parallel. The number of Wu in

parallel is known as gate fingers. The width of a MOSFET is effectively equal to the

number of gate finger multiplied by the unit width Wu. This implementation allows

for the realization of larger width MOSFET without increasing Rgg. In the design,

a minimum length of 0.18 µm was used to keep gm and ft high. The only exception

is the M14 length which defined the Q tuning voltage range. The MOSFET design

parameters for the filter are shown in Table 4.2.

Another advantage of implementing large MOSFET using multiple fingers is that

it allows the laid out of the transistor to be smaller and compact to better utilize

chip area. The size of the MOSFET can be reduced by the sharing of the drain and
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Figure 4.16 A Layout of M1, M2, M3 and M4 MOSFETs

source nodes between fingers and MOSFETs. Shown in Figure 4.16 is a layout of the

MOSFETs M1, M2, M3 and M4. The drain of one transistor is used as a source for

another. The tight layout of the MOSFETs allowed for tight matching between unit

fingers.

4.3.5 Filter Chip Layout

The floor plan of the filter including power and ground rings is shown in Figure

4.17. The filter occupies a die dimension of 680 µm by 690 µm. Detailed layout

designs for the passive devices including resistor, capacitor, varactor, inductor and

the transformer can be found in Chapter 3. The other blocks in the diagram shows

the group of transistors making up the building blocks of the filter. M8 and M9

makes up the Mode block. The -Gm block consists of M12, M13 and M14. M10 and

M11 makes up the uwbswitch block. The Quad block consists of the LNA transistors

M1-M4. M5 and M6 are the second stage block. The Bias Current block consists of

M7 and the RF blocker resistors.
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Figure 4.17 Die Floor Plan

To minimize the usage of I/O pins, the gate of M3 and M4 are internally biased

at 1.4 V using polysilicon resistors. For debugging purposes, a test pad is added to

allow direct probing of the gate voltage. The I/O ports consist of Mode, Ftune,

Qtune, Qgatebias (Vbias2), Ibias, V in and V out. External biasing can compensate

for process and environmental variations allowing more control during testing. Power

ring and metal ring are placed at the outer edge of the chip to provide the shortest

connection distances to the blocks.

The chip I/O are made via 65 µm x 75 µm pads which also provide electrostatic

discharge (ESD) protection. The complete die layout with pads occupy an area of

1.05 µm2 as shown in Figure 4.18. Sufficient number of vdd and gnd pads placed

sparingly around the chip limits the effect of IR-drop and other power-related issues.

More vdd and gnd pads will limit the parasitic inductance effect of the bond wires on

the filter. The inductance in the bond wire makes input impedance matching difficult
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Figure 4.18 Die Layout With Padding 1.05 mm x 1.05 mm

as the model is inaccurate. To reduce the effect of bond wires, The V in pads are

connected in parallel to three bond wires. Placement of V in and V out pads at the

middle allows for the shortest bond wire length to package connection minimizing the

resistance and inductance effects.

4.3.6 A Receiver Architecture for the Proposed Filter

The dual mode Q-enhanced filter proposed in this work can be used in a re-

ceiver architecture as shown in Figure 4.19. The sub-sampling receiver [37] utilizes

Q-enhancement filtering at RF frequencies and a down conversion mixer followed by

conversion to a digital IF frequency using an ADC. Frequency tuning and Q adjust-

ment are to be digitally controlled via the DACs. The dual mode filter can receive

66



either 802.11a (5 GHz WLAN) or UWB depending on the voltage at Mode. The

digital processing circuitry is used for demodulation and assuming it has a NB inter-

ference block to detect and track the NB interference.
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Figure 4.19 Direct Subs-Sampling Receiver Architecture

4.4 Simulation Verification

In the simulations, parasitic affects from bond wires and bond pads were included

in the test bench. Since physical extraction of inductor and transformer passive

devices were not possible, their compact models accurate at 5 GHz were used. The

rest of the filter components were extracted for parasitic effects from the layout to

account for unwanted coupling, noise and device mismatch. The following simulations

were used to verify the performance of the filter both in the NB and the UWB modes.

4.4.1 NB and UWB Filter Response

The responses of the filter in the NB and UWB mode are plotted in Figure 4.20.

The filter has a gain, in NB mode, of 15 dB at the resonance frequency of 5.3 GHz.

A secondary peak can be observed at approximately 8 GHz. This is caused by the
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resonance of the interwinding parasitic capacitance with the primary winding of the

transformer. As the resonance is outside of the 5 GHz pass band, the parasitic gain

is not important. In the UWB mode, the filter operates as a wideband LNA with a
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Figure 4.20 Filter Response in NB and UWB Mode

tunable notch filtering at 5 GHz. The wideband gain is observed from 1.8 GHz and

gradually deviates to zero at 9 GHz. The low gain at high frequency is mainly caused

by the parasitic capacitances of M5 and M6 in the second stage of the filter. A notch

response created by the Q-enhancement resonator can be seen at 5.3 GHz.

Figure 4.21 shows the S11, S21 and NF responses of the filter in the NB mode.

At a peak gain of 8 dB, the input impedance matching is -13 dB and NF is 8 dB.

Figure 4.22 shows the frequency response of the filte rin UWB mode with the notch

resonator off. The filter acts as a LNA from 2 GHz to 9 GHz. A small dip is observed

at 5 GHz due to the minimal effect of the resonance circuit. From 3.1 GHz to 10.6

GHz, the input impedance is matched to better than -7.5 dB. The NF of the filter

varies across the operating frequencies. From 3 GHz to 8 GHz, the NF is less than

10 dB. At 5 GHz, the NF increases as the interference rejection power increases. NF

deteriorates after 8 GHz due to the drop in gain.

The main source of the noise contribution occurs from the NB and UWB fil-
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Figure 4.22 UWB Gain (S21), Input Matching (S11) and NF Characteristics

ter sharing the same input resulting in input power loss. The other source is from

the matching network and from noise injected by the Q-enhanced resonator via the
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Figure 4.23 NB and UWB Mode Frequency Tuning for Fixed Q-tune Voltage

transformer.

4.4.2 Filter Tuning

Filter tuning is verified by varying the voltage, vtune, across the varactor and

observing the response of the filter. The responses of the filter in NB and UWB

modes are plotted in Figure 4.23. When vtune is at 1.0 V, the resonating frequency

is at located 5.35 GHz. As the voltage increases, the varactor capacitance increases

resulting in a lower resonating frequency. The graph shows that the filter has a tuning

range from 5 GHz up to 5.35 GHz. The same tuning reference voltage, used for tuning

both modes, as shown confirmed in Figure 4.24. The two curves show that the notch

and bandpass response corresponds to the same tuning voltage.

The Q-tuning voltage, qtune, controls how much current flows through the transis-

tor, M14, which dictates the degree of negative impedance compensation. As vtune

increases, gm increases, resulting in higher Q as shown in Figure 4.25 for NB and

UWB modes. As the resonance frequency decreases, the amplitude of the filter gain

or rejection decreases. As the varactor capacitance increases, the varactor Q de-

creases resulting in the effective Q of the resonator to drop. Compensation is made

by increasing the negative resistance of the resonator by increasing the qtune voltage
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as shown in Figure 4.26(a) in the NB mode and Figure 4.26(b) in the UWB mode.

Figure 4.26(a) shows Q compensation is used to make the gain of the filter constant

across all frequencies. As vtune increases, the Q of the varactor decreases requiring

gm to be larger to compensate.
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Figure 4.26 Equal Amplitude Frequency Tuning By Varying Q for NB and UWB
Mode

4.4.3 Filter Stability

Two criteria must be met for the filter to be unconditionally stabled [38]. K is

the Rollett stability factor and B1 is the 2-port stability criterion as given by,

B1 = 1 + |S11|2 − |S22|2 − |4|2 (4.30)

where 4 is the determinant of the S-parameter matrix.

A set of necessary and sufficient conditions for unconditional stability are:

K > 1 (4.31)

B1 > 0 (4.32)

Figure 4.27 shows the K and B1 parameters of the filter in NB mode. As Q

increases, gain increases until the filter becomes unstable. K indicates instability

when the gain is more than 21 dB. K equals to 0 at a gain of 30. B1 is approximately

equal to .33 at the passband when gain is less than 12 dB. As gain increases above
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18 dB, B1 drops below 0 indicating instability.

Stability plots
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Figure 4.27 Stability Plot in NB Mode a) K Plot b) B1 Plot

Inductive degeneration can generate positive resistance looking into the gate of

a MOSFET while capacitive degeneration generates negative resistance. Negative

resistance can lead to instability of the filter [39]. In the UWB mode, the transformer

is used to provide notching through the degeneration inductor. However, at frequen-

cies below the notch frequency, the input resistance appears positive. At frequencies

above the notch frequency, it will appear negative which can lead to instability. Fig-

ure 4.28 shows the K and B1 plot for the UWB filter. At passband frequencies below

the notch, K > 1 and B1 > 0 so it is unconditionally stable. At frequencies above

the notch, K < 1 and B1 > 0 which means conditions can lead to instability.

To prevent the filter from being unstable at the passband at 5 GHz, oscillation

must be avoided. This occurs when the loss in the primary winding is over com-

pensated. Care must be taken not to over-compensate for the losses in the filter to

prevent instability.
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Figure 4.28 Stability Plot in UWB Mode a) K b) B1

4.4.4 Linearity

Linearity defines the upper bound of the signal strength and needs to be high to

satisfy the high dynamic range requirement of a receiver. Equation 4.33 states that

the relationship between dynamic range is inversely proportional to the Q of the filter.

Qo is the non-enhanced Q of the filter, whereas, Qenh is the new enhanced filter Q.

DR ∝ 1

QoQ2
enh

(4.33)

Using a lower Qo tank can actually improve the dynamic range of the Q-enhanced

filter up to the point where the noise of the enhancement filter starts to dominate [40].

As the Q of the filter is enhanced, dynamic range is reduced as linearity decreases.

In the NB mode, the gain of the filter is tunable by the Q-enhancement resonator,

linearity of the filter is also adjustable as it is inversely dependent on the gain. Figure

4.29 shows the effect of Q-enhancement in the NB mode. The plot shows the inverse

relationship between linearity and gain as plotted by the 1-dB compression point and

the input referred IP3 point.

In the UWB mode, the linearity points are taken at 6 GHz where the filter gain
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4.5 Measurement Verification

The micrograph of the dual mode filter fabricated using a 0.18µm CMOS process

is shown in Figure 4.31. The die occupies an area of 1.1 µm2 and containing six bond

pads on each side.

Mode

gnd

Vin

vdd

Vin

Vin

gn
d

gn
d

gn
d

vd
d

vd
d

Ib
ia

s

gnd

gnd
gn

d

vdd

vdd

Vout

Q
ga

te
bi

as

Q
tu

ne

vd
d2

Ft
un

e

gn
d

Pgatebias

Figure 4.31 Filter on 0.18 µm CMOS 1.05 mm x 1.05 mm Die

Packaging and fixturing are needed to interface with the RF testing equipments to

measure the performance of the chip. Due to the unavailability of high RF packaging

and fixturing available, the 24 pin CFP package and fixture are used. The chip is

packaged in a 24 pin CFP package with a cavity dimension of 3.55 mm by 5.58 mm

as shown in Figure 4.32. The small cavity size of the package allows for shorter bond

wires to be used. The Pmosgatebias pin is soldered to another pin for easier access

to the test fixture SMA port. The CFP package was soldered to the PCB test fixture

as shown in Figure 4.33. The fixture is connected to the external test environment

via SMA connectors located at various locations around the board. The signal paths
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Figure 4.32 Chip on 24-CFP Packaging

from the package to the SMA connectors are through 50 Ω controlled impedance lines.

All ground I/O are connected to a ground plane. Ten SMA ports provide access for

testing. Coupling capacitor, Cc, of 1nF was added at the RF input and output.
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Figure 4.33 CFP-24 Test Fixture
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The 24-CFP package and test fixture are designed for circuits with frequencies

of up to 4 GHz, but should give an idea of the response of the dual mode filter.

High frequency packaging and test fixture board operating over 10 GHz is required to

fully characterize the filter without resulting any significant performance degradation

caused by the packaging and test fixture. The addition of the 24-CFP package causes

signal degradation due to excessive insertion loss and insufficient return loss as it was

not accounted for in the design.

4.5.1 Filter Gain Measurement

NB Gain

RF performance degradation can be contributed by the losses in low performance

interconnects and parasitics in the pads. The majority of the loss are associated with

the coupling from signal pads to ground pads that originate from the pad/substrate

capacitance and the semi-conducting nature of the silicon substrate [41]. Since the

model of the 24 CFP package was not available, its parasitic effects could not be

isolated from the filter. However, the parasitics from the test fixture were isolated by

using a 50 Ω impedance line to short the input and output pins and characterizing

the board. The response of the test fixture board and the filter are shown in Figure

4.34. The filter has a gain less than 0 dB across all frequencies when the test fixture

was included in the measurement. However, when the test fixture was isolated from

the filter, the filter gain starts to appear above 0 dB as shown with the 2 curve.

The filter has a peak gain of 2.5 dB at 4.2 GHz. Figure 4.35 shows a comparison

between the measured bandpass response and the simulated response. From 2.5 GHz

to approximately 4.3 GHz, the measurement corresponds to the simulations with

about 1-3 dB loss due to the package and bond wires. For frequencies above 4.3 GHz,

the filter gain degrades as the parasitics from the package and test fixture board

begins to dominate. The results confirm that the standard 24-CFP package and test

fixture board are not suitable for use in RF circuits operating above 4 GHz frequency.
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Figure 4.34 NB Gain (S21) Response with TFB and with de-embedded TFB

UWB Gain

The gain response measurement of the filter in UWB mode is plotted in Figure

4.36. The two curves show the filter response before and after the de-embedding of

the test fixture board. As can be seen, the board has a drastic effect on the filter’s

performance. Similar to the observation in the NB mode, after approximately 4 GHz,

the response of the filter drops below 0 dB due to the parasitics in the packaging.

Comparison of the measured and simulated results are shown in Figure 4.37. As

expected, the measured gain is 3-4 dB lower than the simulated gain up to until 4.5

GHz. Above this frequency, the losses are too much to measure the filter’s response.

The filter is designed with a notch at 5 GHz, however the notch appears to be located

around 8 GHz when measured.
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Filter Tuning

The Q-enhancement measurement of the filter in NB mode is shown in Figure

4.38. As the Qtune voltage is increased gradually from 0.8 V to 1.4 V, the gain

varies from 0.2 dB to 1.3 dB. Hence, the measurement confirms that the resonance

frequency is located around 7.5 GHz and not at 5 GHz as simulated. The gain is also

very small indicating that there are very little mutual coupling between the primary

and secondary windings of the transformer.

4.5.2 Impedance Matching Measurement

Transmission line effects cause phase shift and losses resulting in an incorrect

matching, which are dominant at high frequencies. Figure 4.39 shows the S11 plot

of the filter in NB mode. The curves represent the response of the filter with and

without the effect of the test fixture board. The insertion loss after de-embedding is
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Figure 4.38 Q Tuning in NB Mode Responds at 7.5 GHz

approximately -11 dB at 5.35 GHz. Variations between simulations and measurements

are mainly due to the package and test fixture and mismatch at the input and output

due to transmission line effect. Figure 4.40 shows the input impedance matching for

the filter in UWB mode. The plot shows that impedance matching is poor and not

enough power is transferred to the filter. The input impedance matching of the two

filters can be corrected by using off-chip filtering to take into account of the parasitic

effects and transmission line in the packaging and test fixture board. The plots verify

that the insertion loss is significant, particularly at higher frequencies. NF was not

measure as it is highly dependent on the quality of the input matching.
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4.6 Measurement Summary

Designing RF integrated circuits that require packaging and test fixturing presents

many challenges. Due to the limitation of packaging and test fixture available during
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the research, measurements were only confirmed up to 4 GHz. After 4 GHz, the

mutual inductance between bond wires effectively increase the inductances effecting

the input impedance matching and gain of the filter. The effects of signal coupling

and parasitics in the packaging and test fixture board can dominate and degrade the

filter response at high frequencies. Therefore, packaging selection and consideration

in the early stage of the design is important. Package, PCB test fixture models

and testing equipment must be readily available for RF high frequency designs. The

choice of packaging method is also important. For high frequency circuits, more

costly packaging such as flip-chip (gold-ball) can be used to eliminate the effects of

the bonding wires.

4.7 Research Comparison

The measurements confirmed that the filter conforms to the expected characteris-

tics of a bandpass filter while operating in NB mode and an LNA with notch filtering

in UWB mode. However, due to the parasitic effects of bonding wires, the 24-CFP

package and test fixture board, insertion losses and parasitic contributions were too

significant to successfully validate the responses at high frequencies. Thus, the post

simulation results shown in Table 4.3 will be used to compare with other recent works

in RF front-end LNA and filters.

Ideal comparison of the dual mode filter to other works is difficult as there is no

known dual-mode filters for both NB and UWB receivers. Several recent research work

in UWB and NB LNA and Q-enhanced filters for the standard CMOS technologies

are used to compare to the dual mode filter as shown in Table 4.4.

In [32], the UWB LNA achieves a gain of 9.3 dB, NF of 5.2 dB and input matching

of -10 dB. However, the LNA does not include a notch filter yet occupies the same

die area as the dual mode filter. In [42], the bandpass filter offers a low power and

area design of 5.2 mW and 0.05 mm2, respectively. To achieve low power, the filter
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Table 4.3 Filter Performance Post-Simulation Summary.

Parameter NB Mode UWB Mode∗

Max. DC Current (mA) 13 13
Max. DC Power (mW) 23.4 23.4

Gain (dB) 4 - 25 0 - 8
NB Rejection (dB) N/A 60
Noise Figure (dB) 8 ≤ 10
1dB Comp. (dBm) -55 to -23 -17

IIP3 (dBm) -47 to -18 -8.3
Operating Bandwidth (GHz) 5.15 - 5.35 3.1 - 9

S11 (dB) -16 ≤ -7
∗ Valid from 3 GHz to 9 GHz

Table 4.4 Performance Comparison with Recent LNA and Filter Work

Parameters 2004 [32] 2002 [42] 2000 [43] Dual Mode Filter
Type UWB LNA NB Q-

Enh.
Bandpass

LNA with
Rejection

NB
Mode

UWB
Mode

Technology 0.18 µm
CMOS

0.35 µm
CMOS

CMOS 0.18 µm
CMOS

0.18 µm
CMOS

Freq. (GHz) 3.1 - 10.6 2.1 1.88 5 3.1 - 9
Gain (dB) 9.3 ¡ 0 24 4 - 25 0 - 8
Rejection (dB) N/A N/A 30 N/A 60
IIP3 (dBm) -6.7 -18 -10 -47 - -18 -8.3
S11 (dB) -10 N/A N/A -16 ≤ -7
Avg. NF (dB) 5.2 26.8 5.5 8 10
Die Area (mm2) 1.1 0.1 N/A 1.1
Power Consump-
tion (mW)

9 5.2 25.2 23.4

does not have active gain. The design did not include an input matching network

allowing the area to be minimized. But as a result, NF was poor at 26.8 dB. In [43],

the authors designed a NB LNA with image rejection. It achieves a gain of 24 dB, NF

of 5.5 dB and image rejection of 30 dB. The LNA does not include an input matching

network, and the image rejection is not tunable. Power consumption is slightly higher

than the dual mode filter at 25.2 mW.

In the design, the filter sacrifices several performances such as low linearity and
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high NF to achieve dual mode functionality. The filter can operate as a Q-enhanced

bandpass filter in NB mode and a LNA with tunable interference rejection in UWB

mode. The filter is fully integrated occupying an area of 1.1 mm2 including the input

impedance matching circuit. The gain and interference rejection are both tunable

and consumes 23.4 mW of power.

86



5. Conclusions and Future Exploration

5.1 Conclusions

In this research, a dual mode Q-enhanced filter was developed with the following

goals in mind: 1) to provide rejection at the presence of 802.11a interference in UWB

mode. 2) to provide Q-enhanced bandpass filtering when operating in 5 GHz NB

mode. A Q-enhanced transformer resonator coupled at the degeneration inductor of

an LNA was used to provide notch interference rejection at 5 GHz followed by another

amplifier to provide further gain from 3.1 GHz to 9 GHz. The same Q-enhanced

transformer resonator was also coupled to the load of another LNA to provide channel

selection to the bandpass filter in NB mode. The filter incorporates an NMOS and

PMOS switch to turn on either bandpass or notch functionality depending on the

mode of operation. The LC ladder matching network was modified with an addition

of a resistor and inductor to enable a single-ended input matching for both NB and

UWB.

The fully integrated filter occupies a small die area of 1.1 mm2 when I/O pads were

added. Post layout simulations show a power consumption of 23.4 mW while achieving

a gain of up to 25 dB and 8 dB for the NB mode and UWB mode, respectively. The

filter is able to reject up to 60 dB of 5 GHz NB interference while operating as a

UWB filter. Input impedance matching is better than -7 dB in UWB mode and -16

dB in NB. The noise figure in UWB mode is better than 10 dB from 3.1 GHz to 9

GHz and 8 dB at 5 GHz in NB mode.

The accomplishments achieved in this research are summarize as follow. A design

of the first dual mode RF front-end filter for a NB and UWB receiver. A demonstra-
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tion of a MOSFET switch operable at RF frequency for current control. A proposed

modification to the LC Ladder matching network for simultaneous matching for nar-

rowband and wideband. A design utilizing channel selection and notch filtering at the

RF front-end to reduce receiver component count and complexity. Finally, a proposed

idea of taking advantage of the co-existence between the 5 GHz WLAN and UWB to

increase functionality in wireless devices.

5.2 Future Work

A dual mode filter topology taking advantage of the Q-enhancement technique

was demonstrated to be applicable for NB and UWB receivers. Measurements show

signal degradation at high frequencies due to the unavailability of high frequency

packaging and test fixture. With better packaging and test fixture available, mea-

surement results can be improved. Parasitic effects not associated with the filter can

be eliminated by directly probing the die. Alternatively, high performance packaging

such as flip-chip can be used to eliminate the parasitic inductance of the bond wires.

Better results are to be expected when the filter is integrated with the rest of the

front-end receiver blocks eliminating packaging requirement.

The design of the filter can be modified in several areas to improve the perfor-

mances such as gain and noise figure. The effect of parasitic capacitance and resistance

are amplified as the frequency of operation increases. As we found from our simula-

tion results, the effect causes the gain of the filter in UWB mode to drop at 9 GHz.

This was mainly due to the use of the active load in the second stage. However, it was

necessary to reduce power and design a single output port for the filter. It was shown

that the use of an inductor load can result in higher gain and noise improvement at

high frequencies but requires more current to drive the M5 and M6 separately [34].

The goal of the dual mode filter design is aim at minimizing area for low cost.

Hence, it was designed such that both UWB and NB applications share the same
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input and output. Although this improves integration with the antenna and receiver,

the setback is higher noise figure and less than optimal input matching for both

NB and UWB. A modification to the design is to isolate the NB and UWB input.

This allows for separate NB and UWB impedance matching network allowing for

minimal insertion losses. These changes will bring better performance to the filter

while trading off die area and power.

Future work on the research can also be expanded to redesigning the transformer

using advanced 3D simulation tools. As shown from the simulation and measurement,

the six port center-tapped model did not accurately model the transformer response

as it did not account for interwinding couplings. To reduce complexity, two 4-port

transformers can be implemented instead of a center-tapped transformer to isolate

the coupling. 3D simulation tools such as EM or FastHenry will aid with the accuracy

that is required for advanced Q-enhanced transformer filter design.
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