2,051 research outputs found

    Using Blockchain to support Data & Service Monetization

    Get PDF
    Two required features of a data monetization platform are query and retrieval of the metadata of the resources to be monetized. Centralized platforms rely on the maturity of traditional NoSQL database systems to support these features. These databases, for example, MongoDB allows for very efficient query and retrieval of data it stores. However, centralized platforms come with a bag of security and privacy concerns, making them not the ideal approach for a data monetization platform. On the other hand, most existing decentralized platforms are only partially decentralized. In this research, I developed Cowry, a platform for publishing metadata describing available resources (data or services), discovery of published metadata including fast search and filtering. My main contribution is a fully decentralized architecture that combines blockchain and traditional distributed database to gain additional features such as efficient query and retrieval of metadata stored on the blockchain

    An open platform for seamless sensor support in healthcare for the Internet of things

    Get PDF
    Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT), lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP), a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling technology for secure and reliable IoT deployments on the healthcare sector.This research work was supported under the European Framework Program FP7 Research for the Benefit of SMEs, project FP7-SME-2012-315158-CareStore. The authors would also like to acknowledge the work of all the members of the CareStore team, without whom this work would not be possible

    Towards Data Sharing across Decentralized and Federated IoT Data Analytics Platforms

    Get PDF
    In the past decade the Internet-of-Things concept has overwhelmingly entered all of the fields where data are produced and processed, thus, resulting in a plethora of IoT platforms, typically cloud-based, that centralize data and services management. In this scenario, the development of IoT services in domains such as smart cities, smart industry, e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc business one-to-one collaboration agreements. The realization of "smarter" IoT services or even services that are not viable today envisions a complete data sharing with the usage of multiple data sources from multiple parties and the interconnection with other IoT services. In this context, this work studies several aspects of data sharing focusing on Internet-of-Things. We work towards the hyperconnection of IoT services to analyze data that goes beyond the boundaries of a single IoT system. This thesis presents a data analytics platform that: i) treats data analytics processes as services and decouples their management from the data analytics development; ii) decentralizes the data management and the execution of data analytics services between fog, edge and cloud; iii) federates peers of data analytics platforms managed by multiple parties allowing the design to scale into federation of federations; iv) encompasses intelligent handling of security and data usage control across the federation of decentralized platforms instances to reduce data and service management complexity. The proposed solution is experimentally evaluated in terms of performances and validated against use cases. Further, this work adopts and extends available standards and open sources, after an analysis of their capabilities, fostering an easier acceptance of the proposed framework. We also report efforts to initiate an IoT services ecosystem among 27 cities in Europe and Korea based on a novel methodology. We believe that this thesis open a viable path towards a hyperconnection of IoT data and services, minimizing the human effort to manage it, but leaving the full control of the data and service management to the users' will

    Automated Injection of Curated Knowledge Into Real-Time Clinical Systems: CDS Architecture for the 21st Century

    Get PDF
    abstract: Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs. This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards. Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment. Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Architecting a Blockchain-Based Framework for the Internet of Things

    Get PDF
    Traditionally, Internet-of-Things (IoT) solutions are based on centralized infrastructures, which necessitate high-end servers for handling and transferring data. Centralized solutions incur high costs associated to maintaining centralized servers, and do not provide built-in guarantees against security threats and trust issues. Therefore, it is an essential research problem to mitigate the aforementioned problems by developing new methods for IoT decentralisation. In recent years, blockchain technology, the underlying technology of Bitcoin, has attracted research interest as the potential missing link towards building a truly decentralized, trustless and secure environment for the IoT. Nevertheless, employing blockchain in the IoT has significant issues and challenges, related to scalability since all transactions logged in a blockchain undergo a decentralized consensus process. This thesis presents the design and implementation of a blockchain-based decentralized IoT framework that can leverage the inherent security characteristics of blockchains, while addressing the challenges associated with developing such a framework. This decentralized IoT framework aims to employ blockchains in combination with other peer-to-peer mechanisms to provide: access control; secure IoT data transfer; peer-to-peer data-sharing business models; and secure end-to-end IoT communications, without depending upon a centralized intermediary for authentication or data handling. This framework uses a multi-tiered blockchain architecture with a control-plane/data-plane split, in that the bulk data is transferred through peer-to-peer data transfer mechanisms, and blockchains are used to enforce terms and conditions and store relevant timestamped metadata. Implementations of the blockchain-based framework have been presented in a multitude of use-cases, to observe the framework's viability and adaptability in real-world scenarios. These scenarios involved traceability in supply chains, IoT data monetization and security in end-to-end communications.With all the potential applications of the blockchain-based framework within the IoT, this thesis takes a step towards the goal of a truly decentralized IoT
    corecore