

Abstract

In the past decade the Internet-of-Things concept has overwhelmingly entered all of
the fields where data are produced and processed, thus, resulting in a plethora of IoT
platforms, typically cloud-based, that centralize data and services management. In this
scenario, the development of IoT services in domains such as smart cities, smart industry,
e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc
business one-to-one collaboration agreements. The realization of ”smarter” IoT services
or even services that are not viable today envisions a complete data sharing with the
usage of multiple data sources from multiple parties and the interconnection with other
IoT services.

In this context, this work studies several aspects of data sharing focusing on Internet-
of-Things. We work towards the hyperconnection of IoT services to analyze data that
goes beyond the boundaries of a single IoT system. This thesis presents a data analytics
platform that: i) treats data analytics processes as services and decouples their man-
agement from the data analytics development; ii) decentralizes the data management
and the execution of data analytics services between fog, edge and cloud; iii) federates
peers of data analytics platforms managed by multiple parties allowing the design to
scale into federation of federations; iv) encompasses intelligent handling of security and
data usage control across the federation of decentralized platforms instances to reduce
data and service management complexity.

The proposed solution is experimentally evaluated in terms of performances and
validated against use cases. Further, this work adopts and extends available standards
and open sources, after an analysis of their capabilities, fostering an easier acceptance
of the proposed framework. We also report efforts to initiate an IoT services ecosystem
among 27 cities in Europe and Korea based on a novel methodology.

We believe that this thesis open a viable path towards a hyperconnection of IoT data
and services, minimizing the human effort to manage it, but leaving the full control of
the data and service management to the users’ will.

I

Contents

Abstract I

List of Publications VIII

1 Introduction 1
1.1 Future HyperConnected IoT Framework 2
1.2 Service-Defined Data Analytics . 4
1.3 Information Transparency . 5
1.4 Resource and Context Management . 6
1.5 Data Usage Control . 8
1.6 Challenges and Open Issues . 9
1.7 Outline of this thesis . 11

2 Background on IoT: 5G and Fog/Edge Computing 14
2.1 Internet-of-Things network slicing on 5G 15

2.1.1 Problem Statement . 18
IoT Broker . 18
5G Network Slice Broker . 18

2.1.2 Joint IoT Slice Traffic-aware Solution 19
Interface and Data exchange . 19
Use case: City Council Network Slice 21
Use-case: Cooperation between different domains 22

2.1.3 Analysis and Practical Solution . 23
Algorithm Description . 25

2.1.4 Performance evaluation . 26
2.2 Fog computing for Smart City . 27

2.2.1 Smart City Use Cases . 29
2.2.2 High Level Requirements . 30
2.2.3 Fogflow: Programming IoT Services over Cloud and Edges 31

Next Generation Service Interface (NGSI) 32
Architecture Overview . 33
NGSI-based Programming Model 34
Scalable Context Management . 37

II

Dynamic Service Orchestration . 39
Virtual Sensor . 41

2.2.4 Use Case Validation . 42
2.2.5 Performance Evaluation . 43
2.2.6 Related Work . 47

2.3 Research Directions . 48

3 Standardization and Open Source 50
3.1 Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT

Deployments . 50
3.1.1 Smart cities as the key use case for large scale IoT deployments . . 52

The SmartSantander case-study 52
A glimpse on future evolution of smart city use cases 54

3.1.2 The advantages of deploying IoT at the edge 57
3.1.3 ETSI MEC Enhancements to support multi-domain IoT deployments 59

The MEC IoT platform . 59
An API for IoT in Edge Computing 61
Prototyping edge computing in a real scenario 61

3.1.4 Value proposition of the MEC-based IoT Platform 61
3.2 FIWARE: A Standard-based Open Source IoT Platform 63

3.2.1 Public governance and growth: global IoT market 64
Legacy IoT platforms are not neglected 65
Harmonizing smart cities data . 66
IoT Marketplace . 67
Security . 68
Lessons learned for the creation of a Smart Cities global market . 68

3.2.2 Data analytics on IoT federation: a smart city scenario 68
City Platform as a Service . 69
Urban water management scenario 70
Lessons learned from smart city services 71

3.2.3 Research and innovation: an automated driving scenario 72
Federation of large scale pilots . 73
Semantic Interoperability . 75
The experience of IoT-augmented automated driving 75

3.2.4 Evaluating FIWARE framework 76
3.2.5 The Road Ahead . 79

Semantics: NGSI-LD . 79
Privacy: Data Usage Control . 79

3.3 Conclusions . 80

4 Federation of IoT Platform and IoT Data Sovereignties 81
4.1 LIoTS: League of IoT Sovereignties. A Scalable approach for a Transpar-

ent Privacy-safe Federation of Secured IoT Platforms 81
4.2 Background . 83

III

4.2.1 Federation . 83
4.2.2 Privacy and Security . 84
4.2.3 Standards and Open Source . 84

4.3 Related Works . 84
4.4 Use Cases and Requirements . 85

4.4.1 Use-Cases . 85
4.4.2 Federation Requirements . 86
4.4.3 Security and Privacy Requirements 86

4.5 System Design . 87
4.5.1 IoT Registrar . 88
4.5.2 Message Flows . 89
4.5.3 Multi-party exchange platform system architecture 91
4.5.4 How to scale the federation . 94

4.6 System Implementation . 94
4.6.1 Standards and Open Source software adopted 94
4.6.2 Domain IoT Registrar . 95
4.6.3 IoT Provider implementation: privacy, security and discoverability 97
4.6.4 Federation through Blockchain . 98
4.6.5 Application example: Marketplace 99

4.7 Evaluation . 101
4.7.1 Publish-Query scenario . 102
4.7.2 Publish-Notify scenario . 104

4.8 Conclusions . 107

5 Data Usage Control 108
5.1 IntentKeeper: Intent-oriented Data Usage Control for Federated Data

Analytics . 108
5.2 Background and Challenges . 111

5.2.1 Data Usage Control . 111
5.2.2 Automotive Scenario . 111
5.2.3 Motivation . 112

5.3 Intent-oriented Data Usage Control with IntentKeeper 112
5.3.1 System Overview . 113
5.3.2 Trust Management . 114
5.3.3 Policy Model . 115
5.3.4 Service Model . 116
5.3.5 Federated Service Orchestration 117
5.3.6 Policy Enforcement . 118

5.4 Implementation . 122
5.4.1 Implementation with FogFlow . 122
5.4.2 Policy Editor . 122
5.4.3 Blockchain Integration . 123

5.5 Use Case Validation . 124
5.6 Performance Evaluation . 126

IV

5.6.1 Propagation Delay . 127
5.6.2 Service Orchestration Delay . 128
5.6.3 Service Latency . 129

5.7 Related Work . 130
5.7.1 Federated Data Analytics . 130
5.7.2 Data Usage Control . 130

5.8 Conclusions and Future Work . 131

6 IoT data services ecosystem 132
6.1 SynchroniCity and the shared ecosystem 132
6.2 Related Work . 134
6.3 Smart city services . 134

6.3.1 Cities and Pilots commonalities . 135
6.4 Collaborative approach . 136

6.4.1 Questionnaire . 139
6.4.2 Functional Requirements (FRs) analysis. 139

6.5 Atomic Services . 141
6.5.1 Data analytics atomic services . 142
6.5.2 Atomic services as building blocks for city services: multi-modal

transportation city service in Santander 144
6.5.3 Danish smart cities experiences . 144

6.6 Evaluation . 146
6.6.1 Validation . 146
6.6.2 Community Engagement . 147

6.7 Conclusions . 150

7 HyperConnected Smart City Services 151
7.1 Crowd Mobility . 151

7.1.1 Crowd Mobility Analytics using the Smart City Platform 153
Federated and Interoperable IoT Platform 153
Crowd Mobility Semantic Model 155
Integrated IoT Systems . 156
Privacy Considerations . 157

7.1.2 Pilot Studies in Australia and Spain 158
Pilot Deployment in Gold Coast 158
Pilot Deployment in Santander . 159

7.1.3 City-Scale Experiments . 160
7.1.4 Related Work . 161

7.2 Smart City Magnifier: a portable application on hyperconnected IoT . . . 162
7.2.1 Application Scenario . 162
7.2.2 Semantic Interoperability for Information Transparency 163
7.2.3 Smart Cities Enabled by Future Hyperconnected IoT 165
7.2.4 Cloud-Edge stream processing . 167

7.3 Conclusions . 169

V

8 Conclusions and Future Work 170

References 173

VI

List of Publications

In the following we list the key publications directly supporting this PhD thesis, indi-
cating the corresponding chapters within the thesis.

[1] Cirillo, Flavio, Fang-Jing Wu, Gürkan Solmaz, and Ernö Kovacs; Embracing the
future internet of things. MDPI Sensors 19, no. 2 (2019).

The material of this publication can be found in Chapters 1 and 7.

[2] Sciancalepore, Vincenzo; Cirillo, Flavio; Costa-Perez, Xavier; Slice as a service
(SlaaS) optimal IoT slice resources orchestration 2017 IEEE Global Communica-
tions Conference, 2017

The material of this publication can be found in Chapter 2.

[3] Cheng, Bin; Solmaz, Gürkan; Cirillo, Flavio; Kovacs, Ernö; Terasawa, Kazuyuki;
Kitazawa, Atsushi; Fogflow: Easy programming of iot services over cloud and edges
for smart cities, IEEE Internet of Things Journal, 5, 2, 696-707, 2017, IEEE

The material of this publication can be found in Chapter 2.

[4] Zanzi, Lanfranco; Cirillo, Flavio; Sciancalepore, Vincenzo; Giust, Fabio; Costa-
Perez, Xavier; Mangiante, Simone; Klas, Guenter; Evolving Multi-Access Edge
Computing to Support Enhanced IoT Deployments, IEEE Communications Stan-
dards Magazine, 2019

The material of this publication can be found in Chapter 3.

[5] Cirillo, Flavio; Solmaz, Gurkan; Berz, Everton Lúıs; Bauer, Martin; Cheng, Bin;
Kovacs, Ernoe; A standard-based open source iot platform: Fiware, IEEE Internet
of Things Magazine, 2019

The material of this publication can be found in Chapter 3.

[6] Cirillo, Flavio; Capuano, Nicola; Romano, Simon Pietro; Kovacs, Ernö; LIoTS:
League of IoT Sovereignties. A Scalable approach for a Transparent Privacy-safe
Federation of Secured IoT Platforms 2019 IEEE 44th Conference on Local Com-
puter Networks (LCN) 2019

The material of this publication can be found in Chapter 4.

VIII

[7] Cirillo, Flavio; Cheng, Bin; Porcellana, Raffaele; Russo, Marco; Solmaz, Gurkan;
Sakamoto, Hisashi; Romano, Simon Pietro; IntentKeeper: Intent-oriented Data
Usage Control for Federated Data Analytics, IEEE Local Computer Networks 2020.

The material of this publication can be found in Chapter 5.

[8] Cirillo, Flavio; Straeten, Detlef; Gomez, David; Gato, Jose; Diez, Luis; Mae-
stro, Ignacio Elicegui; Akhavan, Reza; Atomic Services: sustainable ecosystem of
smart city services through pan-European collaboration 2019 Global IoT Summit
(GIoTS)

The material of this publication can be found in Chapter 6.

[9] Cirillo, Flavio; Gómez, David; Diez, Luis; Maestro, Ignacio Elicegui; Gilbert,
Thomas Barrie Juel; Akhavan, Reza; Smart City IoT Services Creation through
Large Scale Collaboration, IEEE Internet of Things Journal 2020

The material of this publication can be found in Chapter 6.

[10] Solmaz, Gurkan; Wu, Fang-Jing; Cirillo, Flavio; Kovacs, Ernoe; Santana, Juan
Ramón; Sánchez, Luis; Sotres, Pablo; Munoz, Luis; Toward understanding crowd
mobility in smart cities through the Internet of Things, IEEE Communications
Magazine, 57, 4, 40-46, 2019, IEEE

The material of this publication can be found in Chapter 7.

Chapter 1

Introduction

The Internet-of-Things (IoT) concept has been broadly adopted by heterogeneous com-
munities due to its potential benefits. Progresses in technologies enabled the realization
of today’s IoT services. Nevertheless, new technical capabilities are needed to realize
“smarter” IoT services or even open possibilities not viable today.

In the current IoT, multiple data sources contribute sensing information and the
sensed data is gathered into a single cloud service. Let us consider the example use
case of environmental monitoring for noise pollution measurement in a city. Data from
sources such as noise sensors and people’s comments from social media are gathered in
for the particular cloud service and these sources are used only for noise monitoring
purpose aiming at supporting city policies decision-making [11]. In the future, on the
other hand, produced data need to be shared among multiple applications (see Fig. 1.1).
For instance, the gathered noise information might be utilized for other services such as
a human-centered mobility application to plan pedestrian or bike routes avoiding busy
areas [12]. Further, the same noise information might be used to detect criminal or
dangerous situations (e.g., car accidents, shootings) by the police [13]. Therefore, the
linkage between objects, devices, edge devices, actuators, agencies, and services needs to
evolve to many-to-many instead of the current many-to-one or one-to-one linkages. This
unique characteristic requires transparent discovery and information exchanges opening
to more opportunities for information mash-ups among interdependent and symbiotic
cloud services. Data sharing is a central focus for the European Commission strategy
as demonstrated by the launch of the GAIA-X project in 2020 in collaboration with
academia and big global industries. GAIA-X project aims to ”jointly enhance the devel-
opment of federated, trusted and user-friendly digital ecosystems based on fundamental
European values” [14].

This thesis work towards a hyperconnected IoT framework to connect in synergy mul-
tiple interdependent IoT systems and services. The first technical capability lacking in
the present systems is the ability to orchestrate data analytics among distributed and
federated IoT systems [3], respecting data sovereignty [6, 16] and privacy policies [7], ge-
ographical IoT components topology [17], real-time constraints and Quality-of-Service.
A second aspect that hampers the global IoT interconnection is the scarcity of infor-

1

1.1. Future HyperConnected IoT Framework

Future hyper-connected IoT

Beyond the future IoT

IoT Smartness

IoT

Connectivity

Processing

Memory

Sensing

Actions

Technical

capabilities

Edge CloudDevice

Figure 1.2: Key technical tipping points towards the future hyperconnected Internet-of-Things.

tally placed on vertical IoT elements such as device, edge and cloud. Data is produced
by sources through the observation of the real-world such as physical phenomena mea-
surements. The capabilities are then fulfilled by functions that are executed either in
the cloud or in the edge depending on the hardware resource requirements (such as
storage, communication and computation), real-time constraints, and/or optimization
of network bandwidth [3]. Moreover, due to the geographically distributed nature of
the IoT services, edge computing has become very significant [17]. Some of the data
sources might be devices comprehensive of computation and communication capability
(e.g., smartphones, cars) hence able to actively participate at the execution of the IoT
framework capabilities as dew computing [21].

Figure 1.3a depicts the horizontal placement of the IoT platform capabilities ad-
dressed by this thesis on the vertical IoT elements. The first is service-defined data
analytics that configures data analytics as a topology of functions, each of which are
placed on the cloud or edge (or even device) depending on the requirements of the ser-
vice. For example, at the edge, some stream analytics are executed in order to reduce
the amount of data or to apply privacy-preservation algorithm (such as data anonymiza-
tion). The cloud, which is orders of magnitude richer in terms of physical resources, is
then responsible for performing high-demanding computation for data analytics (e.g.,
MapReduce tasks). The second capability is the information transparency that aims to
make the data understandable and usable by heterogeneous IoT systems and applica-
tions by hiding the complexity of the IoT elements topology. The translation of raw
data to a common form is made by the semantic mediation, usually left to the edge
of the IoT (e.g., IoT gateways), whereas the semantic interoperability is performed as

CHAPTER 1. Introduction 3

1.3. Information Transparency

or Quality-of-Service [2] (see section 2.1). The data analytics framework of the future
IoT transforms data analytics requests to multiple atomic tasks to be instantiated and
orchestrated among the edge and cloud layers depending on the service requirements.

As an example of a service-defined data analytics, we consider crowd mobility ana-
lytics [22] that estimates the crowd levels within an area and the flow of people moving
between areas. Data sources (e.g., Wi-Fi sniffers, bluetooth beacons, ambient sensors
such as temperature sensors) generate observation of the real world. Edge nodes act as
gateways, collecting the observations and then sending them to cloud nodes. With the
concept of service-defined data analytics, the processing is decomposed in multiple tasks.
Thus, the needed analytics can be divided into two categories, the first for lightweight
tasks that can run on the edge nodes and the second for power-consuming tasks to be ex-
ecuted on cloud nodes. In the first category, for our example, we can include the stream
processing part which comprehends a filtering task that filters redundant or unnecessary
data, and a privacy preserving task that anonymizes the observations (important for
Wi-Fi monitoring). In the second category, continuing the example, we can include the
batch processing part where historical data is aggregated and patterns are detected.

In this thesis we present examples of service-defined data analytics. A first one is a
contextualized smart city monitoring service, namely Smart City Magnifier (SCM), of
smart city data (see section 7.2). The service is meant to compute and visualize city
indicators at different layers of abstraction, from sensors level till abstract contextualized
levels such as buildings, streets, neighbourhoods etc.. This smart city service takes
advantage from the decoupling of service design to the service management by replicating
the single analytics tasks throughout the federated IoT systems, each of the replicas
focusing on different subset of the available data. A second example is an automotive
scenario (see section 5) where electric car owners share car data (e.g., battery status,
GPS location) with the manufacturer of their car. An external data analytics company
develops a service to analyze the trends and geographic distribution of electric cars. The
original data is covered by a privacy policy to protect the identity of the car owners
through anonymization procedures that must happen before the data is actually shared
with third parties.

1.3 Information Transparency

The capability of having transparent exchange is fundamental for the future hypercon-
nected IoT systems. This capability consists of semantic interoperability and semantic
mediation. Interoperability is the ability of multiple systems to exchange data. Semantic
interoperability ensures consistency of data across interacting systems regardless of their
individual data formats as these systems attribute the same meaning to the exchanged
data. The semantics of data can be defined in a way that different data formats use
a shared vocabulary and the vocabulary is specified in an ontology. The concept of
semantic interoperability is applicable to all elements of the future IoT framework from
data sources to cloud and applications.

Semantic mediation is the capability of transforming data coming from one system

CHAPTER 1. Introduction 5

1.4. Resource and Context Management

to make it useful to another system. To achieve interoperability cloud needs to have
certain standards so that it can provide contextualized access to the applications. Con-
version of data that has certain standards such as oneM2M [23] to other standards such
as FIWARE OMA NGSI (Open Mobile Alliance Next Generation Service Interface) [24]
can be done on both edge and cloud [25]. Considering that there are many existing
standards and communication protocols, semantic mediation is necessary for the real-
ization of communications interoperability between different IoT elements and devices
with heterogeneous communication protocols (e.g., Wi-Fi, Zigbee, Bluetooth, 3GPP).

Although in this thesis we do not focus on the development of new ontologies, we
extensively adopt existing ones, such as FIESTA-IoT [26] and FIWARE data models [27],
map ontologies to standard IoT data formats, and discuss how to use them to hide the
heterogeneity of interconnected systems. For example, we successfully use this approach
to seamlessly execute the SCM service across 16 IoT deployments, and, also, as common
ground to steer the collaboration for a creation of a services ecosystem between 27 cities
in Europe and Korea.

1.4 Resource and Context Management

In the future IoT framework, the resource-context management refers to the contextu-
alization process from data to services which requires the capabilities of resource-entity
mapping and semantic-based discovery. In the traditional IoT framework, multiple en-
tities which are objects in the real world (e.g., sensors, actuators, and cloud services)
are considered together to provide resources (e.g., such as data and context) for a single
purpose. For example, sensing readings from the temperature and humidity sensors in
a smart home are only used to trigger the heating system. However, the future IoT
platforms consist of multiple interdependent systems that collaborate with each other
in a symbiotic manner to share all available resources. As shown in Figure 1.4, multi-
ple single-purpose IoT deployments (e.g., a smart home, video-surveillance) owned by
different parties (e.g., private home owner, homeland security), depicted as silos, have
their own sensors and devices, computation capabilities to analyse data locally (e.g.,
Complex Event Processing), and storage capabilities with a context management that
handles data. Silos are then handled by a domain administration in the cloud that al-
lows interconnectivity with other domains and therefore other silos. Sharing resources
allows, for instance, temperature and humidity readings in smart homes to contribute
a city-scale monitoring system. Thus, the capability of resource-entity mapping enables
omnidirectional information flows across devices, edge, cloud, and systems to collabo-
ratively leverage these resources. Here, “resources” are not limited to physical sensing
data, but they can be high-level contextual information shared among multiple entities
in the real world.

The whole interconnection of resources creates a next generation of context, resem-
bling a global distributed graph of information, that can be seamlessly accessed by any
actors of the Internet-of-Things. Data requests are brokered by specific components,
namely Next Generation Brokers (NG Brokers), that provision data from data providers

CHAPTER 1. Introduction 6

1.5. Data Usage Control

Data

Data provider
Company A

Company B

Data usage
control

Data provider wants to take full control of the

future usage of their data when sharing them

may be read by data consumer
may be processed by data consumer
may be processed only for a specific purpose
must go through pre-processing
must go through post-processing
may be used only within the data provider domain

data

Data

Provision

Obligation

Present

Future

may be accessed by authenticated user
may be handled by authorized user
may be accessed under certain circumstances

Data

Figure 1.5: Data usage control concept

might be physically distributed according to several optimization directives with differ-
ent perspectives [3] orchestrated by a stream analytics system. The synergistic work of
analytics and data flowing towards the analytics functions is handled by the next gen-
eration context management exploiting the common meaning given to the information
among the hyperconnected IoT.

Security layer, horizontally placed on all the components handling and exposing data,
is managed by local administrations that allow the owner of the IoT deployments to have
full control of the data, and consequently regulates analytics access and computation over
the data.

1.5 Data Usage Control

Connecting services and data resources for holistic services development needs to take
into consideration the will of the data owners to have continuous control over their data.
Common enterprise security, such as authentication and access control, limits the access
to data, but, once the data is shared, there is no possibility to control how the data are
used (see Fig. 1.5). Licenses, regulations (e.g., GDPR), and ad-hoc agreements legally
might impose limitations to the data consumers. However those do not avoid the misuse
of data but only apply penalties, with costly legal procedures, after the misbehaviour
happens and it is discovered. This approach is undesired by the data owners (since when
the misbehaviour is discovered, it is too late to remedy) but it is even harmful for the
data consumers that unwittingly violate policies. Indeed, design data consuming services
considering data usage policies might be a very complex task. In the fully connected IoT
vision where the data provisioning happens automatically and transparently from the
data owners and data consumers perspectives, design policies compliant services might
not be even feasible due, also, to the highly dynamic scenario of the global IoT.

In this thesis we propose an intent-oriented approach to cope with such complex sce-
narios. The idea is to decouple the service design to the data usage policies. Data owners
express their intent on how their data must be used and the data consumers express their
intent on how they want to use data. The service orchestration and the context man-

CHAPTER 1. Introduction 8

1.6. Challenges and Open Issues

agement, then, cooperate to execute the data processing service by proactively changing
the service configuration to comply with the policies in order to prevent any data mis-
use. The proposed solution is designed to work among federation of peers data analytics
platforms that are also decentralized between fog and cloud. We present an automotive
scenario as an example for data usage control among data sharing domains.

1.6 Challenges and Open Issues

The number of objects generating data as IoT elements is of a very large scale with
continuous growth over time. We have performed a trend analysis based on the reports
from International Data Corporation (IDC) [29], Gartner [30] and our estimations [15].
11.4 billion “things”were installed in 2014 and 13.7 billion in 2015 with a 20.8% increase.
Even if the numbers are forecast to continue increasing, the rate will gradually decrease
to 11.5% in 2020, with an estimation of 28.1 billion ”things”. Consequently, the generated
data volume will grow by an order of magnitude (10×) from 2015 to 2020 [31]. This
exceptional growth of IoT is due to the promised financial benefits. Smart cities and
smart homes are, amongst the others, the most advanced field where many businesses
compete to earn a share of the market. In the smart cities field, a big push was made by
the governments that gradually increased investments, whereas the change in the way
of people thinking about everyday life, always more digitalized, opens great business
opportunities in the smart homes area (an example is the wide spread of home assistant
devices). According to [29, 30, 15], the market share of smart homes and smart cities is
forecast to be the 25% over the total IoT market, by 2020.

These vast numbers of connected “things” and large data volumes are only possible
with new technologies and standards. The unprecedented increase in “things” coming
together with big data brings many new challenges and problems in connectivity, pro-
cessing, memory, sensing, and actions that require enabling of the future IoT platform
capabilities and 5G in order to lead the aforementioned expectations into a reality. Based
on this observation, we point out some open issues in the future IoT as follows:

(1) Data ownership management : For a future IoT where data is globally accessi-
ble and discoverable, special attention should be paid in order to assure that the
producer of the data (or the owner of the observed things) keeps ownership of
the data, especially for privacy-sensitive data. A study of the International Data
Spaces Association (IDSA)2 [32], where more than 200 companies have been in-
terviewed regarding data exchanged with other companies, states that one of the
major concerns that blocks a company from sharing data with another peer is the
uncertainty of losing control over the data once the data has been released, and thus
losing the “sovereignty” of the data. A first issue is to state “who is the owner of
the data”: for instance, we are keen to think that the owner of the IoT deployment
is the owner of the data; for example, a public transportation company deploying

2International Data Spaces Association (IDSA). Available online: https://www.

internationaldataspaces.org/ (Accessed on the 15th of December 2020).

CHAPTER 1. Introduction 9

1.6. Challenges and Open Issues

sensors on its buses is the owner of such data. However, in other situations, the
owner of the data is the observed thing; this is the case of health sensors deployed
by the health care system at home of a patient where the patient is the “thing”
observed and the owner of the data. In addition, another open issue is “how to
control the data migration to other users and services”. Often, users are requested
to sign agreements on processing their data, as specified on common data regula-
tions (e.g., General Data Protection Regulation-GDPR3, but, afterwards, there is
not an easy way to control if those agreements are respected. In addition, the data
owners should be capable to visualize where, how, by whom and why their data
are accessed. Moreover, usage terms might dynamically change over time due to
new regulations, changing of the mind of the data owner, or other factors (e.g.,
expiration of a time period). An automatic system of managing these data access
rights’ dynamism is a clear challenge.

(2) Privacy and security : With the realization of the presented capabilities, the fu-
ture IoT will encounter new security and privacy threats. Every IoT layer, from
applications to devices, has peculiarities on the security risks and possible attacks.
Considering the vertical elements in the bottom-up architecture, each level (i.e.,
devices, edge, cloud and applications) has its own security requirements. Each
level is exposed to various types of security threats and possible attacks. Cur-
rently, there is a lack of and a certain need for a dynamic IoT security model
for enabling mission-critical applications (e.g., autonomous vehicle control) and
expected advancements in the IoT systems. Furthermore, for building trust and
secure relationships between the IoT components, proper identification and authen-
tication capabilities, and cooperation among these techniques in the IoT platform
are currently missing. On the other hand, preserving privacy of data in IoT is an
open challenge. The existing privacy protection policies for today’s IoT include
encryption, anonymization and obfuscation techniques, which are mainly for sin-
gle services. However, new privacy preservation techniques in these interdependent
services (e.g., searchable encryption, usage control, end-to-end encryption [33] with
homomorphic encryption) by design principle for objects, devices, users, subsys-
tems, and services are required.

(3) Critical real-time operation: The IoT of the future should be flexible and adapt-
able to sudden changes of the status and conditions of the infrastructures. This
is due in order to have fast response to critical situations such as the increasing
frequency of natural disasters due to the global climate change [34]. Infrastructure-
less alternatives for communication in networks [35] or easy-to-deploy infrastruc-
tures [36, 37] can help on the communication infrastructure. Whereas, autonomous
orchestration of mission critical services among available resources might address
the performance requirements.

(4) Standardization: Different layers of IoT are studied within many standardization

3General Data Protection Regulation-GDPR. Available online: https://gdpr.eu/ (Accessed on the
15th of December 2020).

CHAPTER 1. Introduction 10

1.7. Outline of this thesis

activities. However, there is little consensus regarding which layers and relevant
techniques should be standardized and which layers should remain open to be
designed. In addition, governments showed their interest in standardization and
their involvement implies innovation restrictions due to ever stricter regulations.
New requirements for IoT are defined by IoT organizations such as OpenFog, the
Industry 4.0, Made-in-China 2025 [38], and the Industrial Internet Consortium.
New activities are expected to come from ETSI, IEEE, IEC, ISO, FIWARE and
oneM2M, to name a few. The advancements in standards should cover every
ICT field such as connectivity (e.g., 5G and satellite connections), data format
and models (e.g., semantic interoperability and data contextualization), sensing,
actuations and security at all levels.

This thesis moves towards the path of addressing the four research challenges pre-
sented above.

1.7 Outline of this thesis

This thesis provides a set of novel approaches to deal with two aspects of the hypercon-
nected IoT: i) multiple stakeholders scenario, and ii) decentralization. The decentraliza-
tion of IoT platforms happens with the deployment of heterogeneous computing nodes
placed into a range that varies from close to the devices (i.e., for or edge) or in the cloud.
In addition, we consider a multi-party scenario where the IoT systems are not managed
and owned by a single authority but there are diverse stakeholders that, depending on
the use case, play one of the different roles of IoT data producer, data consumer or ser-
vice developer. Our research study starts with a preliminary work proposing a solution
to cope with multiple IoT network slices, owned by different parties, on a shared 5G
network infrastructure. In addition, we propose a solution to decouple the IoT service
development from the IoT service orchestration among fog/edge computing (happen-
ing at the edge) and cloud computing. Further, we investigate the standardization and
open source background focusing on the 5G edge computing with ETSI MEC (Multi-
access Edge Computing), proposing an enhancement to support IoT deployments, and
the context information management analyzing FIWARE, one of the most prominent
open source IoT framework. Once chosen the base IoT framework to start from, we
address the trust problem that arise into multi-parties scenario. Therefore, we propose
an architecture to federate peers of decentralized IoT platforms that can be scaled by
design, taking into consideration enterprise security aspects. We, then, present a new
data usage control approach called IntentKeeper to enable preventive data usage en-
forcement for federated data analytics in a proactive manner. Finally, we demonstrate
the actual building of an IoT services ecosystem among 27 cities and the collaboration
of diverse stakeholders among industry, governance and academia achieving their goals.
We also present examples of hyperconnected IoT services addressing crowd mobility in
urban environments with experiences in Australia and Spain, and a portable smart city
monitoring system applied on 16 IoT deployments in Europe and Korea.

The remainder of this thesis is structured as follow:

CHAPTER 1. Introduction 11

1.7. Outline of this thesis

• In chapter 2 we target the needs to efficiently tailor network operator infrastruc-
tures to IoT diverse requirements through network slicing. Differently to the long-
term agreements approach between network operators and tenants as MVNOs,
in this chapter we focus on a new business model where network operators offer
network slices as a service (SlaaS). We propose a novel system comprising an IoT
Broker managing massive IoT network slices services and a Network Slice Broker
that through bi-directional negotiations are able to efficiently allocate and orches-
trate network resources. We also analyze the major challenge for developers to
program their services to leverage benefits of fog computing. We propose FogFlow
that decouples the IoT service implementation to the IoT service orchestration
among decentralized computing nodes. We assess FogFlow’s performances based
on microbenchmarking.

• In chapter 3 we analyze the Multi-access Edge Computing (MEC) for 5G to address
the stringent requirements of critical applications (such as eHealth, automotive).
We propose an architecture compliant with the ETSI MEC standard for seamless
integration of IoT platforms. Further, we analyze the background of the widely
used open source FIWARE framework and its application on three real scenarios.
We compare the potentiality of FIWARE against both commercial and other open
sources frameworks.

• In chapter 4 we introduce a secured platform where a federation overlay is dis-
tributed among parties and the control over the data is delegated to data owners.
We show that our approach is scalable by design, since it allows iterative forma-
tion of multiple levels of domains thanks to the transparent nature of its federation
approach. Experiments show that the overhead introduced is minimal when con-
sidering wide IoT deployments and, in some scenarios, our platform performs even
better than centralized approaches.

• In chapter 5 we show IntentKeeper, a solution to enforce data usage control on
a federation of decentralized IoT platforms. IntentKeeper allows data producers
to specify their intents through data usage policies and data consumers with their
service usage without considering the complexity of the underlying system. More-
over, IntentKeeper enforces preventive and proactive data usage control for better
security and efficiency through joint decisions based on policy enforcement and
service orchestration. We validate the system with an automotive scenario and we
perform microbenchmarking to assess the performances.

• In chapter 6 we show the advantage of the hyperconnected IoT also in terms of
sustainability. We take the unique opportunity to build a real smart city IoT
services open ecosystem given by the EU project SynchroniCity. This is due to
SynchroniCity’s concrete implementation of a hyperconnected IoT overlay plat-
form (as described in chapter 3) and the involvement of tens of heterogeneous
stakeholders, among industries, academia, small and medium enterprises (SMEs)
and cities’ governance. Each IoT service in the ecosystem is not bound to a spe-

CHAPTER 1. Introduction 12

1.7. Outline of this thesis

cific city IoT deployment and reused for different smart city solutions. The results
of this activity comes from the implementation of 35 city solutions in 27 cities
between Europe and South Korea in a time span of two years (2018-2019).

• In chapter 7 we discuss the challenges and the recent advancements to build crowd
mobility analytics in urban environment benefiting from the information sharing
across crowd management stakeholders. In particular, this chapter discusses real
world pilots in Gold Cost, Australia and Santander, Spain. Further, we present
a smart city monitoring system, namely Smart City Magnifier, that semantically
transforms the data, link data to entities and entities to entities, and augment data
by computing indicators. The service is run over 16 IoT deployments in Europe
and South Korea.

• In chapter 8 we reports our conclusions of this thesis and open challenges to be
tackles in future research.

CHAPTER 1. Introduction 13

Chapter 2

Background on IoT: 5G and
Fog/Edge Computing

The increasing deployment of smart devices using mobile networks is pushing operators
to consider efficient ways to tailor their infrastructure to the Internet of Things (IoT)
diverse requirements and traffic characteristics. A promising approach to address this
need is the concept of network slicing, which aims at allocating portions of network re-
sources to specific tenants, such as enhanced mobile broadband (eMBB), IoT, e-health,
connected vehicles, etc. While this has been traditionally done with long-term agree-
ments between network operators and tenants as MVNOs, in this work we focus on a
new business model where network operators offer network slices as a service (SlaaS). In
particular, we propose a novel system comprising an IoT Broker managing massive IoT
network slices services and a Network Slice Broker that through bi-directional negotia-
tions are able to efficiently allocate and orchestrate network resources.

The 5G benefits to boost the performances in terms of latency, throughput and scale
(number of handled devices) might be jeopardized if the services are relying only on the
cloud. For example, a smart city infrastructure forms a large scale Internet of Things
(IoT) system with widely deployed IoT devices, such as sensors and actuators that gener-
ate a huge volume of data. Given this large scale and geo-distributed nature of such IoT
systems, fog computing has been considered as an affordable and sustainable computing
paradigm to enable smart city IoT services. However, it is still a major challenge for
developers to program their services to leverage benefits of fog computing. Developers
have to figure out many details, such as how to dynamically configure and manage data
processing tasks over cloud and edges and how to optimize task allocation for minimal
latency and bandwidth consumption. In addition, most of the existing fog computing
frameworks either lack service programming models or define a programming model only
based on their own private data model and interfaces; therefore, as a smart city plat-
form, they are quite limited in terms of openness and interoperability. To tackle these
problems, we propose a standard-based approach to design and implement a new fog
computing-based framework, namely FogFlow, for IoT smart city platforms. FogFlow’s
programming model allows IoT service developers to program elastic IoT services easily

14

2.1. Internet-of-Things network slicing on 5G

over cloud and edges. Moreover, it supports standard interfaces to share and reuse con-
textual data across services. To showcase how smart city use cases can be realized with
FogFlow, we describe three use cases and implement an example application for anomaly
detection of energy consumption in smart cities. We also analyze FogFlow’s performance
based on microbenchmarking results for message propagation latency, throughput, and
scalability.

2.1 Internet-of-Things network slicing on 5G

With the continuously increasing number of connected Internet-of-Things (IoT) devices,
foreseen as tenths of Billion by 2020, as well as with even more IoT use-case enablers,
the IoT world has got its momentum in the small and medium-sized enterprises (SMEs)
market. To this aim, the evolution of new network technologies is enlarging its horizon
by exhibiting as one of their strengths a bigger flexibility on network definition and
network virtualization. The context of the 5th generation of mobile network, namely
5G, is further enriched when the network slicing concept comes into play.

The Next Generation Mobile Network Alliance (NGMN) defines the 5G network
slice as a driver paradigm to run multiple self-contained logical networks as independent
business operations on a shared physical infrastructure [39]. Therefore, each network
slice represents a virtualized independent end-to-end network allowing infrastructure
providers to deploy different architectures in parallel. Leveraging on this concept, the
infrastructure providers may customize their own networks by opening their facilities to
novel business players, such as virtual mobile network operators (VMNOs), third-parties
as well as Over-The-Top (OTT) applications, as shown in Fig. 2.1. Such entities behave
as tenants of the same physical infrastructure. This brings new challenges in designing a
network resources allocation policy, which must guarantee the resource isolation principle
and, at the same time, it improves the multiplexing gain resulting in a more cost-effective
resource allocation for the infrastructure provider.

While the flexibility introduced with network slicing dynamics fosters a network
virtualization evolution, infrastructure providers do not quantify yet the real benefit
brought to their current business cases. There is a real need of assessing and brokering
the network slicing operations between infrastructure providers and different tenants.
Recently, a novel logically centralized entity was defined, namely a capacity broker [40],
considering its mapping into current 3GPP architectures and in charge of network slic-
ing admission control operations. This functional block has been extensively improved
in [41] to provide a means for optimally allocating and configuring Radio Access Net-
work (RAN) slices based on on-demand network slice requests. Therefore, the network
operators efficiently face with the network paradigm change by providing network slicing
capabilities as a service, namely Slice as a Service (SlaaS).

The main benefit introduced by a multi-tenant-enabled network is the ability for het-
erogeneous industrial segments to acquire and use the same network infrastructure. The
IoT world can be envisioned as the most suitable customer exploiting a self-managed
and isolated slice of network resources, given the high heterogeneity level of its traffic

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 15

2.1. Internet-of-Things network slicing on 5G

2.1.1 Problem Statement

Along the direct communication between infrastructure provider and tenant, several
challenges are identified. On the one hand, the infrastructure provider applies and defines
optimization algorithms for maximizing the allocation of virtual network slices aiming
at the maximization of the revenues. On the other hand, the tenants (network slice
customers) aim at minimizing the slice parameters with the dual target of minimizing
the costs while keeping affordable the Quality of Service required. This usually results
in a sub-optimal slicing configuration and limited resource monetization.

In the following, we provide a detailed analysis of IoT traffic reshaping features and
5G network slice capabilities, separately. This paves the road towards our optimized
joint solution, presented in Section 2.1.2.

IoT Broker

IoT communications are enabled by means of an IoT Broker component [50]. This entity
serves as a middleware that exposes to IoT applications a northbound interface for IoT
data requests, which can be conveyed either through a conventional network means,
which does not involve resources limitation issues (e.g., fixed-line technology means), or
through massive IoT network slices, as shown in Fig. 2.2. The IoT application developers
seamlessly interact with the IoT Broker that takes care of interfacing with different IoT
Gateways (GWs) to retrieve all needed information.

The interaction between IoT applications and IoT GWs can be synchronous and
asynchronous. The former is a query-response interaction, where applications inquire for
data, and expect a single response. The latter follows the subscription-notify paradigm:
once subscribed to an IoT data service, the IoT application is notified with the corre-
sponding data, when an update occurs. In general, the IoT Broker maps the northbound
requests onto a set of southbound requests to IoT GWs. Conveniently, the subscription-
notify paradigm activates data flows of an IoT service between IoT platform and IoT
GWs upon the reception of the subscription request, differently from a publish-subscribe
scheme where data is continuously pushed to the IoT platform regardless of the IoT ap-
plications’ interests. The IoT Broker is meant here to be a single logical component,
which can be scaled if necessary. How to reach this scalability is out of the scope of this
work.

5G Network Slice Broker

The 5G Network Slice Broker is the network component in charge of (i) interfacing
with external network tenants in order to accept/reject new network slice requests, (ii)
managing the slice instantiation/resize/maintenance/deletion operations, (iii) monitor-
ing slice traffic [51]. Fig. 2.3 shows a self-explained example, where the 5G Network Slice
Broker receives a new slice request from an IoT Enterprise asking for a certain amount
of network resources. If network capabilities are enough to accommodate the new slice
request, the 5G Network Slice Broker instantiates a new slice by instructing the RAN
elements to dedicate a given portion of resources. This example mostly focuses on the

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 18

2.1. Internet-of-Things network slicing on 5G

network slicing management on RAN premises. However, it can be readily extended to
the transport and core network elements.

Decoupled optimizations applied on both concepts drive the system toward subop-
timal states, as no direct installed communication prevents the system from reacting
dynamically.

2.1.2 Joint IoT Slice Traffic-aware Solution

When the 5G network slice customer-provider relationship is broken down, the network
slice brokering process acquires more knowledge about the real tenant application needs
thereby optimally instantiating/configuring/scaling network slicing resource requests.
Conversely, the IoT traffic might also be optimally reshaped to account for unexpected
5G network congestions.

Fig. 2.4 depicts a system architecture where the IoT Broker and 5G Network Slice
management communicate and efficiently orchestrate IoT traffic and/or network slicing
operations. IoT-related messages reach the IoT platform (data-plane) or the IoT GWs
(control-plane) through the IoT massive 5G Slice. Control-plane messages are meant to
dynamically adjust the amount of data exchanged between the IoT GWs and the IoT
Broker. The IoT Broker might decide to enhance the quality of the data traffic (e.g.,
more fine-grained, smaller sampling period) when 5G network premises are underutilized
or, conversely, it might ask to worsen the data quality (or delay after collecting a larger
set of them), when network condition degradation or network resources preemption oc-
cur. Network resources assigned to the 5G massive IoT slice are dynamically managed
by the 5G Network Slice Broker through a dedicated control-plane channel. This com-
munication might trigger a slice resources update to cope with unexpected and rapid
network changes (such as network congestions, additional network slice instantiations,
IoT SLAs re-negotiations).

Interestingly, the IoT Broker provides different features: (i) shaping the IoT traffic
(transmitted through the IoT massive 5G slice) by properly choosing the set of IoT GWs
for satisfying the data request, or the QoS parameters of the southbound subscriptions
(e.g., data granularity, notification frequency), (ii) measuring the data traffic in order
to monitor traffic fluctuations, changes of notification frequency (from the IoT GWs),
changes of QoS parameters in query/subscriptions messages, (iii) optimizing the data
traffic in order to maximize the utilization efficiency of the 5G network slice resources
while still satisfying IoT applications QoS requirements.

Interface and Data exchange

A functional view of our system solution is shown in Fig. 2.4. When requests arrive from
the application layer, minimum QoS requirements are evaluated against the status of
the IoT traffic load. The QoS Aggregator functional block aggregates overlapping QoS
requirements coming from different applications. For example, road traffic condition of
the same area with a certain granularity might be requested for traffic light coordination
and for bus scheduling optimization. The output of the QoS Aggregator is a unique

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 19

2.1. Internet-of-Things network slicing on 5G

Table 2.1: Examples of QoS parameters for different IoT Services

Data
Quality

Geographical
Granularity

Notifications
Frequency

Video
Surveillance

1.3, 3, 5, 8, 10
Megapixels

Single Camera,
Grid 8x8 for: Building, Streets,

Neighbourhood, City

10 fps, 1 fps, 0.5 fps, 0.1 fps,
0.05 fps, 0.015 fps (∼ 1 per minute)

Road
Situation

Historical Record,
Averaged last 10m,

Only Car Count & Speed Avg.,
Norm. Traffic Situation

Sensors,
Averaged by: Building, Streets,

Neighbourhood, City

10s, 30s, 1m, 5m,
10m, 30m, 1 hour

Air
Quality

All Sensed Particles,
Pollutant levels,

Norm. Air Quality

Sensors,
Averaged by: Building, Streets,

Neighbourhood, City

10s, 30s, 1m, 5m,
10m, 30m, 1 hour

Crowd
Behaviour

WiFi Sniffer Record, Detected Devices,
Crowd Pattern, Crowd Estimation

Sensors,
Averaged by: Building, Streets,

Neighbourhood, City

30s, 1m, 5m,
10m, 30m,1 hour

data traffic requests without infringing QoS requirements, CO might request the 5G Slice
Broker to scale up the network slice size. The 5G Network Slice Broker is constantly
monitoring the traffic of instantiated 5G network slices by checking that the traffic does
not exceed the network slice boundaries. When a re-negotiation is required, the 5G
Network Slice Broker checks internally whether it is feasible to satisfy such a request
without breaking other slice SLAs. If the network conditions allow the 5G Network
Broker to accommodate this network slice resources upgrade, the 5G Network Slice
Broker provides the new amount of granted resources to the CO.

Similarly, the 5G Network Slice Broker may detect an over-provisioning of available
5G resources in one of already running network slices and, it might request CO to reshape
the IoT data traffic. Automatically, the Communication Optimizer calculates a feasible
solution for the IoT resources allocation. If a successful solution is found, the IoT Broker
responds back to the 5G Network Slice Broker with a scaled amount of network slice
resources.

To further validate our architecture, in the next sections we show in details two
use-cases wherein this joint orchestration is strongly recommended. We then propose a
problem, mathematical analysis and practical algorithm for one of those use-cases, in
Section 2.1.3.

Use case: City Council Network Slice

We envision a city council owning a virtualized infrastructure (or network slice prior
granted) and offering (part of) it as a slice service to different municipal domains, e.g.,
police, homeland security, public transportation companies, domestic energy providers,
and markets association (shops or shopping malls). Both IoT Broker and Network Slice
Broker reside within the same administrative premises pursuing the same objective:
maximization of network utilization and reduction of QoS violations. In this case, IoT
Broker, as an infrastructure tenant, manages the massive IoT network slice. Other
tenants can be envisaged as the other municipal domains sharing the same physical
infrastructure.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 21

2.1. Internet-of-Things network slicing on 5G

Different IoT services might have different QoS parameter values (see Table 2.1). For
example, Road Situation service might be implemented as a set of compound sensors
(comprehensive of road occupancy sensor, car counting and speed sensor together with
an embedded algorithm for computing a normalized value of traffic situation) installed
on the streets. A low data quality level could be the retrieval of only a summarized value
of the traffic situation whilst a higher data quality could allow the transmission of all the
aggregated sensed information (i.e., car counting, speed average, road occupancy in the
last hour) till the highest quality level, which configures the transmission of all recorded
data, such the speeds history of cars using the road. An orthogonal QoS parameter is the
geographic granularity data. Using again the example of the Road Situation service, the
data transmitted over the network slice might be with the highest granularity (retrieving
all real compound sensors data) or with a lower granularity (assuming a data aggregation
performed by the IoT GW per geographical scope, such as urban blocks, streets or
neighborhoods). Also the timing of the messages sent through the network slice can be
controlled. In this case, the IoT GW might send messages every 10s, 30s, 1 min, 2 min,
5 min, 10 min, 30 min or 1 hours.

As another example of IoT services, we might account for the Video Surveillance.
The quality of the data is the resolution of the recorded images. Changing the granularity
automatically configures the IoT GWs to send a grid of frames coming from different
cameras surrounding the same geographical object, with a total amount of pixel indicated
by the quality of data. In case the number of cameras is larger than the allowed number
of cells of the grid, the IoT GW chooses images to be sent through certain selection
algorithms, not analyzed here. The frequency of the messages affect the bitrate of the
data flow, such as 30 fps, 10 fps, 1 fps, 0.5 fps, 0.1 fps, 0.05 fps, 0.015 fps (∼ 1 per
minute). In Table 2.1, we have summarized QoS configurations also for: Air Quality
service, in charge of monitoring the pollution of the air and based on weather compound
sensors; Crowd Estimation and Behaviour service, which infers the crowd estimation in
public spaces and their mobility pattern based on Wi-Fi packages sniffers.

Use-case: Cooperation between different domains

We also target a different network use-case: network operator owning the Network Slice
Broker [52], whereas a massive IoT network slice is already instantiated (with an IoT
Broker). 5G network Slice Broker and the IoT Broker belong to different administrative
domains so that they selfishly aims to increase own network performance. An interaction
may be established aiming at: improving the resource utilization efficiency (from the
network operator perspective); reducing the network slice cost (from the IoT tenant’s
perspective) by offering a better utilization fee for a flexible and dynamic adaptable slice.
Pricing models used for such a relationship are out of the scope of this work.

While those user scenarios lay the basis for this novel cooperation between 5G Net-
work slice management and IoT world, they are not intended to be exclusive or exhaus-
tive. However, they provide a solid basis for evaluating and fostering the adoption of
such jointly orchestration. In the next section, we present an insightful analysis of such
a problem shedding the light on practical algorithmic solutions.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 22

2.1. Internet-of-Things network slicing on 5G

2.1.3 Analysis and Practical Solution

We rely on the city council network slice use case, wherein the compound effect of an IoT
Broker and a 5G network slice management benefits the same administrative domain,
as explained in Section 2.1.2.

The IoT application subscribes a particular service a asking for sensor information
updates within a given geographical scope s. We assume that our system area S is a grid
divided into multiple areas s ∈ S not overlapping 1. Services a might be, and not limited
to, the examples listed in Table 2.1. Each of these services results in a certain amount
of data delivered by the IoT Broker through the 5G network facilities. The subscription
request will be issued for any single area s and is defined as rs = (as, γs, ωs, µs, ρs). γs ∈ Γ
index specifies the granularity of such information, such as individual sensor, building,
street, neighbourhood or urban context. Moving from fine-grained granularity (sensors
level) to data aggregation may require IoT GWs to perform data analytics operations
by considering average, peak or other statistical values. While this drastically reduces
network slice congestions, it may prevent the IoT application from acquiring detailed
information. Furthermore, we also denote the frequency of data updates with index
ωs ∈ W, which may range from 10s to 5 min. µs ∈ Q specifies the quality of delivered
information, whereas ρs ∈ P defines the priority of the subscription request. Please
note that a higher priority index corresponds to a higher cost for being guaranteed with
required parameters 2. All these sets are discrete sets of values that drive the overall
system utilization, as diverse service configurations require different amounts of data
exchanged. Our joint system leverages on this powerful trade-off to accommodate first
high-priority service requests into the available network slice capacity while differing
low-priority traffic flows.

Service requests for different geographical areas come periodically and are processed
by the IoT Broker. As shown in Fig. 2.4, the IoT Broker forwards such request parame-
ters to a Communication Optimizer functional block, in charge of optimally scheduling
service requests into the slice capacity following a priority-based policy. Communication
Optimizer block is defined as a dual functional entity: it aims to properly reshape the
service configuration in order to fulfil the network slice capacity limits. As soon as the
application service requests exceed the network slice capacity, it may trigger its counter-
part on the 5G network management to promptly adjust the network slice boundaries
if no network congestions occur. Analytically, we can express the optimization problem
as follows

1This assumption makes tractable the problem analysis. However, it can be easily extended for
advanced cases with overlapping spatial areas.

2We assume that the IoT entity aims at minimizing the overall cost while getting an acceptable
level of quality. A detailed discussion about this mechanisms is out of the scope of this dissertation.
However, advanced mechanisms for optimally adjusting such priority/cost levels might be considered
without affecting the problem analysis presented in this chapter.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 23

2.1. Internet-of-Things network slicing on 5G

Problem IoT-Optimizer:

maximize
∑

s∈S

(xs − ps)

subject to
∑

s∈S

ga(γs)qa(µs)fa(ωs)(xs − ps) ≤ ηo;

xs ≥ ✶{ρs≥ρ̄}, ∀s ∈ S;
xs, ps ∈ {0; 1}, ∀s ∈ S;

where fa(·), ga(·), qa(·) are discrete functions providing the amount of datarate given
certain frequency, granularity and quality values, respectively, for a particular service a,
whereas xs is a binary value indicating whether the service request for area s can be
scheduled. The datarate might change over time due to a new IoT resources availability
(e.g., new sensors installed under an IoT service) or because of critical situations (e.g.,
more data is generated outside a stadium right after a crowded event). The IoT Traffic
Monitor measures the IoT traffic and updates the fa(·), ga(·), qa(·) functions. ηo is the
capacity assigned to the IoT network slice and ps is a binary value (penalty) indicat-
ing that the service request for area s cannot be admitted within the current amount
of assigned network slice resources. ρ̄ is a threshold defined by the Communication
Optimizer to force the IoT Broker to accept service requests above a certain priority
level (e.g., security issues). The main constraint defines the total amount of data ex-
changed (ga(γs)qa(µs)fa(ωs)) per area s by the IoT devices, which must be scheduled
into the network slice traffic capacity. The tuple (γs, µs, ωs) is sent to the IoT Traffic
Shaper, which adjusts the service configurations on the IoT GWs, accordingly. When∑

s∈S ps ≥ 0, some IoT service requests cannot be accommodated and an intervention
is required by the network slice management. Therefore, the Communication Opti-
mizer sends an upgraded network slice request, which comprises λo = ηo + po, where
po =

∑
s∈S ps (ga(γs)qa(µs)fa(ωs)) is the exceeding capacity required by the IoT slice.

On the other side, the Communication Optimizer installed on the 5G network slice
management deals with the following optimization problem to optimally scheduled its
network resources between different network services i ∈ I

Problem Network-Optimizer:

maximize
∑

i∈I

ηi

subject to
∑

i∈I

ηi ≤ Cslice;

ηi ≥ λi, ∀i ∈ I;
ηi ∈ R+, ∀i ∈ I;

where λi is the amount of network resources in terms of datarate required by the tenant
i, whereas Cslice is the slice capacity managed by the 5G controller 3. The output directly

3We assume that the slice capacity is properly designed from the network management perspective. If
network congestions occur, Problem Network-Optimizermight be unfeasible so that the 5G network slice
management needs to discard some network slice request updates, based on a priority basis. For further
information, we refer the reader to advanced 5G network slicing brokering mechanisms as explained
in [41].

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 24

2.1. Internet-of-Things network slicing on 5G

Algorithm 1: IoT Slice-aware Traffic Optimizer

1. Initialise sets K ← 0 and J ← 0.

2. Update high-priority set K ← s : ρs ≥ ρ̄ and low-priority set
J ← s : ρs < ρ̄, ∀s ∈ S.

3. Sort K in a decreasing order and J in an increasing order based on
ga(γs)qa(µs)fa(ωs).

4. Place s ∈ K into O while fulfilling the capacity constraint∑
s∈O

ga(γs)qa(µs)fa(ωs) ≤ ηo following the order.

5. Place s ∈J into O while fulfilling the capacity constraint∑
s∈O

ga(γs)qa(µs)fa(ωs) ≤ ηo following the order.

6. Place into O remaining s ∈ K and update penalties ps.

7. s ∈ O will be notified as service requests accepted and
po =

∑
s∈O

ps (ga(γs)qa(µs)fa(ωs)) will be notified to the 5G network
management as λo = ηo + po.

feeds back the IoT Broker (through the Communication Optimizer block) by specifying
the updated amount of resources assigned to the IoT slice (i.e., ηi=o).

Interestingly, Problem IoT-Optimizer and Problem Network-Optimizer are tightly
connected, as the output of one provides the input for the other one and vice-versa.
This implies that in case of emergency or security threats, if the slice size is not enough
(ηo), the IoT Broker may trigger an update request to the 5G network management
(λo) and promptly get augmented network resources to accommodate the traffic burst.
Conversely, when the 5G network experiences congestions, it might ask the IoT Broker
to reduce the resources utilization (ηo) so as to make room for other network services i.

Algorithm Description

Problem IoT-Optimizer above-described is an Integer Linea Programming (ILP) prob-
lem. Such class of problems is known to be NP-Hard [53]. For the sake of brevity, we
skip the formal proof of NP-Hardness and NP-Completeness. However, small instances
of the problem with few levels of granularity, frequency and quality may help in finding
an optimal solution within a polynomial time by means of an exhaustive search.

Here we present a heuristic solution for solving Problem IoT-Optimizer, as most
of the ready-to-use algorithms in the literature properly address Problem Network-

Optimizer. The pseudocode is listed in Algorithm 1. The IoT Slice-aware Traffic Op-
timizer splits the service requests into two subsets: in the former there are only high-
priority service requests, i.e., where ρs ≥ ρ̄ whereas in the latter all the other services
requests s. After placing high-priority requests within the slice capacity ηo following
a decreasing order (the rationale is based on first fit decreasing schemes proposed in

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 25

2.1. Internet-of-Things network slicing on 5G

the literature for well-known knapsack problems), our algorithm tries to place as many
low-priority requests as possible that still fit into the available slice capacity. If some
high-priority service requests are not scheduled yet, the algorithm increases the capac-
ity limit at expenses of a penalty value ps. In this case, the system realizes that the
current slice configuration is not enough to satisfy high-priority instances requirements,
and it automatically triggers the 5G network management for updating the slice capacity
boundaries.

It is clear that the priority threshold ρ̄ is a key-parameter for driving the system
towards optimal solutions. However, it can be a configurable parameter chosen by the
network provider for guaranteeing different levels of QoS and, in other cases, identifying
emergency situations. It can be also chosen based on different pricing models to foster
external administrative domains to increase the pay-off for ensuring mission critical
communications.

2.1.4 Performance evaluation

We carried out a preliminary simulation campaign to evaluate the compound effect of
an IoT traffic-aware slice by means of an ad-hoc simulator, written in MATLAB R©. In
particular, we simulate a 5G network environment with 50 eNBs covering a 30 km2 area.
In this area, we deploy several IoT gateways collecting data from 50000 different sensors,
including traffic sensors, air quality sensors, crowd control sensors and HD cameras, and
transmitting data by means of 5G network facilities. The IoT deployment is structured
onto |S| = 100 not overlapping areas and, the service request per area might come to
the IoT Broker at regular time interval equal to n = 10 min, with QoS configuration
parameters randomly chosen. All simulation parameters are listed in Table 2.2.

Table 2.2: Simulation parameters

Area 30 km2 Capacity (UL) 75 Mb/s
|S| 100 Capacity (DL) 150 Mb/s

Sim. Duration 1 hour IoT service req. (n) 10 min.
5G eNBs 50 Quality levels |Q| 5

Data Frequencies |W| 6 Granularities |Γ| 4
Service Priorities |P| 5 Priority Threshold ρ̄ 3

We show the impact of implementing a joint IoT traffic brokering and 5G network
slice traffic-aware mechanism compared with the legacy solution, where the 5G network
management takes slicing decisions, independently. We assume that the 5G network
management deals with three different slices, such as Slice 1 characterized by enhanced
Mobile BroadBand (eMBB) traffic, Slice 2 and IoT Massive Slice, asking for 15%, 30%
and 55% of the overall system capacity, respectively. In Fig. 2.5, we show the system
behavior when no joint mechanisms are devised. In Fig. 2.5b, we focus on the IoT
Massive Slice traffic by marking different time windows wherein IoT service requests
vary. After the third service requests set, the IoT traffic dramatically increases and the
IoT Massive Slice limit degrades the quality of service, as some service requests cannot

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 26

2.2. Fog computing for Smart City

500 1000 1500 2000 2500 3000 3500
Time [s]

0

50

100
S

y
s
te

m
 C

a
p

a
c
it
y
 [

%
] Slice 1 (eMBB) IoT Massive Slice Slice 2 (eMBB)

Service Degradation

 Network

Slice Limits

(a) Network Slices Traffic

500 1000 1500 2000 2500 3000 3500
Time [s]

0

50

100

S
y
s
te

m
 C

a
p

a
c
it
y
 [

%
] IoT Massive Slice

Service Request

Time-Window (n)

Service Degradation

(b) IoT Massive Slice Traffic

Figure 2.5: IoT Traffic adaptation without joint mechanisms

500 1000 1500 2000 2500 3000 3500

Time [s]

0

50

100

S
y
s
te

m
 C

a
p
a
c
it
y
 [
%

] Slice 1 (eMBB) IoT Massive Slice Slice 2 (eMBB)

 Network

Slice Limits

(a) Network Slices Traffic

500 1000 1500 2000 2500 3000 3500
Time [s]

0

50

100

S
y
s
te

m
 C

a
p

a
c
it
y
 [

%
]

IoT Massive SliceService Request

Time-Window (n)
Dynamic

Slice Limit

(b) IoT Massive Slice Traffic

Figure 2.6: IoT Network Slice Traffic-aware adaptation

be satisfied. Note that, also Slice 1 experiences QoS degradation after 2800 seconds, as
slice boundaries are fixed and not flexible.

In Fig. 2.6a, we show the same system configuration after running our joint mech-
anism, where we implement the IoT Traffic-aware Slice Optimizer algorithm. In this
example, the 5G network management can dynamically adjust the network slice lim-
its based on the traffic dynamics. In particular, the IoT Massive Slice requires a slice
resources upgrade at time 1200s because of some high-priority service requests. Since
the other network slices are underutilized, the 5G network management can promptly
accommodate this request, as shown in Fig. 2.6b. When Slice 1 requires more resources,
the 5G network management triggers the IoT Broker thereby asking for a traffic reduc-
tion. This automatically leads the system to efficiently utilize available resources while
avoiding service degradation.

2.2 Fog computing for Smart City

Nowadays cities are becoming more and more digitalized and connected as numerous
sensors are widely deployed for various purposes. For example, deployments in smart
cities include CO2 sensors for measuring air pollution, vibration sensors for monitoring
bridges, and cameras for watching out potential crimes. Those connected devices form
a large scale of IoT system with geographically distributed endpoints, which generate
a huge volume of data streams over time. Potentially, the generated data can help us
increase the efficiency of our city management in various domains such as transportation,
safety, and environment (e.g., garbage management). However, to utilize the data effi-
ciently we need to have an elastic IoT platform that allows developers to easily program
various services on top of a shared and geo-distributed smart city IoT infrastructure.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 27

2.2. Fog computing for Smart City

In the past, most of the existing city IoT platforms are built only based on cloud,
such as CityPulse [54] and our previous City Data and Analytics Platform (CiDAP) [55].
However, this is no longer a sustainable and economical model for the next generation
of IoT smart city platforms, given that many city services (e.g., car accident detection)
require ultra-low latency and fast response time. Moreover, bandwidth and storage costs
can be substantially high if we send all sensor data such as video frames to the cloud.
Recently there is a new trend to offload more computation from the cloud and device
layer to the middle layer components which are IoT gateways and edge/core networks,
called fog computing [56]. While fog computing perfectly fits the geo-distributed nature
of smart city infrastructure, it is still challenging for smart city IoT platforms to adapt to
this new computing paradigm. The heterogeneity, openness, and geo-distribution of the
new cloud-edge environment raise much more complexity on the management of data and
processing tasks than the centralized cluster or cloud environments. Therefore, we need
a sufficient and flexible programming model with open interfaces that allow developers
to implement various IoT services on top of the cloud-edge environment without dealing
such complexities.

The current state of art on fog computing, such as Foglets [57], has been mainly
focused on how to optimize task deployment over distributed edges in terms of saving
bandwidth and reducing latency. However, there is not much work that has been done to
explore the programming model for fog computing. The existing studies either just reuse
the programming models from existing frameworks (e.g., Apache Storm and Spark) or
come up with their own programming models with non-standardized interfaces. In this
chapter we argue that both solutions are not suitable for smart city IoT platforms to
adopt fog computing in terms of openness, interoperability, and programmability.

To tackle these problems, we take a standards-based approach and propose a NGSI-
based programming model to enable easy programming of IoT services over cloud and
edges. In this chapter we introduce the overall architecture of our new fog computing
framework, namely FogFlow, and also report its core technologies for supporting the
proposed programming model. Furthermore, we introduce some concrete application
example to showcase how IoT services can be easily realized on top of our NGSI-based
programming model. The main contributions of this chapter are highlighted as follows.

• Standard-based programming model for fog computing: we extend dataflow
programming model with declarative hints based on the widely used standard
NGSI, which leads to two benefits for service developers: 1) fast and easy de-
velopment of fog computing applications, this is because the proposed hints hide
lots of task configuration and deployment complexity from service developers; 2)
good openness and interoperablity for information sharing and data source integra-
tion, this is because NGSI is a standardised open data model and API and it has
been widely adopted by more than 30 cities all over the world.

• Scalable context management: to overcome the limit of centralized context
management, we introduce a distributed context management approach and our
measurement results show that we can achieve much better performance than
existing solutions in terms of throughput, response time, and scalability.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 28

2.2. Fog computing for Smart City

2.2.1 Smart City Use Cases

Use Case 1: Anomaly Detection of Energy Consumption: The first use case
study is for retail stores to detect abnormal energy consumption in real-time. As illus-
trated in Figure 2.7, a retail company has a large number of shops distributed in different
locations. For each shop, a Raspberry Pi device (edge node) monitors the power con-
sumption from all PowerPanels in the shop. Once an abnormal power usage is detected
on the edge, the alarm mechanism in the shop is triggered to inform the shop owner.
Moreover, the detected event is reported to the cloud for information aggregation. The
aggregated information is then presented to the system operator via a dashboard service.
In addition, the system operator can dynamically update the rule for anomaly detection.

retail shops at different locations

Cloud

dashboard
app

Power
Panel1

Power
Panel2

Alarm

anomaly
events

new rules for
anomaly detection

Figure 2.7: Detecting abnormal electricity usage in retail stores.

Use Case 2: Video Surveillance in Stadiums: The second use case is for
providing stadium security with video survelliance and real-time analytics. Figure 2.8
illustrates this use case based on three layers: terminal gateway, IoT gateway, and cloud.
In the lower layer, terminal gateway devices are deployed to process the video streams
captured by cameras. In the upper layer, each stadium has an IoT gateway to perform
further data processing. Terminal gateways and the IoT gateway are connected to the
local area network of the stadium. In the top layer, all IoT gateway devices are connected
to the cloud via the Internet. The following services are expected to be enabled.

• Crowd counting: Aggregation of the number of people extracted from the captured
video streams and the total number of people at each area to show the stadium
crowdedness in real-time.

• Finding lost child: When a child gets lost in a stadium, their parents ask the staff
for help. Based on the picture provided by the parent, video analytics tasks are
launched dynamically on demand at the edge nodes to identify the lost child in

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 29

2.2. Fog computing for Smart City

decomposed as multiple operators. Operators form a directed acyclic graph (DAG) called
topology through the linked inputs and outputs among different operators. Traditionally
operators are defined as functions with certain APIs, but this is no longer a suitable model
to define operators for fog computing due to its bad isolation and limited flexibility and
interoperability. Conversely, FogFlow requires service developers to define operators as
dockerized applications based on NGSI [58] (details to be discussed in Sec. 2.2.3).

Let us introduce the overall system achitecture of FogFlow first with some background
information on the NGSI standard. We then present the detailed design of our NGSI-
based programming model and how such a programming model is supported by scalable
context management and dynamic service orchestration in FogFlow.

Next Generation Service Interface (NGSI)

As an open standard interface from Europe, Open Mobile Alliance (OMA) NGSI [59] is
currently used in industry and academia as well as in large scale research projects such
as FIWARE [60] and Wise-IoT [61]. In 2015 an Open & Agile Smart Cities (OASC)
initiative [62] has been signed by 31 cities from Finland, Denmark, Belgium, Portugal,
Italy, Spain and Brazil, for adopting the NGSI open standard in their smart city plat-
forms. It is strategically important to design our programming model based on NGSI in
order to achieve openness and interoperability in the areas of IoT and smart cities.

IoT

Broker

IoT

Discovery

Producer(s)

Provider(s)

Consumer(s)

Subscriber (s)

data processing task NGSI9
(register)

NGSI9
(discover, query)

NGSI10

NGSI10
(subscriber)

NGSI9

NGSI10
(update)

NGSI10
(notify)

Figure 2.10: Typical NGSI-based interactions and system diagram.

From the technical perspective, NGSI defines both the data model and communi-
cation interface to exchange contextual information between different applications via
context brokers. The NGSI data model characterizes all contextual information as con-
text entities where each entity must have an ID and a type. Entities also optionally have
a set of attributes and metadata related to domains and attributes. Typically metadata
includes the source of information, observation areas, and the location of the IoT device.
The NGSI communication interface defines a lightweight and flexible mean to publish,
query, and subscribe to context entities. NGSI10 and NGSI9 are respectively designed
for managing the data values of context entities and their availability (e.g., discovery
of entities). As opposed to the existing message brokers (e.g., MQTT), NGSI not only
defines a unified data model to express contextual data (both raw sensor data and de-
rived intermediate results) but also provides missing features that are highly demanded
by geo-distributed fog computing. For instance, geoscope-based resource discovery and

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 32

2.2. Fog computing for Smart City

Bluetooth signals). The FogFlow framework operates on these geo-distributed, hier-
archical, and heterogeneous resources, with three logically separated divisions: service
management, data processing, and context management.

The service management division includes task designer, topology master (TM), and
docker image repository, which are typically deployed in the cloud. Task designer pro-
vides the web-based interfaces for the system operators to monitor and manage all de-
ployed IoT services and for the developers to design and submit their specific services.
Docker image repository manages the docker images of all dockerized operators sub-
mitted by the developers. TM is responsible for service orchestration, meaning that it
can translate a service requirement and the processing topology into a concrete task
deployment plan that determines which task to place at which worker.

The data processing division consists of a set of workers (w1, w2, · · · , wm) to perform
data processing tasks assigned by TM. A worker is associated with a computation re-
source in the cloud or on an edge node. Each worker can launch multiple tasks based on
the underlying docker engine and the operator images fetched from the remote docker
image repository. The number of supported tasks is limited by the computation capa-
bility of the compute node. The internal communication between TM and the workers
is handled via a Advanced Message Queuing Protocol (AMQP)-based message bus such
as RabbitMQ to achieve high throughput and low latency.

The context management division includes a set of IoT Brokers, a centralized IoT
Discovery, and a Federated Broker. These components establish the data flow across the
tasks via NGSI and also manage the system contextual data, such as the availability
information of the workers, topologies, tasks, and generated data streams. IoT Discov-
ery handles registration of context entities and discovery of them. This component is
usually deployed in the cloud. IoT Brokers are responsible for caching the latest view of
all entity objects and also serving context updates, queries, and subscriptions. In terms
of deployment, IoT Brokers are distributed on the different nodes in the cloud and on
the edges. They are also connected to the other two divisions (workers, task designer,
TM, external applications) via NGSI. Federated Broker is an extended IoT Broker used
as a bridge to exchange context information with all other Federated Brokers in different
domains. For instance, Federation Broker enables communication from one deployment
in a European smart city (e.g., Domain A: Heidelberg) to another in a Japanese smart
city (e.g., Domain B: Tokyo). These deployments are considered as two different do-
mains. Within the same domain, all IoT Brokers and Federated Broker are connected
to the same IoT Discovery.

NGSI-based Programming Model

In FogFlow, an IoT service is represented by a service topology which consists of mul-
tiple operators. Each operator receives certain types of input streams, performs data
processing, and then publishes the generated results as output streams. The FogFlow
programming model defines the way of how to specify a service topology using declarative
hints and how to implement operators based on NGSI.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 34

2.2. Fog computing for Smart City

Declarative Hints Developers decompose an IoT service into multiple operators and
then define its service topology as a DAG in JSON format to express the data depen-
dencies between different operators. This is similar to the traditional dataflow program-
ming model. On the other hand, the FogFlow programming model provides declarative
hints for developers to guide service orchestration without introducing much complexity.
Currently, it requires developers to specify two types of hints in the service topology:
Granularity and Stream Shuffling.

Granularity hint is associated with each operator in the service topology and rep-
resented by the “groupBy’ property, as shown by a task specification example (written
in YAML language) in Figure 2.12. The granularity hint is defined using the name of
one stream attributes. In FogFlow, every data stream is represented as a unique NGSI
context entity generated and updated by either an endpoint device or a data processing
task. Different types of metadata are created by FogFlow on the fly to describe the
data stream. For instance, metadata includes which device or task is producing the data
stream, the location of the producer, which IoT Broker is providing the stream, and so
on. Regarding the geo-distributed nature of the underlying infrastructure, some common
granularity hints are geo-location related attributes such as “Section”, “District”, “City”,
or “ProducerID”. These granularity hints are later used as an input by TM to decide the
number of task instances to be created and configured for each operator during system
runtime.

Stream Shuffling hint is associated with each type of input stream for an operator
in the service topology, represented by the “shuffling” property. TM uses this hint as
additional information to decide how to assign matched input streams to task instances.
Based on the granularity hint, multiple task instances could be instantiated from the
same operator, but they can be configured with different set of input streams. For
each operator, the type of its input streams determines which type of streams should be
selected to configure its task instances, but its“shuffling”property can further decide how
the selected streams should be assigned to the task instances as their inputs. The value
of the shuffling property can be either “broadcast” or “unicast”. The “broadcast” value
means the selected input streams should be repeatedly assigned to every task instance of
this operator, while the “unicast” value means each of the selected input streams should
be assigned to a specific task instance only once.

name: AnomalyDetector

operator: anomaly

groupBy: shopID

input_streams:

 - type: PowerPanel

 shuffling: unicast

 scoped: true

 - type: Rule

 shuffling: broadcast

 scoped: false

output_streams:

 - type: Anomaly

Figure 2.12: An example of task specification written in YAML.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 35

2.2. Fog computing for Smart City

Figure 2.13 shows a concrete example of how these two types of hints are used by
TM to create and configure data processing tasks for service orchestration. The left side
illustrates a service topology with two simple operators, A and B, which is designed for
Use Case 1 in Sec. 2.2.1. The right side illustrates the execution plan generated by TM.
Operator B is named as “AnomalyDetector” and its detailed specification is listed in
Figure 2.12. The goal of Operator B is to detect the abnomal usage of eletricity for each
shop based on a given rule. Based on this requirement, the granularity of Operator B is
defined by “shopID”, meaning that TM needs to create a dedicated “AnomalyDetector”
task instance for each shop. Operator B has two types of input streams: the anomaly
detection rule and the measurement from power panel. Assume that three power panel
devices are from three different shops S1, S2, and S3. In this case three task instances
(TB0, TB1, TB2) must be created because its operator granularity is based on“shopID”.
Also, each task instance is assigned with the stream from a specific power panel but they
all share the same detection rule as another input. This is because the shuffling property
of the rule input stream is “broadcast” while the shuffling property of the PowerPanel
devices is “unicast”.

A
(Counter)

B
(AnomalyDetector)

groupby

TA0

TB0 TB1 TB2

groupby
shopID

S1

New
rules

Service topology Execution plan

Unicast
(PowerPanel)

Broadcast
(rule)

S2 S3

Figure 2.13: Left: A service topology example with declarative hints, right: the execution plan gener-
ated by TM.

NGSI-based Operators Developers need to implement each operator in a service
topology as a dockerized application. As illustrated in Fig. 2.14, once a worker instan-
tiates a dockerized operator application (a task instance running in a docker container),
the task instance interacts with the FogFlow framework via the following steps.

First, before starting its internal processing logic, the task instance receives a JSON-
based configuration from the worker through environment variables. The initial configu-
ration includes which IoT Broker the task instance should talk to and also the metadata
of its input and output streams. Later on, if there is any configuration change, those
changes can be sent to the task instance via a listening port (input port). In FogFlow, the
important stream metadata required by the task instance include: 1) the entity type and
entity ID of the associated stream that can be used by the task instance to know which
entity to subscribe as inputs and which entity to update as outputs; 2) the way of how
the stream data is provided from the producer to consumers, which can be PUSH-based

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 36

2.2. Fog computing for Smart City

or PULL-based. More specifically, PUSH-based means that the stream entity will be
updated by its context producer actively and context consumers can receive the updates
from IoT Broker via subscriptions, while PULL-based means that the stream entity only
represents the information of the context producer and the actual stream data must
be pulled by the task instance from a service URL, which is part of the stream entity.
For example, a temperature sensor that actively sends temperature observations period-
ically can be represented as a PUSH-based stream entity; a webcam that sends captured
images or video streams on request can be represented as a PULL-based stream entity.

Second, after the task instance is launched and configured, it will start to get its
input streams and process the received data. If the stream is PUSH-based, the task
instance can receive all input stream data as NGSI10 notify via the input port without
sending any subscritpion, because the worker issues NGSI10 subscriptions to the IoT
Broker on behalf of the task; If the stream is PULL-based, e.g., video streams from an
IP camera, the task instance needs to fetch the input stream data from a provided URL
in the stream metadata.

Lastly, once some results are generated from the received stream data, the task
instance publishes or announces them as output streams. If the output stream is PUSH-
based, the task instance sends the generated outputs to the IoT Broker as NGSI10 update
under the specified entity type and ID; if the output stream is PULL-based, the worker
can register the output stream on behalf of the task. With this design we allow the
worker to handle more management complexity in order to dynamically configure and
establish the data flows cross different task instances. Therefore, we can try to reduce
the complexity of the implementation of dockerized operators and reduce the required
effort from developers; on the other hand, we can provide enough flexibility for various
application use cases and also comply with the NGSI standard.

Docker container

Running task instance
(instantiated from
a dockerized operator)

Task configuration

NGSI10
(Notify)

NGSI10
(Update)

Worker

Input
streams

Output
streams

Input
port

Output port

Figure 2.14: Interactions of the task instance with FogFlow.

Scalable Context Management

The context management system is designed to provide a global view for all system
components and running task instances to query, subscribe, and update context entities

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 37

2.2. Fog computing for Smart City

via the unified NGSI. Our NGSI-based context management has the following additional
features. These features are different from the ones provided by traditional pub-sub
message brokers such as MQTT-based Mosquitto or Apache Kafka, but they play an
important role to support FogFlow’s NGSI-based programming model.

• It provides separate interfaces to manage both context data (via NGSI10) and
context availability (via NGSI9). This feature enables flexible and efficient data
management with standardized open APIs.

• It supports not only ID-based and topic-based query and subscription but also
geoscope-based query and subscription. This feature enables FogFlow to efficiently
manage all geo-distributed resources such as workers, tasks, and generated streams.

• It allows a third-party to issue subscriptions on behalf of the subscribers. This fea-
ture provides the chance to achieve the minimized complexity within the operators
and the maximized flexibility of the operators.

Context availability represents the outline of context data. Usually context avail-
ability changes less frequently than context data over time. For example, the following
availability information is used to register context entities: context type, attribute list,
and domain metadata (e.g., provider information). The FogFlow programming model
benefits from these separated interfaces because of two reasons. First, FogFlow can au-
tomatically manage context availability information on behalf of tasks so that we reduce
the complexity of operator implementation for developers. Second, context availabil-
ity and context data updates are forwarded to task instances via separate channels;
therefore, we do not have to feed the unchanged context availability information to the
tasks repeatedly. This can significantly reduce the bandwidth consumption of cross-task
communication.

In FogFlow, whenever a service topology is triggered, a large number of geo-distributed
task instances are created, configured, and instantiated on the fly in a very short time.
This introduces two challenges to the context management system: 1) it must be fast
enough to discover available resources in a specified scope; 2) it must provide high
throughput to forward context data from one task to another. In addition, we assume
that data processing tasks can only be instantiated from a service topology within a sin-
gle FogFlow-enabled smart city IoT platform. However, they should also be able to share
and reuse context data from other smart city IoT platforms as long as these platforms
are compatible with NGSI. In terms of terminology, each smart city IoT platform is
represented by a domain and the FogFlow framework can be duplicated to realize other
smart city platforms for different domains. Different domains can be different cities or
business domains such as transportation and e-health in the same city.

Currently, the Orion Context Broker developed by Telefonica [64] is the most popular
message broker supporting NGSI; however, it is not scalable due to the lack of distributed
solutions and federation support. To achieve a scalable context management system, we
apply the following two approaches.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 38

2.2. Fog computing for Smart City

Scaling light-weight IoT Broker up with shared IoT Discovery: As illustrated in
Fig. 2.11, within each smart city platform domain a large number of IoT Brokers work
together in parallel with a shared IoT Discovery. The centralized IoT Discovery pro-
vides a global view of context availability of context data and provides NGSI9 interfaces
for registration, discovery, and subscription of context availability. Each IoT Broker
manages a portion of the context data and registers data to the shared IoT Discovery.
However, all IoT Brokers can equally provide any requested context entity via NGSI10
since they can find out which IoT Broker provides the entity through the shared IoT
Discovery and then fetch the entity from that remote IoT Broker.

Connecting different domains via Federated Broker: In each domain there is one
Federated Broker responsible for announcing what the current domain provides and
fetching any context data from the other domains via NGSI10. Within the domain,
Federated Broker informs IoT Discovery that it can provide any context data out of the
current domain. Federated Broker needs to coordinate with the other Federated Brokers
in different domains. The coordination can be done using different approaches, such
as table-based, tree-based, or mesh-based. In the table-based approach, all Federated
Brokers can know which Federated Broker is responsible for which domain via a shared
and consistent table that is maintained and updated by a bootstrap service. In the
tree-based (hierarchical) approach, a hierarchical relationship between different domains
is configured manually or maintained automatically by a root node. In the mesh-based
approach, each Federated Broker maintains a routing table based on its partial and local
view and relies on a next hop from the routing table to locate its targeted domain. In
practice, which approach to take is up to the actual scale of domains. Due to a limited
number of domains in our current setup, FogFlow takes the table-based approach and
looks up the Federated Broker for a target domain directly from the shared table.

Dynamic Service Orchestration

Once developers submit a specified service topology and the implemented operator docker
images, the service data processing logic can be triggered on demand by a high level
processing requirement. The processing requirement is sent (as NGSI10 update) to the
submitted service topology entity. It is issued either by the system operator via Task
Designer or by a subscriber via an external application. The following three inputs are
necessary for TM to carry out service orchestration.

• Expected Output represents the output stream type expected by external sub-
scribers. Based on this input parameter, TM decides which part of service topology
should be triggered. This allows FogFlow to launch only part of the data processing
logic defined in the service topology.

• Scope is a defined geoscope for the area where input streams should be selected.
This allows FogFlow to carry out the selected data processing logic for the selected
area such as a specific city or a polygon area.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 39

2.2. Fog computing for Smart City

• Scheduler decides which type of scheduling method should be chosen by TM for
task assignment. Different task assignment methods lead to different service level
agreements (SLAs) because they aim for different optimization objectives. For
instance, we provide two methods in FogFlow: one for optimizing the latency of
producing output results and the other for optimizing the internal data traffic
across tasks and workers.

Topology
Lookup

Task
Generation

Task
Deployment

Processing
Topology

Execution
Plan

Deployment
Plan

Processing
Requirement

Data
Streams

Workers

Service
Topology

Expected Output

Scope

Scheduler

Availability

& metadata

Availability
& metadata

Figure 2.15: Major steps of service orchestration.

For a given processing requirement, TM performs the following steps (illustrated in
Fig. 2.15) to dynamically orchestrate tasks over cloud and edges.

• Topology Lookup: Iterating over the requested service topology to find out the
processing tree in order to produce the expected output. This extracted processing
tree represents the requested processing topology which is further used for task
generation.

• Task Generation: First querying IoT Discovery to discover all available input
streams and then deriving an execution plan based on this discovery and the declar-
ative hints in the service topology. The execution plan includes all generated tasks
that are properly configured with right input and output streams and also the
parameters for the workers to instantiate the tasks.

• Task Deployment: Performing the specified scheduling method to assign the
generated tasks to geo-distributed workers according to their available computation
capabilities. The derived assignment result represents the deployment plan. To
carry out the deployment plan, TM sends each task to the task’s assigned worker
and then monitors the status of the task. Each worker receives its assigned tasks
and then instantiates them in docker containers. Meanwhile, worker communicates
with the nearby IoT Broker to assist the launched task instances for establishing
their input and output streams.

Since the focus of this chapter is on the NGSI-based programming model and its
supporting system framework, we skip the algorithms for task generation and task as-
signment. More details can be found in our previous GeeLytics platform [65] study.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 40

2.2. Fog computing for Smart City

2.2.4 Use Case Validation

In this section, we discuss our implementation of an example application which realizes
the first use case (described in Sec. 2.2.1): anomaly detection of energy consumption
in retail stores. The service topology (illustrated in Fig. 2.17) is defined to meet the
requirements of the use case. Two data processing operators are defined as follows:

• Anomaly Detector: This operator is to detect anomaly events based on the
collected data from power panels in a retail store. It has two types of inputs:
(1) detection rules which are provided and updated by the operator; (2) sen-
sor data from power panel. The detection rules input stream type is associated
with “broadcast”, meaning that the rules are needed by all task instances of this
operator. The granularity of this operator is based on “shopID”, meaning that a
dedicated task instance will be created and configured for each shop.

• Counter: This operator is to count the total number of anomaly events for all
shops in each city. Therefore, its task granularity is by “city”. Its input stream
type is the output stream type of the previous operator (Anomaly Detector).

There are two types of result consumers: (1) a dashboard service in the cloud, which
subscribes to the final aggregation results generated by the counter operator for the global
scope; (2) the alarm in each shop, which subscribes to the anomaly events generated by
the Anomaly Detector task on the local edge node in the retail store.

Counter

Anomaly

Detector

type: powerpanel

type: anomaly

type: counter

New rules
Power panel

groupby

groupby shopID

subscribe from dashboard service

Subscribe from alarms

Figure 2.17: Illustration of how intermediate results are shared at various levels of granularity across
application topologies.

The second and third use cases can be realized in a similar way by defining a pro-
cessing topology based on their specific requirements.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 42

2.2. Fog computing for Smart City

2.2.5 Performance Evaluation

This section includes our experimental evaluation of NGSI-based context management
systems of the FogFlow framework. Our analyses include the efficiency of context avail-
ability discoveries and context transfers in the smart city scale. Moreover, we analyze the
scalability of FogFlow using multiple IoT Brokers. Our metrics are throughput (number
of messages per second) and response time/message propagation latency. The results
show the performance of the IoT Brokers (our FogFlow-Broker and Orion-Broker) as
well as the IoT Discoveries (our FogFlow-Discovery and Orion-Discovery).

The query for discovery and update requests are generated using Apache JMeter
performance testing tool. We analyze 3 types of queries for context discovery: ID-
based, topic-based, and geoscope-based. In ID-based queries, a match (discovery) occurs
when the queried entity ID is already registered as available. In topic-based (pattern-
based) queries, a match happens when there is a registered entity ID of the similar
pattern defined by a regex (e.g., searching pattern “Room.*” for the registered entity
ID “Room12”). Geoscope-based queries match when the entity is registered with the
location that is inside the defined geographical area (defined by latitude/longitude and
radius values). IoT Brokers mainly forward updates from the context producers to the
context consumers. We analyze the throughput and propagation latency of updates
under various cases.

Considering the shared discovery in the FogFlow architecture, we conduct lab ex-
periments for IoT Discovery using single server instance, which has 12 CPUs, 128GB
memory, and 256GB disk storage. For IoT Brokers, we conduct experiments on AWS
cloud using multiple server instances for context updates. Since IoT Brokers in FogFlow
can be widely deployed on edge nodes such as IoT Gateways, we use only micro instances
in our tests, where each micro instance has 1 CPU and 1GB memory. We consider var-
ious number of threads (clients) in a smart city (1, 10, 100, 200 entities) accessing the
context management system at the same time. The threads may represent devices such
as sensor nodes in a smart city or applications accessing the system.

32
133

20
140

31

1943

18

1426

26

2182

16

1577

30

1965

18

1715

0

500

1000

1500

2000

2500

3000

Orion-Discovery

(ID-based)

FogFlow-Discovery

(ID-based)

Orion-Discovery

 (topic-based)

FogFlow-Discovery

(topic-based)

T
h

ro
u

g
h

p
u

t
(#

 o
f

d
is

co
v

e
ry

/s
)

1 thread 10 threads 100 threads 200 threads

Figure 2.18: FogFlow-Discovery and Orion-Discovery throughputs for a matched ID- and topic-based
query among 10000 entities.

Let us first start with the ID- and topic-based query performance for discovery.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 43

2.2. Fog computing for Smart City

Figure 2.18 shows the average throughput of query for FogFlow-Discovery and Orion-
Discovery. The query always returns 1 match out of 10000 registered entities. For
1 client, Orion-Discovery has throughput of less than 50 discoveries per second, while
FogFlow-Discovery serves more than 100 discoveries. With the increased number of
threads, throughput of FogFlow-Discovery significantly increases to more than 1900 in
ID-based and more than 1400 for topic-based queries. On the other hand, when the
number of threads increase, Orion-Discovery has even worse performance, showing that
using Orion-Discovery can cause a bottleneck in certain scenarios where multiple IoT
Brokers query at the same time.

31 50 325 545

3671

5747 6286

10210

0

2000

4000

6000

8000

10000

12000

14000

Orion-Discovery

(ID-based)

Orion-Discovery

 (topic-based)

R
e

sp
o

n
se

 t
im

e
 (

m
s)

1 thread 10 threads 100 threads 200 threads

Figure 2.19: Orion-Discovery response times for ID- and topic-based queries.

7 6 5 6

45

63 101
116

0

50

100

150

200

250

FogFlow-Discovery

(ID-based)

FogFlow-Discovery

(topic-based)

R
e

sp
o

n
se

 t
im

e
 (

m
s)

1 thread 10 threads 100 threads 200 threads

Figure 2.20: FogFlow-Discovery response times for ID- and topic-based queries.

The average response times of Orion-Discovery are shown Fig. 2.19. We observe that
Orion-Discovery returns fast responses in the case of 1 thread and 10 threads. However,
the response times dramatically increase in the case of 100 or 200 threads. In the case
of 200 threads in topic-based queries, the average response time is more than 10s. On
the other hand, as can be seen in Fig. 2.20, the response times of FogFlow-Discovery are
shorter in all cases. Moreover, for more than 100 threads, FogFlow-Discovery still pro-
vides high performance with an average response time around 100ms per query. Overall,
considering a smart city with multiple IoT Brokers querying for ID- and topic-based
discoveries, we find FogFlow-Discovery clearly a more reliable component to handle such

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 44

2.2. Fog computing for Smart City

loads. While Orion-Discovery provides the same functionalities, its performance is not
sufficient for such scenarios.

Let us now discuss the geoscope-based query performances of the discovery com-
ponents. We compare the response times for different numbers of matched entities in
Fig. 2.20 among 10000 registered entities using 200 threads. For 0-match case where
IoT Brokers query for an entity which is located outside of any registered areas, Orion-
Discovery has significantly better performance compared to FogFlow-Discovery. Same
performance difference exists for 1-match case. On the other hand, this performance
gap diminishes with the increased number of matches where the volume of transferred
data increases. FogFlow-Discovery produces slightly higher throughput for more than
100 matches. Furthermore, both components provide a reliable service for queries up
to 1000 matches. Figure 2.22 shows the response times of the geoscope-based queries.
Both discovery components achieve short response times in most cases. Only exception
is seen in the case of 1000 matches, which produces a certain load in the network. In
that case, Orion-Discovery performs slightly better (≈800ms) than FogFlow-Discovery
(≈1000ms).

0

1.000

2.000

3.000

4.000

0 1 10 100 200 1000

th
ro

u
g

h
p

u
t

(#
 o

f
d

is
co

v
e

ry
 /

s)

Number of matches

Orion-Discovery

(geoscope-based)

FogFlow-Discovery

(geoscope-based)

Figure 2.21: FogFlow-Discovery and Orion-Discovery throughputs in geoscope-based queries.

0

200

400

600

800

1000

1200

0 1 10 100 200 1000

re
sp

o
n

se
 t

im
e

 (
m

s)

Number of matches

Orion-Discovery

(geoscope-based)

FogFlow-Discovery

(geoscope-based)

Figure 2.22: FogFlow-Discovery and Orion-Discovery response times in geoscope-based queries.

Orion-Discovery is a built-in feature of Orion Context Broker while in FogFlow-

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 45

2.2. Fog computing for Smart City

Discovery is a stand-alone component separated from FogFlow-Brokers. With this de-
sign, FogFlow is able to scale up brokers to handle data transfer between different tasks
in parallel. We now look at the performance of FogFlow-Brokers. Figure 2.23 shows the
throughput of one FogFlow-Broker as the number of subscribers increases. When there
is no subscriber, FogFlow-Broker’s throughput reaches 6500 updates per second while
Orion-Broker can only achieve 2200 updates per second. We observe that FogFlow-
Broker performs much better than Orion-Broker in terms of update throughput. This is
mainly because FogFlow-Broker keeps the latest updates and all subscriptions in mem-
ory while Orion-Broker has to save them into the database (MongoDB). Furthermore,
we find that the update throughput decreases as the number of subscribers increases as
FogFlow-Broker becomes busy with forwarding received updates to all subscribers.

6527

3920

2148

1374

711

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 4 8

th
ro

u
g

h
p

u
t

o
f

u
p

d
a

te
s

(n
/s

)

number of subscribers

Figure 2.23: FogFlow-Broker and Orion-Broker throughput of updates between publishers and sub-
scribers.

We also test the propagation latency of updates from publishers to subscribers when
FogFlow-Brokers are not overloaded. To calculate the latency, we run a program to
simulate both the publisher and the subscriber on the same cloud instance. The latency is
defined as the time difference between when a update message is sent out by the publisher
and when the update is received by the subscriber. Table 2.3 lists the propagation latency
of updates in three different situations: 1) both the publisher and the subscriber contact
with the same broker, 2) they communicate with two different brokers located at the
same data center, 3) they communicate with two different brokers located at two different
data centers.

The results shows that the propagation latency via the same broker is very low
(less than 1 millisecond on average). On the other hand, if the data flow between pub-
lishers and subscribers is established via two different brokers, the propagation latency
increases. In this case the latency depends on where these two brokers are located. If
they are located at the same data center, the propagation latency can still be less than 50
millisecond on average; however, it becomes unpredictable since we do not know whether
our cloud instances are at the same rack. If the two brokers are located at different data
centers, the average propagation latency significantly increases (≈500ms). This result
indicates that we need to carefully select and configure a proper broker for each running
task in order to minimize data propagation latency for any time critical services.

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 46

2.2. Fog computing for Smart City

Table 2.3: Propagation latency of update

Propagation latency
Different test cases Avg. (ms) Std. (σ)

Same broker 0.7 0.7
Different broker, same data center <50 <50

Different broker, different data center 430.8 194.2

We do further experiments for the scalability of FogFlow-Brokers when they work on
different topics in parallel, but still share the same discovery component. As can be seen
in Fig. 2.24, the aggregated throughput of updates increases linearly with the increased
number of brokers. Note that the number of brokers increase two times for each result.
This result shows that FogFlow-Brokers can scale up very well without overloading the
shared discovery component. This is due to the fact that the coordination with FogFlow-
Discovery is only needed for subscriptions and initial updates to decide which stream
should be provided to which subscribers. After that, the workload triggered by frequent
value updates can be easily handled by brokers in parallel. Hence, by separating broker
and discovery components, FogFlow is able to achieve scalability of forwarding context
data between publishers and subscribers.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16

a
g

g
re

ga
te

d
 t

h
ro

u
g

h
p

u
t

(n
/s

)

Number of brokers

Figure 2.24: Aggregated throughput of updates for different number of parallel brokers.

2.2.6 Related Work

There are many studies related to the IoT smart city platforms. However, most of the
efforts focus only on the cloud environment. For example, as an open software plat-
form, FIWARE is helping service providers to quickly and cost-effectively build their
cloud-based applications and services by providing various open-source generic enablers
(GEs). Nevertheless, none of the GEs offered by FIWARE enable flexible fog computing.
In the FIWARE community, Orion Context Broker has been extensively used to enable
the interoperability between different GEs, whereas Orion provides centralized context
management. This is not a scalable solution considering large scale scenarios; in par-
ticular, when we consider exchanging real-time context information at edges or across
various domains.

Most of the existing programming models focus on supporting batch and real-time

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 47

2.3. Research Directions

data processing efficiently in a cluster or cloud environment. For instance, MapReduce
has become the de facto standard for batch data processing in Apache Hadoop frame-
work. Apache Spark is a distributed batch processing framework, while it also supports
stream processing based on micro-batching. Other frameworks involve Apache Storm
which supports event-based stream processing and Apache Flink which enables both
batch and stream processing with its unified APIs. Recently, due to the requirement of
having a unified programming model for both batch processing and stream processing,
the generic dataflow programming model is mostly preferred over MapReduce to support
cloud-based data processing in many new frameworks such as Apache Beam, MillWheel,
and Google Cloud Dataflow. All of these frameworks are only tailored to the cloud en-
vironment and they are unsuitable for fog computing due to their limited considerations
on the heterogeneity, geo-distribution, openness, and interoperability requirements of
future fog computing infrastructures.

In 2015 Cisco formed the OpenFog Consortium [66] together with partners from in-
dustry and academia, trying to accelerate the adoption of open fog computing in various
domains. OpenFog Consortium emphasize the importance of openness and interoper-
ability of fog computing infrastructure in their blueprint architecture document, while
they do not provide any concrete proposal to achieve these two goals. The existing stud-
ies on fog computing mainly focus on optimization of resource and task allocations. For
instance, Foglets [57] and MCEP [67] support live task migrations with their own APIs
in a cloud-edge environment for location-aware applications. Mobilefog [68] provides a
programming model for fog computing applications based on its own APIs. FogHorn is
a commercial edge computing infrastructure with the focus on complex event processing
at edge devices. Different from those existing fog computing frameworks, FogFlow is not
designed to invent a completely new programming model for fog computing with private
APIs. FogFlow, on the other hand, extends cloud-based dataflow programming model
with standard-based APIs and make it suitable for the cloud-edge environment. In this
way, our programming model can be quickly adopted by cloud service providers to build
their fog computing services without much learning effort.

2.3 Research Directions

In this chapter we have analyzed a novel system architecture in charge of efficiently
creating and efficiently adjusting self-contained and isolated network slices in massive
IoT scenarios building on IoT Brokers features. With the proposed solution, network
operators and IoT tenants can interact to trade-off resources among slices to avoid service
degradation. The novelty relies on a new system architecture where 5G Network Slice
Brokers and IoT Brokers are interconnected. The results show that a joint IoT Broker-
Network Slice Broker Orchestration might provide benefits to all parties. By means of
simulations, we have shown that the IoT Slice-aware Traffic Optimizer algorithm can
efficiently drive the system towards fully-utilization states while fulfilling the required
SLAs.

Further in this chapter, we propose the FogFlow framework which provides a standards-

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 48

2.3. Research Directions

based programming model for IoT services for smart cities that run over cloud and edges.
The FogFlow framework enables easy programming of elastic IoT services and it supports
standard interfaces for contextual data transfers across services. We showcase three use
cases and implement an example application for smart cities. Furthermore, we analyze
the performance of context management using NGSI interfaces to see feasibility of the
standard-based approach in the smart city scale.

The preliminary study presented in this chapter gives us directions to open challenges
that we will address throughout the remainder of this work. With the developments of
supporting technologies on 5G and Fog/Edge computing and the speedily connection of
IoT devices, it is necessary to frame a visionary scenario of an hyperconnected Internet-
of-Things to be expected in the next 10 years. This will give the scoping context for
several technical research problems such as:

• standardization and open source,

• federation of decentralized (fog and cloud) IoT analytics platform,

• data usage control across federation of IoT analytics platforms,

• creation of an IoT data analytics services ecosystem

CHAPTER 2. Background on IoT: 5G and Fog/Edge Computing 49

Chapter 3

Standardization and Open Source

The Internet of Things (IoT) ecosystem is getting its momentum in urban environments
where several devices, originally deployed for a specific purpose and belonging to different
technologies, are now linked together to harmonize heterogeneous and holistic scenar-
ios. Early deployments have proven their value, but novel use cases such as automotive,
public safety, e-health are being considered in the context of Smart Cities. Such use
cases demand for new and stringent requirements that cannot be supported by current
solutions both in terms of latency and computing power. In order to meet these require-
ments in a cost-efficient manner the Multi-access Edge Computing (MEC) paradigm is
considered here as currently being defined by the ETSI MEC Industry Specification
Group. In this chapter, we propose an ETSI MEC-compliant architectural solution that
allows for seamlessly integrating existing and future IoT platforms. In addition, an IoT
gateway middleware is presented as a novel component that enables running low-latency
and computationally intensive applications on generalized MEC-based systems.

Further, this chapter introduces the capabilities of the open source FIWARE frame-
work, based on the NGSI standard, that is transitioning from a research to a commercial
level. We base our exposition on the analysis of three real-world use cases (global IoT
market, analytics in smart cities, and IoT augmented autonomous driving) and their
requirements that are addressed with the usage of FIWARE. We highlight the lessons
learnt during the design, implementation and deployment phases for each of the use
cases and their critical issues. We also perform a functional evaluation of the framework
compared with both open source and commercial platforms. We demonstrate that the
framework is going to become commercially ready but still maintaining its openness to
innovation, by, for instance, introducing two aspects to be addressed in the FIWARE
agenda: semantics and privacy.

3.1 Evolving Multi-Access Edge Computing (MEC) to Sup-
port Enhanced IoT Deployments

The penetration of Internet of Things (IoT) deployments is advancing at an increasing
pace as the technology matures and the cost of the required equipment benefits from

50

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

economies of scale. Early deployments focused on basic monitoring and sensing applica-
tions, e.g., in smart cities. Based on the proven value of these solutions more advanced
use cases are being considered, e.g., in the automotive, public safety, and e-health fields
(see Fig. 3.1) with more stringent requirements in terms of latency, computing power
and coupling to the network infrastructure.

Nowadays, the raw data produced by distributed networks of sensors is usually cen-
trally processed and analyzed in data centers to derive added value information and,
eventually, trigger the corresponding actions. In these deployments, the so-called IoT
Gateway is a key entity acting as a mediator between field sensors and cloud data cen-
ters. IoT gateways act as a bridge for narrow-band communication protocols of (typi-
cally) energy-constrained networks, e.g., Bluetooth and ZigBee, and broadband (wireless
and wired) systems, e.g., optical fibers or LTE, used as transport channel toward cloud
facilities. But, they offer very limited processing capabilities for cost reasons given the
large number of gateways required in real deployments.

In order to meet both the latency and/or computing power requirements of the up-
coming advanced IoT-based use cases as well as to leverage the upgrades in mobile
networking, in this chapter we consider Multi-access Edge Computing (MEC) as the
technology able to boost IoT to more sophisticated deployments. MEC is envisioned as
a key technology to transition to the fifth generation (5G) mobile networks. The Euro-
pean Telecommunications Standards Institute (ETSI) has chartered the MEC Industry
Specification Group1 (ISG) in order to define a multi-vendor edge environment toward
which IT and Telco stakeholders can converge.

MEC allows to dynamically install the applications of IoT services on top of cloud
facilities at the edge of the network, thus with low communication latency. This way,
IoT gateway functions like data pre-processing and things management can be lifted to
the MEC platform, allowing to install cheaper hardware with simpler functionalities.
Moreover, MEC resources can be efficiently shared among different IoT networks (pro-
viding isolation guarantees) leading to unexplored business opportunities based on the
novel concept of Network Slicing [2].

In the light of the above considerations, this chapter brings the following contribu-
tions:

• Detailed review of a state-of-the-art solution for a smart city deployment, indicating
its limitations and technical challenges when addressing advanced use cases.

• A taxonomy of future IoT use cases for next generation networks along with the
corresponding derived requirements.

• A proposal for an ETSI-compliant MEC architectural solution to facilitate the
integration of IoT networks and service deployments.

• An IoT gateway middleware enabling high-computational applications with low-
latency requirements running on generalized MEC-based systems.

1http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing (Accessed the
15th of December 2020)

CHAPTER 3. Standardization and Open Source 51

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

Figure 3.2: Location of the IoT elements in the SmartSantander project.

deliver augmented reality services, 2500 RFID tags have been spread among the tourist
attractions of the city.

The IoT network is built as a 3-tier architecture, composed of i) wireless sensors, ii)
repeaters and iii) IoT gateways, as depicted in Fig. 3.2. The first two tiers communicate
with each other via 802.15.4 interfaces whereas the third tier forwards the data coming
from the low-rate and limited-power interfaces to the computational servers located
within the city premises, by means of Wi-Fi, GPRS/UMTS or wired interfaces.

An interesting approach to create a big data analytic platform able to gather all
data generated by the sensors of the SmartSantander deployment is represented by
CiDAP [55], which requires computational features in cloud premises to expose collected
information to external applications. However, the same authors point out that most of
the sensor data are processed and analyzed in more than 60 seconds, making real-time
applications (e.g., dynamic route calculation for ambulance based on real-time traffic
conditions) unsuitable for this environment. Therefore, such applications are allowed to
retrieve data directly from the IoT gateways requiring intelligence (and additional power)
on such devices. Nonetheless, this approach does not satisfy low-latency requirements,
mainly due to the absence of cross-layer optimization between transport and processing
facilities typical of today’s legacy solutions.

SmartSantander is an attempt, together with many others in Europe and in the
rest of the world, to grow smart city capabilities and enable digital transformation.
Nevertheless, smart cities are continuously evolving, aiming at incorporating future-
looking use cases as those showcased in the next paragraphs.

CHAPTER 3. Standardization and Open Source 53

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

Table 3.1: SmartSantander deployment summary.

Node Type Amount of Nodes Sensors Radio I/F

Gateway
General Purpose 26 N/A IEEE 802.15.4,

IEEE 802.11,
Digimesh, GPRS/UMTS

Irrigation 3 N/A
Traffic 2 N/A

Repeater

Temperature 74 Temperature, Acceleration
IEEE 802.15.4,

Digimesh
Light 553 Light, Temperature, Acceleration
Noise 58 Noise, Acceleration
Gases 13 Temperature, CO, Acceleration
Traffic 9 N/A

IEEE 802.15.4Weather 3
Temperature, Relative Humidity, Soil Moisture,

Solar Radiation, Rainfall, Windspeed,
Atmospheric Pressure, Acceleration

Irrigation 23
Pluviometer and Anemometer sensing temperature,
relative humidity, soil moisture, soil temperature,

Water Flow 2 Water Flow, Acceleration
Agriculture 19 Temperature, Relative Humidity, Acceleration

Parking Sensors and Tags 723
Ferromagnetic sensors buried under the
asphalt for occupancy and authorization

Proprietary

Traffic Sensor 59
Road Occupancy,

Vehicle Counting, Vehicle Speed Monitoring
IEEE 802.15.4

Mobile Node
Bus 95 CO, Particles, NO2, Ozone, Temperature,

Relative Humidity, Speed, Odometer, Location

IEEE 802.15.4,
IEEE 802.11, GPRS

Car 80 GPRS

Augmented Reality Tag 2500 Presence (+ metadata) NFC

Participatory Sensing Smartphone 6500 Multiple IEEE 802.11,
GPRS/UMTSAugmented Reality Smartphone ∼14000 Presence (+ metadata)

Total:

31 Gateways
1516 Fixed Nodes
175 Mobile Nodes
2500 Tags

3029 Fixed Sensors
1750+ Mobile Sensors
20000+ Smartphone Sensors

A glimpse on future evolution of smart city use cases

The impelling need of high processing capabilities on the edge premises is supported
by a number of advanced IoT use cases, which are envisioned to underpin future smart
cities [70]. In particular, we explore i) autonomous (and remote) driving and advanced
traffic monitoring, ii) public safety and assistance of large crowds, iii) industrial au-
tomation scenarios, shedding the light on feasibility aspects and future requirements.

Augmented context awareness for autonomous driving and road safety A
huge number of sensor networks are already deployed along pedestrian and vehicular
roads, including monitoring cameras, traffic and visibility sensors. These systems are
usually single-purpose platforms deployed in different time periods and belonging to
few verticals. Due to different business orientations and vendor-specific features, every
platform represents an independent environment that hardly combines with the others
to build a single and homogeneous solution. Unfortunately, this is a recurrent obstacle
in the smart city market because to address novel and advanced use-cases measurements
from sensors must be treated seamlessly together with information coming from other
platforms in the same context, thus demanding for additional levels of interoperability
that cannot be reached by current solutions. Two applications of this data melting-pot
are augmenting the context-awareness of autonomous driving systems and enhancing
emergency assistance for manned driven vehicles.

A real deployment of such applications would require external sensors with a holistic

CHAPTER 3. Standardization and Open Source 54

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

view of the environment to achieve state awareness and perform traffic balancing and
routing optimization, a joint combination of local and remote video analysis for identi-
fying unexpected obstacles (e.g., pedestrians or animals crossing the road), sensor fusion
algorithms for inferring a myriad of diverse situations in a complex scenario like the ur-
ban environment, together with a reliable alerting system able to reach the driver even
in unfavorable conditions.

Another use-case, with even more challenging requirements, is the introduction of
automated driving solutions on highways. Once again, this kind of solution must be able
to collect and analyze data coming from heterogeneous sources, starting from global
traffic video streams and ending with the sensor co-located with the vehicles.

An example of piloting those kind of scenarios in the real world is the European
project AUTOPILOT 3 that aims to enhance the safety of automated driving with the
means of surrounding smart objects.

Obtaining real-time information about the overall context state is crucial to handle
automated vehicles moving along with human driven vehicles and other vulnerable road
users such as cyclists and pedestrians. Automated vehicles are requested to identify and
possibly predict complex situations and quickly react without any human input. This
would require high computation resources but, at the same time, below 10ms communi-
cation latency [71] in order to timely react to the detection of the issue and deliver the
corresponding alarm. Matching both requirements in nowadays systems is tough given
the limited computational power of programmable gateways that necessarily delegate
heavy processing tasks to remote data centers, further increasing the experienced traffic
delay.

Public safety in multi-domain smart cities Typical applications of IoT in smart
cities are related to public safety. Piloting projects, such as MONICA4, aim to launch a
series of security applications during big public events. An example is the usage of digital
signage (e.g., advertisement display or projectors) to steer crowds in case of emergency
situations like fires or flash floods. Computing expensive sensors fusion algorithms would
be used to identify the exact location of the danger and infer its future development. At
the same time, estimating the crowd distribution and its mobility behavior is crucial in
order to derive an optimal rescue strategy considering both location information gathered
from personal devices and global monitoring systems. Finally, the computation output
needs to promptly arrive at the distributed network of actuators in order to orchestrate
the displays and steer the crowd to safe places.

Another application is the support to security services during big events to handle
potential threats. Also in this case, the computation and latency demands are unlikely
to be met when the raw data traffic is characterized by very localized and unpredictable
traffic peaks, like in mission critical situations or occasional public events.

Many public entities support the open data concept, which consists of exposing sensor
data to anyone who wants to leverage them for smart applications as agreed by more

3http://autopilot-project.eu/ (Accessed on the 19th of May 2019).
4http://www.monica-project.eu/ (Accessed on the 15th of December 2020)

CHAPTER 3. Standardization and Open Source 55

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

than hundred cities worldwide in the Open&Agile Smart Cities initiative (OASC).5 While
this would help to raise a positive IoT ecosystem, the information collected from sensors
networks could be very sensitive and can not be shared openly because it might endanger
citizens’ willingness to use smart city services [72] or even break government regulations6.
On the one side, the setup of IoT networks involves complex bureaucracy which forces
specific data typologies to be stored in trusted physical locations (e.g., locally in the
municipality premises), rather than on remote uncontrolled data centers. On the other
side, a fully distributed approach based on powerful devices deployed in the urban context
locally running applications opens new safety issues. For example, in facial recognition
applications, software and complementary datasets, e.g., target databases, are often
protected by secret. Running this kind of applications directly on top of cameras which
might be directly exposed to vandalism attacks may not be a good solution.

System integration for large scale industrial automation Industrial IoT (IIoT)
and the related term“Industry 4.0”refer to the automation of modern factories operating
a large number of connected smart resources like robots and sensors. The focus of IIoT
is on the exchange and real-time control of mission critical information: in fields like
energy, oil and gas, health care, reliability and accuracy are not optional. Machines
must monitor physical processes and react often through decentralised and autonomous
decisions.

Factory operators have already started to use analytics and machine-learning algo-
rithms to predict consumption of raw materials and optimize their process control and
supply chains in real time. In order to achieve proactive maintenance, many industrial
settings seek technologies that enable real-time monitoring, anomaly detection and alerts,
failure prediction, and predictive servicing of critical equipment. In an IIoT system a
delayed response, or even a network interruption, causes data loss leading to unsynchro-
nised, un-optimised processes and loss of money. With a high volume of sensitive data
to be processed and analysed in real-time, tactical decisions must be made locally where
they matter and data security and reliability emerge as keystones of a robust solution.

While a self-contained IIoT may be easily designed and tailored for a single, iso-
lated factory, meeting all its specific requirements, the same cannot be said in larger
industrial environments where multiple IIoT systems with different requirements must
be interconnected and orchestrated. A harbour is an example of such a heterogeneous
ecosystem:

• multiple tasks must be performed and synchronized over a geographically wide
area: ship mooring, containers management, control tower operations, freight
transport logistic, etc.

• each task needs specific sensors and requirements, which are often conflicting: pre-
cision and reliability for detecting and moving containers, bandwidth and compu-

5OASC background, http://oascities.org/wp-content/uploads/2016/02/Open-and-Agile-Smart-
Cities-Background-Document-3rd-Wave.pdf (Accessed on the 15th of December 2020)

6EC, ”Data Protection in EU”, https://ec.europa.eu/info/law/law-topic/data-protection en, (Ac-
cessed on the 15th of December 2020)

CHAPTER 3. Standardization and Open Source 56

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

In these regards, fog computing enables data processing and application logic to run
at fog nodes scattered in the network, including end devices, edge and cloud resources.
Many solution providers have gathered in the OpenFog Consortium 8 to define an open
architecture for fog computing [74]. OpenFog is not meant to be a standard developing
organization, but still its contribution is relevant to understand use cases and to foster
their implementation. The airport scenario in [74] is an interesting example, which,
similarly to what previously introduced about seaports, shows how interconnected het-
erogeneous systems represent an increasing trend in the IIoT community.

Cloud computing is essential to overcome the power and form factor limitation of IoT
devices, by offloading data analysis and processing tasks to remote application servers.
By virtualizing such application servers, it is possible to flexibly deploy them over differ-
ent platforms and even to relocate them if necessary. Major cloud computing providers
have expanded their offer with a custom IoT solution, as for instance in the case of Azure
IoT Suite 9 and AWS IoT 10. Similarly to remote clouds, edge computing platforms lend
themselves to run a variety of IoT applications, but avoid the tromboning effects when
transferring data meant to be generated and consumed locally. This aspect is tackled,
among others, by Cloudlet Applications 11, AWS GreenGrass 12 and Azure IoT Edge13.

The technologies above belong to a broad set of proprietary solutions that tend
to focus on application level and service hosting rather than on the communication
technologies underneath. In fact, the IoT ecosystem nowadays comprises a plethora of
communication technologies, spanning from short range wireless like Bluetooth, Zigbee,
WiFi to Low Power Wide Area Network (LPWAN) links using NB-IoT, LTE-MTC, EC-
GSM-IoT and others. Some of them are based on industrial standards by IEEE and/or
3GPP whereas others are proprietary solutions, e.g., Sigfox and LoRa.

Nevertheless, in many situations it is paramount to leverage different deployments,
either to aggregate data from distinct domains, or to merge legacy setups with newer
ones into a single logical service. Therefore, it is necessary to abstract from the access
technology underneath. The authors of [75] suggest employing Software Define Network-
ing (SDN) to route data packets between the IoT device and the most appropriate fog
node running the data filtering algorithms and the application’s logic. Bringing IoT soft-
ware components to the edge is the conceptual basis of EdgeX Foundry 14, which is an
open source project purposed to implement an open framework for IoT edge computing.
Although targeting a broader scope than IoT, a similar endeavor is attempted by the
Open Edge Computing initiative 15 and by the Edge Computing Working Group within
the Telecom Infra Project 16.

8https://www.openfogconsortium.org/ (Accessed on the 13th of July 2018)
9https://azure.microsoft.com/en-us/suites/iot-suite/ (Accessed on the 15th of December 2020)

10https://aws.amazon.com/iot/ (Accessed on the 15th of December 2020)
11https://cloudlets.akamai.com/ (Accessed on the 15th of December 2020)
12https://aws.amazon.com/greengrass/ (Accessed on the 15th of December 2020)
13https://azure.microsoft.com/it-it/campaigns/iot-edge/ (Accessed on the 15th of December 2020)
14https://www.edgexfoundry.org/ (Accessed on the 15th of December 2020)
15http://openedgecomputing.org/index.html (Accessed on the 15th of December 2020)
16http://telecominfraproject.com/project/access-projects/edge-computing/ (Accessed on the 15th of

December 2020)

CHAPTER 3. Standardization and Open Source 58

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

Because of its position in the industry, the ETSI MEC Industry Specifications Group
is regarded as a key entity to produce enabling technologies for network operators to
evolve their IoT service offering [76]. With the recent expansion to cover heterogeneous
access, ETSI MEC not only provides means to support the above-mentioned technology
pillars and depicted in Fig. 3.3, but also outlines an open and standardized path for
telco operators, vendors and IT players. For this reason, in the next we propose an
IoT platform for ETSI MEC, which aims to consolidate different IoT technologies into
a single body able to expose a homogeneous IoT service to customers in a multi-tenant
fashion (highlighted in the central block of Fig. 3.3) regardless the presence of different
IoT and access technologies, by means of softwarized IoT gateways deployed within the
MEC premises.

3.1.3 ETSI MEC Enhancements to support multi-domain IoT deploy-
ments

In order to make edge clouds a standardized computing environment, ETSI has recently
re-chartered the ISG formerly known as Mobile Edge Computing: the scope of the new
Multi-access Edge Computing ISG is enlarged to embrace a variety of access technologies
beyond cellular. The most relevant outcome of ETSI MEC is the definition of a frame-
work and reference architecture [77], as well as a number of specifications for application
enablement and API design [78].

However, despite IoT being deemed a pivotal use case for MEC, the ETSI solution
still lacks the due level of details when it comes to the components that are supposed
to support IoT use cases. We hence propose a new architectural element for extending
MEC capabilities to support IoT deployments, namely the MEC IoT platform described
in the next section.

The MEC IoT platform

The MEC IoT platform is a software artifact meant to create a substrate (or middleware)
where multiple (virtualized) IoT gateway instances, from different access link types and
implementations, can run. This can be achieved in two steps. First, IoT gateways
are split into lower (hardware) and upper (software) layers and the latter is migrated
to the MEC facilities, hosted as software instances within the MEC IoT platform. In
Section 3.1.2, we have already observed few (commercial) implementations of such soft-
warized IoT gateway approach. The second step would be to implement the middleware
functionalities of the MEC IoT platform as an environment where the IoT gateway in-
stances are interconnected, by means of an appropriate messaging service, a gateway
instance registration and discovery mechanism, and a semantic extraction and protocol
translation function. The purpose is to unify into a single logical entity the operations
that are typically executed by IoT Gateways, such as identification and management of
IoT devices and their secure communication. By hiding the complexity of the underneath
IoT networks, the MEC IoT platform can expose a homogeneous method to control a
variety of IoT devices grouped into a single logical set, comprising diverse deployments.

CHAPTER 3. Standardization and Open Source 59

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

An API for IoT in Edge Computing

The MEC IoT platform can decouple the set of IoT devices from the application logic
that leverages the capabilities of such devices (sensors and/or actuators). This enables
to partition (or share) the IoT resources thereby allowing a simultaneous usage following
the IoT-as-a-service paradigm. Therefore, the multiple services running within the MEC
premises might utilize a higher level of data abstraction together with a common API
and data format representation. Running services also need to interact with the deployed
nodes and sensors for performing IoT tasks, such as device management or actuation. In
order to realize a seamless interaction among service-to-service and service-to-device, it
is desirable to create a single interface, i.e., the IoT API for MEC. In addition, this API
being open and standardized would lead to a broad and well supported ecosystem. All
these characteristics might be fulfilled by the Open Mobile Alliance Next Generation Ser-
vice Interface for Context Management (OMA NGSI [58]) and the FIWARE foundation,
which adopted it and have developed components for several aspects in the field of IoT,
cloud and edge analytics, and privacy and security. In addition, the work of the NGSI
standard is continuing within the ETSI ISG Context Information Management (CIM)
in the direction of semantics and linked data in order to achieve high interoperability
with the many data models present in the IoT world.

Prototyping edge computing in a real scenario

Real-time detection of vulnerable road users (VRUs) for steering autonomous driving
decisions has been already implemented in the context of AUTOPILOT project17. De-
vices installed on vehicles collect Wi-Fi probe packets captured on the road and transmit
them to a Road Site Unit (RSU) with sensitive information (such as MAC addresses)
obfuscated and data tagged with GPS coordinates. The RSU collects all these data from
several cars and push to a cloud platform that computes an estimation about the crowd
on the roads as well as people mobility patterns. The analysis outcome is fed back to the
cars that adapt the speed accordingly. The IoT communications is based on NGSI for
dispatching VRUs analysis results to the RSUs, and on oneM2M for the communication
to the vehicle. Applying the proposed prototype on an ETSI MEC-enabled infrastruc-
ture would blend together the RSUs and the cloud platform at the edge and allow to
perform VRUs analysis closer to vehicles with advantages in latency and bandwidth
consumption. This also fosters more advanced analytic processes, for example based on
computer vision.

3.1.4 Value proposition of the MEC-based IoT Platform

The MEC platform offers a complete IT environment close to the IoT deployments. The
advantage is two-fold: the former is that IoT service providers might easily migrate their
own IoT applications to more powerful (and close to the edge) IT environments without

17We refer the reader to the project AUTOPILOT deliverable ”D1.3-Initial IoT Self-organizing Plat-
form for Self-driving Vehicles.”

CHAPTER 3. Standardization and Open Source 61

3.1. Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments

Table 3.2: Qualitative analysis against commercial solutions.

Orchestration Communication
Application

interoperability
Open

Specification
Multi-tenancy QoS at the edge

MEC-based
IoT Platform

Standard

MQTT+JSON,
HTTP, LoRa,
MQTT+UL2.0,
AMQP+UL2.0,

LWM2M

OMA NGSI +
Smart data models

X X Network Slicing

Microsoft
Azure IoT

Edge
Proprietary

MQTT, AMQP,
HTTP, Modbus,
OPC-UA, BLE,

BACnet

Topic-based +
AMQP Type System
(only data interop.)

✗ ✗
Limited MQTT

message reliability

AWS
Greengrass

Proprietary
FreeRTOS,

MQTT, OPC-UA
Topic-based ✗ ✗ ✗

IBM Watson
IoT Platform

Edge
Proprietary MQTT, HTTP Topic-based ✗ ✗

Limited MQTT
message reliability

GE Predix
Machine

Proprietary

MQTT, AMQP,
TCP+OPC UA,

Websocket+OPC UA,
Modbus

Topic-based +
PDataValue

(only attribute
interop.)

✗ ✗ ✗

losing direct control over their private (and reserved) applications data; the latter is that
the edge cloud facilities (e.g., MEC hosts) can be directly deployed and managed by the
IoT service provider. This last case might be generally envisioned as the business scenario
wherein the IoT service provider acts as an IoT infrastructure provider (e.g., building on
top of public or private infrastructures, such as airport areas, shopping malls or building
blocks) able to open its own premises to other IoT service providers. However, this
would require a multi-tenancy-enabled IoT platform where different platform tenants
are willing to rent a subset of resources of the same shared IoT infrastructure, properly
tailored to their own provided services.

Therefore the MEC system brings into play the network slicing concept as the main
enabler for a multi-tenancy platform. Heterogeneous IoT application requirements might
be handled on the same platform while ensuring service-level-agreement (SLA) guaran-
tees (e.g., public safety deployments for monitoring crowded events), and data isolation
property among competing IoT service providers. Additionally, the MEC environment
allows the execution of softwarized IoT gateways. This enables to build a seamless and
multi-domain IoT platform where different specific-purpose technology sources are inter-
connected by means of standardized interfaces and can interact by means of mediation
gateways.

In the following, we compare the proposed MEC solution for IoT against generic
commercial IoT platforms, namely AWS Greengrass, Microsoft Azure IoT Edge, and
IIoT solutions such as IBM Watson IoT Platform Edge and General Electric Predix
Machine, summarizing the main advantages and limitations in Table 3.2. Multiple IoT
protocol implementations might be adopted in our scenario. For the sake of concreteness,
we account for NGSI as main IoT application protocol, but other implementations, e.g.,
ETSI oneM2M, can also be considered equivalently or together with NGSI [25].

Our approach presents a full-fledged open orchestration solution for an IoT plat-
form by means of ETSI MEC-compliant interfaces. In particular, the NGSI application
protocol can be used for both device-to-device and device-to-gateway communication in

CHAPTER 3. Standardization and Open Source 62

3.2. FIWARE: A Standard-based Open Source IoT Platform

combination with different lightweight and energy-efficient protocols, such as LoRa and
OMA LWM2M. NGSI can be also combined with open available Smart Data Models [80]
(formerly known as FIWARE data models) bringing the remarkable advantage to sup-
port native application interoperability for a variety of IoT scenarios. This eases the
deployment of new IoT services escaping integration activities such as interface adap-
tation (e.g., query definition, data subscription parameters) or data models translation.
Such a desirable feature is already deployed in real context, e.g., the harmonization of
eight smart cities among Europe within the SynchroniCity EU project framework18, fos-
tering the co-creation of the services offered to the citizens and the sharing of a global
ecosystem.

Differently, commercial platforms provide a limited application interoperability ei-
ther through proprietary data format (e.g., GE Predix Machine) or AMQP-based data
types (e.g., Microsoft Azure IoT Edge), leaving the developers to enforce interface and
data models interoperation. Interestingly, the open specification of the MEC-based IoT
Platform does not only encompass the application interoperability, but it also fosters the
definition of architecture and components’ functionalities to further support federation
of both MEC instances and IoT services, where the same edge infrastructure can be
shared between different tenants. It is worth mentioning that while the multi-tenancy
and slicing concepts are specifically addressed by the MEC standardization group, there
is a lack of such concepts in existing edge platforms resulting in no support for the
Quality-of-Service (QoS) provisioning.

To the best of our knowledge, this is the first, non-proprietary ETSI MEC-compliant
solution integrating the IoT facilities into edge computational nodes.

3.2 FIWARE: A Standard-based Open Source IoT Plat-
form

The evolution in all fields of technology is accelerating the shift towards the Internet-of-
Things (IoT) vision in any area where data are produced and analyzed.

The market of IoT platforms is comprised of a huge number of solutions. From a
business perspective, we can cluster them in two classes of platforms: commercial and
open source. The commercial platforms are more stable and more appealing for indus-
trial and business-oriented scenarios due to the contractual support of the providers.
The open-source platforms are usually implementing standards and maintained by com-
munities of researchers and innovators, enhancing them with cutting-edge trends, driven
by use case and practical requirements. Here we discover the transition of FIWARE[60]
from research to commercial.

FIWARE and its evolution The FIWARE framework is supported by the European
Commission since almost a decade, through funding several projects either for developing
and enhancing it (e.g., FI-WARE, FI-Core, FI-Next, SmartSDK) or for using it in pilots

18https://synchronicity-iot.eu

CHAPTER 3. Standardization and Open Source 63

3.2. FIWARE: A Standard-based Open Source IoT Platform

(e.g., City Platform as a Service - CPaaS.io19, frontierCities, Fiware4Water). Lately, the
FIWARE framework is going through a transition phase towards business readiness. This
is demonstrated by the European large scale pilots projects (each with 15-20 Million Euro
of funds), such as SynchroniCity20, Autopilot21, Internet of Food and Farm - IoF2020,
and Activage focusing on smart cities, autonomous driving, agriculture & food and e-
health, respectively.

3.2.1 Public governance and growth: global IoT market

Public governance is attentive to new technologies that have a strong potential for eco-
nomic growth, public safety, and citizens’ well-being. IoT is certainly promising all these
benefits. This has triggered in the past decade a widespread adoption of a plethora of
IoT solutions in many urban scenarios. However, closed commercial APIs and imple-
mentations hamper an open market development (vendor lock-in). For this reason, an
open approach is preferred by public institutions, as commonly agreed, for instance, by
the 140+ cities of the Open & Agile Smart Cities (OASC) network22. Horizontal har-
monization is provided locally in cities such as Milan23 and Helsinki24 achieving good
results but remaining regionally isolated, thus resulting in city lock-in. Both vendor
lock-in and city lock-in discourage small and medium-sized enterprises (SMEs).

With this rationale, SynchroniCity project proposes to synchronize existing smart
city solutions by overcoming their misalignments. More specifically, the synchronization
targets enabling five Minimal Interoperability Mechanisms (MIMs):

1. Context Management

2. Data Models

3. Ecosystem Transaction Management (”Marketplace”)

4. Security

5. Storage

In 2019 the first three MIMs have been officially adopted by the OASC consor-
tium [81].

The SynchroniCity project demonstrates the feasibility of such an approach by har-
monizing eight cities (Antwerp, Carouge, Eindhoven, Helsinki, Manchester, Milan, Porto,
and Santander). The final goal is the co-design of IoT services [8] and IoT applications,
and the establishment of a shared market fostering economic growth.

19https://cpaas.bfh.ch/
20https://synchronicity-iot.eu/
21https://autopilot-project.eu/
22http://oascities.org/
23http://www.milanosmartcity.org/joomla/
24https://www.helsinkismart.fi/

CHAPTER 3. Standardization and Open Source 64

3.2. FIWARE: A Standard-based Open Source IoT Platform

Table 3.3: Device interfaces supported by FIWARE

IoT Devices HTTP, MQTT, AMQP

Low-power
wireless sensors

LoRaWAN, SigFox

Smart Industry OPC-UA, ROS2

five foreseen MIMs (see Fig. 3.5). Starting from the available city resources (the purple
box in Fig. 3.5) data is integrated and exposed in several manners: sensor streams, open
data, and historical time series.

Harmonizing smart cities data

The sensor streams are integrated with different approaches depending on the require-
ments and constraints given by the different city platforms. For most of the involved
cities, ad-hoc integration modules are implemented and deployed. These obtain data
from the running platforms and translate them to the Next Generation Service Interface
(NGSI) [58] standard data format. Only in a few cases, such as Santander and Porto,
sensor data are exposed through typical IoT interfaces, such as MQTT and HTTP. For
native IoT device interfaces, the FIWARE framework offers IoT Agents (see Table 3.3)
that translate device interfaces to NGSI. Having all data formatted using the same data
structure is not enough to ensure harmonization since data might be modeled very dif-
ferently by IoT developers. For instance, a location might be referred to as ”position”,
”geolocation” or a term in another language. Therefore, the used adapters, both ad-hoc
modules and IoT Agents, generate context data following the Smart Data Models [80]
(formerly known as FIWARE data models[27]). These data models are defined by the
FIWARE and TMForum community and adopted by OASC, and they harmonize the
description of data for several application areas such as parks and gardens, points of
interest, parking, waste management, transportation, and weather.

The homogeneously modeled data is then handled by the context management layer
that exposes context with a standard interface, which is NGSI, fulfilling the Context
Management MIM. NGSI specifies both a context management interface with an HTTP
binding and a context data format using JSON. SynchroniCity adopted the Orion Con-
text Broker (CB) as the context manager implementation, which holds the latest at-
tribute values for each entity (or ”thing”) and exposes NGSI query and subscription
methods. Orion is conceived to work with high-frequency messages and to respond to
queries with minimal latency. For stream-based applications, Orion offers an NGSI sub-
scription interface, notifying with atomic notifications as soon as a matching attribute
of a matching entity becomes available. A sensor generating a stream of data with small
intervals between observations, such as an accelerometer, might create a flood of notifi-
cations in the network. Thus, a “throttling” parameter can be set in the subscription.
This regulates data notification streams, instructing Orion to issue two notifications for
the same subscription apart in time for at least the throttling period. The drawback is
that it might result in data loss in case more than one value for a matching attribute

CHAPTER 3. Standardization and Open Source 66

3.2. FIWARE: A Standard-based Open Source IoT Platform

is generated within the throttling period. The missing value is not an option for some
applications. For this reason, SynchroniCity adopted the Comet Short Time Historic
(STH)25 component. The Cygnus connector receives the NGSI data stream from Orion
and forwards it to a persistent data sink, such as STH Comet (in the SynchroniCity
case), but also to other commonly used data storage systems such as MongoDB, Hadoop
Distribute File Systems (HDFS) for big data processing, or CKAN for Open Data pub-
lication. STH and Cygnus together address the Storage MIM.

IoT Marketplace

Often, in smart cities, there are already many services that produce and use data for
their purposes, such as urban facilities, public transportation, tourism operators. Un-
fortunately, these IoT providers have no interest in spending effort on sharing their data
if there is no payback for it. On the other side, companies that might want to create
smart city services need data and they are keen on paying a fee for datasets otherwise
impossible to get. Here the necessity of having an IoT marketplace arises. Available
data needs to be cataloged: a) as valuable assets in case of private companies, b) as
open data in case of public institutions.

For the first scenario, a gap is identified, and, therefore, the project worked closely
with the FIWARE community to close it. FIWARE officially adopted the TM Forum
business API standard which is implemented within the SynchroniCity project. This
software component, named SynchroniCity IoT Data Marketplace26, exposes a catalog
of available data (either in Orion or in STH Comet) describing endpoints to access
them, license, and price. Users can buy data items and the marketplace sets access
rules in the security layer to allow the data exchange. To smooth the usage of the rather
complex business API, scripts are available to automatically integrate the FIWARE data
management by crawling Orion and publish the found data items in the marketplace.

In the case of open data, smart city governments usually have already published
datasets, most of the time on their ad-hoc platforms or simply on their institutional
website. That is not handy for a data consumer that is completely unaware of the
city governance structure and, therefore, of the different institutional web pages. The
situation is even worse when the open data website is only available in the local language.
This situation is addressed by the Open Data Federation Platform IDRA27 that was
developed in the context of the FESTIVAL EU project that faced a similar scenario.
Available datasets are federated in IDRA either via typical open dataset interfaces (such
as CKAN) or simply via the web scraping functionality that crawls the generic website
for datasets. All the federated datasets are then exposed by a graphical user interface.

25https://github.com/telefonicaid/fiware-sth-comet
26https://iot-data-marketplace.com
27https://opendata.synchronicity-iot.eu/

CHAPTER 3. Standardization and Open Source 67

3.2. FIWARE: A Standard-based Open Source IoT Platform

Security

Identity management and access control requirements of SynchroniCity are not specific
to smart cities and IoT. Therefore, common standards are used, such as OAuth2 protocol
for authorization, and Oasis eXtensible Access Control Markup Language (XACML) 3.0
protocol for access control. The FIWARE framework already offers software components
for both, namely KeyRock and AuthZForce respectively, that are already well integrated
with the other FIWARE components (such as the IoT marketplace).

Lessons learned for the creation of a Smart Cities global market

Forgoing from a local to a global market, SynchroniCity tackles three aspects: the IoT
service interface, the data models, and an IoT marketplace where data can be bought
and sold.

The first barrier faced by SynchroniCity is that putting aside running legacy systems
is not a solution for city governments, even if this enables a business ecosystem and,
perhaps, it boosts local IoT economic growth. Thus, an overlay on top of the running
IoT infrastructure is designed and deployed in every pilot city. The overlay harmonizes
live sensors data and open data. FIWARE offers off-the-shelf solutions in case of data
exposed through common IoT interfaces (see Table 3.3), and for open data (i.e., IDRA).
In the case of data exposed through proprietary platforms, the burden of creating ad-hoc
adapters cannot be avoided.

A technical issue occurred when data streams from sensors with very frequent obser-
vations are not optimally handled by the Orion CB component. With the latter, either
too many notifications flood the network, or data may be lost. The solution for Syn-
chroniCity is to use a time-series database as a data sink. A different approach to this
problem is the usage of the Aeron IoT Broker component, as in the CPaaS.io scenario
(see below).

The fact that FIWARE is supported by a community directly helps in making such a
framework useful for IoT scenarios since it is driven by practical problems. Indeed, Syn-
chroniCity could leverage the outcome of other projects to solve open data integration.
SynchroniCity itself contributes to the IoT marketplace, releasing it as free to use28,
thus, closing a gap in FIWARE.

3.2.2 Data analytics on IoT federation: a smart city scenario

IoT services require IoT data. As seen above, in a smart city data may come from
different public providers, such as public transportation or traffic management, and it
may be centrally handled by the city governance. But what happens when data comes
from private entities, such as a company, or even private citizens? Such private providers
like to keep their own IoT infrastructure and their data, and not give data away to a
centralized unknown platform. Providers are willing to share their datasets [32], if they
are licensed and protected by access control, or even to earn money considering data

28https://github.com/capossele/SynchroniCityDataMarketplace

CHAPTER 3. Standardization and Open Source 68

3.2. FIWARE: A Standard-based Open Source IoT Platform

as valuable assets. Such a scenario of fragmented IoT platforms is a nightmare for
IoT service providers since they need to look for IoT providers and make a great effort
on integrating heterogeneous data sources. Furthermore, an IoT service is typically
composed of multiple data analytics routines, each exploiting a different set of IoT data
and depending on each other. And what would happen if the IoT service provider wants
to port its service in another environment? Simply additional effort on data providers
discovery, data integration, and analytics orchestration.

City Platform as a Service

The CPaaS.io [82] EU-Japan project (City Platform as a Service-Integrated and Open)
faced these problems in a smart city scenario. To overcome such a situation, CPaaS.io
defined the following fundamental requirements to be addressed:

i) allow easy integration of data sources into the platform (e.g., sensors operated by
private citizens or established providers),

ii) offer services and federation capabilities among IoT platform instances,

iii) support the deployment in many cities with distinct requirements (flexibility and
elasticity),

iv) self-orchestration of data analytics processing routines, each part of the same IoT
service, among multiple IoT data providers,

v) provide security mechanisms for the desired privacy and data protection,

vi) demonstrate that the use cases developed in one city can be transferred to other
cities.

To test the feasibility and effectiveness of the solution, CPaaS.io targets three smart
city use cases spread among Europe (Amsterdam) and Japan (Sapporo, Yokosuka,
Tokyo), such as water management, public event management, and public transporta-
tion.

The CPaaS.io platform exploits different technology to address the identified require-
ments, such as IoT platform federation, IoT data access control, security & privacy and
data analytics tasks orchestration. Also, in this case, the FIWARE framework provides
support on the European side, while the u2 platform [83] is used on the Japanese side.
The solution of adopting two heterogeneous platforms validates the viability of a loosely
coupled federation in the real world [82].

The European platform is FIWARE-based where FIWARE components are deployed
and, in some cases, enhanced to provide the basis for a smart city data infrastructure.
Table 3.4 presents a list of the FIWARE framework components in use by the CPaaS.io
project and the mapping of each component onto the CPaaS.io functional architecture.

CHAPTER 3. Standardization and Open Source 69

3.2. FIWARE: A Standard-based Open Source IoT Platform

Table 3.4: FIWARE-based components present in the CPaaS.io project

CPaaS.io architecture layer Component

Security and Privacy
KeyRock
PEP-Proxy

Data Analytics Routines
Management and Operation

FogFlow

Semantic Data & Integration
IoT Knowledge Server
NGSI to RDF Mapper
STH Comet

Virtual Entity
IoT Discovery
Context Broker

IoT Data and Ingestion IoT Broker

IoT Resource IoT Agent: LoRaWAN to NGSI

Urban water management scenario

As a relevant application scenario, Waterproof Amsterdam uses the CPaaS.io platform
for water management. In the urban context, periods of drought and sudden heavy
flashes of rainfall occur more and more often due to the urbanization trend and global
warming. In both weather conditions, smart water management is required to ensure
water availability, and to handle high pressure in the sewerage infrastructure to prevent
street floods. The solution to this problem is water supply peak shaving. This is done
by using smart and integrated rain buffers, such as rain barrels, retention rooftops,
and retention buffers. These smart devices are centrally controlled by the IoT water
management service that makes use of weather information, sewerage capacity, and
environment data to calculate the optimal water filling degree for each buffer.

The Waterproof application scenario necessitates several functional layers:

• IoT Resources layer for handling the communication with devices and sensors.

• IoT Data and Ingestion layer to persist and index, and to expose data to IoT data
consumers.

• Virtual Entity layer that holds representations in the virtual world of the observed
things.

• Data Analytics Routines Management and Operation layer to orchestrate the dif-
ferent data processing tasks for computing the operations for the smart devices.

The overall system architecture of the Waterproof solution is presented in Figure 3.6.
Similar to the SynchroniCity case, the IoT resources are handled through IoT Agents,
but in this case, using the Long Range Wide Area Network (LoRaWAN) protocol. Even
though a LoRaWAN IoT Agent is already available in the FIWARE framework, a new one
has been implemented in order to optimize it for the specific Waterproof use case, starting

CHAPTER 3. Standardization and Open Source 70

3.2. FIWARE: A Standard-based Open Source IoT Platform

from the FIWARE IoT Agent library29 for accelerating the software development. For
handling data, instead of the Orion Context Broker, as in SynchroniCity, the Aeron
IoT Broker is used, which has additional features such as federation readiness both for
query and subscription [6], and throttling-based aggregation of notifications. The latter
permits to receive data notifications not more often than the throttling but encompassing
all sensor observations pushed within a period through aggregation such as to avoid
data loss. The aggregation can be appending all the data values in a set, or applying
an actual function (e.g., averaging). The drawback is a bit higher latency compared to
Orion, which is acceptable in the Waterproof use case as it is a smaller IoT scenario
compared to a complete city in the case of SynchroniCity. Afterward, all the data are
stored in the STH historical component, which is extended to handle also the historical
storage of metadata.

The virtual world representation is kept within the FIWARE IoT Discovery which
acts as a registry of the available data and resources with associated metadata. This
layer abstracts real-world objects (things) from the observation points (sensors). The
IoT Discovery allows us to query and subscribe for resources by requesting the relevant
context, such as a street name.

The Waterproof data analytics is broken down into atomic analytics tasks that are
linked in a chain or a generic topology. This brings the advantage of flexibility. With such
an approach, the plugging of the right data streams to the tasks’ inputs is not hardcoded,
and, therefore, an external process can automatize it. For this purpose, CPaaS.io uses the
FIWARE FogFlow [3] framework. The latter leverages the virtual world representation
to discover the needed resources and plugs them to task inputs. The resources can be
physical (e.g., a sensor stream), or generated, such as intermediate results of one of the
analytics tasks (e.g., geographical data aggregation). With such an approach, porting
the service topology into another environment is smooth, since FogFlow works at the
higher abstraction level of the virtual world. When porting the Waterproof application,
the only configuration needed is the description of the available computing nodes. In
this application, analytics tasks are responsible for identifying heavy precipitations and
for computing how to set up the water network to avoid damage. The analytics service
subscribes to inbound data streams to constantly monitor the state of the water buffer
and trigger actions when needed.

FogFlow is conceived to orchestrate tasks also among cloud and edge [3], which is a
feature to be used in the future for exploiting the computing resources of the deployed
devices.

Lessons learned from smart city services

Federating IoT systems is often not an option [6]. Therefore, CPaaS.io sets federation as
a target aiming at integrating private and heterogeneous IoT systems towards a global
Internet-of-Things. Luckily, the NGSI protocol has been designed to support federation,
and the FIWARE framework already offers implemented solutions with the Aeron IoT
Broker and NEConfMan IoT Discovery components [6].

29https://iotagent-node-lib.readthedocs.io

CHAPTER 3. Standardization and Open Source 71

3.2. FIWARE: A Standard-based Open Source IoT Platform

vehicle is stored in real-time on servers in the Netherlands. As another example, traffic
situation information (e.g., congestion, traffic lights) from different cities are normally
served by different vendors that do not federate data with each other. Enabling the
sharing of data allows an autonomous car traveling from one country to another to learn
the traffic situation in its current country.

For realizing the federation of pilots, the combination of open-source FIWARE Aeron
IoT Broker and NEConfMan IoT Discovery31 components is used to transparently route
IoT datasets and data streams from providers to consumers [6]. The transparency is
given by the hidden brokering of the requests among IoT actors, where the IoT providers
declare the available data and the IoT consumers specify the data of interest. An ac-
tor can play both roles, for instance, a car might be a data provider with geographic
localization or a consumer of traffic information. The exchange might go from one pilot
site to another as illustrated in Fig. 3.7. Federation starts from the vehicle (Level 1)
with the in-vehicle IoT platform, where our lightweight version of the IoT Broker, called
ThinBroker 32, can run on a server in the car. This component can run even in small
devices such as a Raspberry Pi.

The autonomous vehicles in the same region are connected (vehicle-to-vehicle com-
munications) or as shown in pilot site 1, cars can connect to a roadside unit. In this case,
RSUs are considered as the “edges” with processing and storage capabilities where IoT
platform components are deployed as the Level 2 federation. In automotive scenarios,
the IoT devices involved are not simply sensors but rather compound devices expos-
ing many different interfaces. For that reason, instead of implementing several brand
new IoT Agents, the existing interworking between oneM2M and other IoT technolo-
gies is leveraged [25]. As illustrated on the cloud side of Fig. 3.7, each pilot site has
a oneM2M implementation for device-to-device communication as well as interworking
between several IoT platforms. The cloud-side IoT platform is considered as Level 3
of the federation. This is formed again by IoT Brokers that (besides routing requests
to/from oneM2M) also handle data locally which are managed by the pilot site admin-
istration. Finally, there exists a federated IoT platform that operates across all pilot
sites. Level 3 and 4 of the federation operate with common information models (data
models). AUTOPILOT defines a new data model supporting the IoT information for
autonomous driving vehicles, considering the AUTOPILOT use cases and the existing
legacy models such as SENSORIS33 and DATEX II34. This data model covers IoT in-
formation such as vehicles, road infrastructure, road conditions, traffic situations (e.g.,
congestion), accidents, pedestrians, cyclists, vulnerable road user detection, events, road
obstacles, potholes. The data is then mapped into the standard NGSI data format.

31https://github.com/Aeronbroker
32https://fogflow.readthedocs.io/en/stable/broker.html
33https://sensor-is.org/
34https://www.datex2.eu/

CHAPTER 3. Standardization and Open Source 74

3.2. FIWARE: A Standard-based Open Source IoT Platform

Semantic Interoperability

Interworking between oneM2M and NGSI is achieved through semantic annotations [25].
In AUTOPILOT the interoperability features are provided by the Semantic Mediation
Gateway (SMG) technology. SMG offers bidirectional context translations between
oneM2M’s Mca reference point and the NGSI interface. While the syntactic repre-
sentations in oneM2M and NGSI are different, interoperability is enabled through the
agreement on semantics, i.e. the same meaning, mapping homologous underlying con-
cepts, which enables an SMG to do the translation. Figure 3.8 shows the basic setup
for AUTOPILOT where the bottom layer consists of autonomous vehicles, RSUs, and
pedestrians (e.g., people with smartphones) interacting with the top layer consisting
of autonomous driving applications or traffic operation centers (top of Fig. 3.8). The
interaction is provided through the FIWARE-based IoT platform. Some devices such
as mobile devices of pedestrians connect and push data to the oneM2M platform. In
some cases data is directly pushed to the FIWARE platform, or, otherwise, acquired by
the SMG from oneM2M. Nevertheless, other third-party platforms or components can
receive information directly through oneM2M’s Mca interface.

The real-time system, consisting of in-vehicle components, oneM2M and FIWARE
IoT platform, is tested at a major pilot site in the Netherlands. For instance, data
coming from WiFi scanners of the autonomous vehicle and RSUs are used by analytics
modules to estimate crowdedness information in the regions of interest. The contextu-
alized crowdedness information is provided using the standardized data models in NGSI
format. This information is then shared with the automated driving application to de-
cide the travel route of the autonomous vehicles. As a result of having an agreement on
common semantic concepts, the sharing of information is possible across all levels of the
federation.

The experience of IoT-augmented automated driving

The AUTOPILOT project showcases that through a standard-based interworking ap-
proach different IoT platforms can run in harmony without causing significant extra
costs or overhead. The main benefits of the proposed interworking approach can be
summarized as follows.

• Although there are many different and site-specific solutions, automated driving
can be successful at the European scale, considering long travels.

• Different pilot sites do not have to adapt their specific devices or software to connect
to different IoT platforms.

• Without much effort to adapt, autonomous vehicles can leverage a combination of
various IoT services supported by different IoT platforms (e.g., crowd estimation
service using FIWARE IoT platform, geofencing service by the Huawei OceanCon-
nect platform).

• The federation at different layers can be achieved considering multiple pilot sites
across Europe.

CHAPTER 3. Standardization and Open Source 75

3.2. FIWARE: A Standard-based Open Source IoT Platform

Table 3.5: Qualitative analysis against other open source or commercial IoT platforms

FIWARE-based OpenIoT OCEAN Mobius MS Azure IoT AWS IoT

Business
Model

Open Source X X X ✗ ✗

Standard-based X X X ✗ ✗

Platform-as-a-
Service

X ✗ ✗ X X

Device
Support

Protocols

MQTT, HTTP,
LoRa, UL2.0,

OPC-UA, AMQP,
LWM2M, SigFox,

ROS2

HTTP, UDP,
File System

CoAP, Xively,
USB Camera
Serial Port,

JDBC, TinyOS

HTTP, CoAP,
MQTT, LWM2M

WebSocket,
IoTivity (OCF)
AllSeenAlliance

ALLjoyn

HTTP, MQTT
AMQP

HTTP, MQTT,
OPC-UA, LoRa,

Modbus, FreeRTOS,
Serial Port,

Raspberry Pi GPIO

Security

Authentication,
Authorization,

Remote
Attestation [84]

Authentication Authentication
Authentication,
Authorization,

Remote Attestation

Authentication,
Authorization

Device
management

X X X X X

Data
analytics

Cloud
Business Intelligence,
Event Processing,
Apache Flink

Filtering,
Comparing,
Aggregation

✗

Spark, Hadoop,
Integration, Data Lake,
Stream Processing,
Machine Learning,
Event Processing,

Business Intelligence

SQL, Hadoop,
Machine Learning,
Spark, Data Lake,

Business Intelligence,
Apache Hive/Pig/Flink,

Media processing

Edge

Event Processing,
Media processing,
Programmable

(containerized) [3]

Aggregation,
Event Processing,
Data filtering,

Semantic Annotation,
Programmable (Java)

✗

Machine Learning,
Event Processing,
Cognitive Service,
Programmable
(containerized)

ML, Programmable
(containerized)

Edge-Cloud
self-orchestration

X [3] Partially ✗ ✗ ✗

Inter-
operability

Linked Data X X Partially ✗ ✗

Data Formats X X X ✗ ✗

Cross
Platforms

CKAN, DKAN,
Socrata API,
OneM2M

Xively

FIWARE,
OCF IoTivity,
AllSeen Alliance

AllJoyn

✗

(data replication
only)

Salesforce IoT

Federation X ✗ X ✗
(data replication

only)

Security
and

Privacy

Local storage X ✗ X Device Level Edge Level

Third User
Access

Authentication,
Authorization,

Data Access Control,
Data Usage Control [85, 7]

Authentication,
Authorization
Traceability

Authentication
Authorization [86]

(only visualization)
Authentication,

Authorization and
Data Access Control

Authentication,
Authorization,
Resource Access

Control

IoT
Marketplace

Catalogue of
applications,
service and

data

Resources and
data catalog

Partially data catalog
(only sensors type)

Resource catalog
Application and
services catalog

Application and
services catalog

Accounting X ✗ ✗ X X

to libraries for extending the available connectors. Security against malicious devices is
enforced by all the platforms with identity control (authentication) and functionalities
access control (authorization). Remote attestation capabilities are already available in
MS Azure and at the research level in FIWARE [84]. A single point for managing
devices is supported by the majority of platforms (Mobius has a capability of managing
a single device through Lightweight M2M (LWM2M) but a management system has
been proposed in literature [88]). As shown in the table, data analytics is well supported
by most of the platforms in both cloud and edge. On the other hand, only FIWARE
offers a full-fledged framework for automatically orchestrating cloud and edge analytics
tasks [3] based on IoT application requirements [17] such as latency, resources availability,
and data availability. OpenIoT offers the Apache Storm stream processing envisioning
topology of functions to be executed in distributed nodes; the platform orchestrates the
functions based on resource availability. The core platform is not part of the Storm

CHAPTER 3. Standardization and Open Source 77

3.2. FIWARE: A Standard-based Open Source IoT Platform

stream processing and the configuration of nodes is up to the data providers.
In terms of interoperability, the open-source standard-based platforms are the most

advanced as they are designed and developed mostly for research purposes usually in
collaboration with standardization institutes. For instance, concepts of linked data and
data formats are characteristics of those platforms since they are based on community-
developed ontologies. While oneM2M does not have an underlying data model such as
NGSI, it is possible to use semantic annotations of resources for semantic operations
through SPARQL queries. Amongst all the platforms under analysis, only FIWARE
and Mobius are capable of performing true federation which allows complete separation
of domains and control but still empowers cross-platform data exchange. The FIWARE
federation is by design more advanced, due to the adoption of NGSI, since the possibility
of having both peer and hierarchical federation. This allows a minimum amount of shared
information between federated domains. Cross-platform interoperability is meant for the
capability of bi-directional and transparent API mediation or inclusion. Amongst the
platforms under analysis, FIWARE and oneM2M are shown to be interoperable [25].
AWS IoT permits data replication with other AWS IoT instances or other platforms
limited to import data from resources and export to data sinks.

An exponential explosion of IoT solutions is often, legitimately, stumbling w.r.t.
security and privacy concerns. The first important parameter is the possibility to keep
the data locally within the premises of the data owners/producers. FIWARE and Mobius
permit that without compromising any functionalities. MS Azure IoT and AWS IoT
permit to keep data locally in each edge device, but analysis based on complete data
overview can be performed only if data is stored in the cloud. All platforms allow
some sort of access control, but only three platforms offer data access control, where
FIWARE and MS Azure support a more fine granularity of data access control (such as
attribute or metadata) whereas AWS has a granularity of resource level. Only FIWARE
perform some steps for enforcing data usage control after the data is supplied to third
parties [85, 7] (see also Chapter 5).

In order to build a sustainable IoT ecosystem, means for establishing a marketplace
are crucial. All the platforms are exposing catalogs of either IoT applications, IoT
services, IoT resources, IoT data or a combination of the above. Nevertheless, FIWARE,
MS Azure and AWS IoT have layers for endorsing an accounting system, but only the
commercial platforms having marketplaces already alive.

As a conclusion, we can state that FIWARE is the only platform that is, on one
hand functionally comparable to the commercial platforms, and on the other able to
leverage its nature of open-source community for being ahead in terms of research and
innovation[84, 3, 89, 25]. In addition, FIWARE is already available as Platform-as-a-
Service for experimenting38 while it is also ready for a real commercial path39. The
FIWARE platform is behind compared with AWS and MS Azure in terms of integrated
external services (such as machine learning framework, multiple data analytics platforms)
and product readiness.

38https://cloud.lab.fiware.org/
39https://www.nec.com/en/press/201804/global 20180427 03.html

CHAPTER 3. Standardization and Open Source 78

3.3. FIWARE: A Standard-based Open Source IoT Platform

3.2.5 The Road Ahead

FIWARE has a very lively and active community that is continuously expanding. In this
section, we include two key areas where FIWARE has the potential to improve.

Semantics: NGSI-LD

NGSI-LD is the evolution of the NGSI Context Interfaces [58] that has originally been
standardized by the Open Mobile Alliance (OMA) and further developed in FIWARE.
NGSI-LD is standardized as a group specification by the ETSI Industry Specification
Group for cross-cutting Context Information Management (ISG CIM). The specification
has been published [89] in early 2019 and NGSI-LD is expected to become the new core
interface for FIWARE GEs in the course of 201940,41,42.

The main new feature is that NGSI-LD is now based on JSON-LD, which enables
a semantic grounding. The LD stands for linked data which practically means that all
elements are represented as URIs. Thus, the relevant concepts such as entity types can
be explicitly defined in an ontology. Thus, the agreement between different applications
and sources is on the level of explicitly specified semantics as provided in an ontology.
This enables supporting a level of semantic interoperability on top of an otherwise het-
erogeneous IoT landscape, which is especially relevant in cross-cutting and large-scale
application areas as can be found in smart cities. With the semantic modeling, exist-
ing semantic tools for ontology and rule-based reasoning can be used on information
retrieved through many NGSI-LD requests.

The new NGSI-LD specification also foresees native support to historical data. It
permits applications to directly request complete time series from the data context man-
agement together with complex IoT data query capabilities.

Privacy: Data Usage Control

Soon, many advancements are expected in the field of distributed privacy and data usage
control for securely sharing local domain data spaces. As presented in the previous
sections, these features are a serious blocking point for moving from experimental IoT
to a real global IoT. In the latter, sensitive data (e.g. healthcare data, industrial IoT
data, crowdsourced data) share the same infrastructure with the less sensitive data.
Topics such as continuous control on the usage of the data, also after data have been
shared, shall be addressed. The collaboration between FIWARE and International Data
Spaces Association (IDSA) is a strategic alliance since the requirements and reference
architecture of the latter are the inputs for the evolution of the framework in the hands
of the former. The initial results are already available [90], showing the feasibility and
the compatibility of the visions of FIWARE and IDSA. This topic is addressed in this
thesis in Chapter 5 using a FIWARE-based solution.

40https://github.com/ScorpioBroker/ScorpioBroker
41https://djane.io
42https://github.com/FIWARE/context.Orion-LD

CHAPTER 3. Standardization and Open Source 79

3.3. Conclusions

3.3 Conclusions

The IoT market segment represents a huge opportunity for the involved stakeholders as
the number of use cases expand both in terms of application areas and complexity. In
this chapter, we have analyzed the main limitations of an existing smart city deploy-
ment (SmartSantander case study) and derived future requirements for advanced use
cases, such as autonomous driving, public safety and industrial IoT. Based on such re-
quirements, we have proposed an ETSI MEC-based architecture to seamlessly integrate
existing and future IoT platforms along with the required interfaces and protocols to
enable communication between multi-technology sensors and IoT gateways through an
IoT gateway middleware.

Further, we introduce the FIWARE platform and highlight its advantages. The
open source and standard-based platform inherits the cutting-edge features and inno-
vation brought by the open source community to be ready for commercial usage and
business scenarios. We go through three real world use cases characterized by different
requirements: IoT federation in smart cities, global IoT market realization by public gov-
ernance, and research and innovation on autonomous driving scenario. We have, then,
described the actual FIWARE-based solutions for the chosen use cases, explaining at
the same time, the capabilities of the FIWARE framework. The functional comparison
of FIWARE with other commercial and open source platforms shows that FIWARE is
the only open source framework which is ready for commercial exploitation but also a
forerunner of IoT features such as distributed stream analytics, marketplace, interoper-
ability, privacy and security. The chapter concludes with an analysis of the FIWARE
agenda with the next challenges to be addressed, demonstrating also the dynamism of
the community.

CHAPTER 3. Standardization and Open Source 80

Chapter 4

Federation of IoT Platform and
IoT Data Sovereignties

In the past decade the Internet-of-Things concept has overwhelmingly entered all of the
fields where data are produced and processed (e.g., health care, industry), resulting in
a plethora of IoT platforms, typically cloud-based, which centralize data and services
management. This has brought to a multitude of disjoint vertical IoT silos. Significant
efforts have been devoted to making interfaces and data models interoperable, recur-
rently resulting into bigger centralized infrastructures. Such an approach often stumbles
upon the reluctance of IoT system owners to loose control over their data. This chapter
introduces a secured platform where a federation overlay is distributed among parties
and the control over the data is delegated to data owners. In addition, privacy schemes
are adopted to protect data exposure. We show that our architecture is scalable by
design, since it allows iterative formation of multiple levels of domains thanks to the
transparent nature of its federation approach, which hides the federation overlay from
both data providers and data consumers. Experiments show that the overhead intro-
duced is minimal when considering wide IoT deployments and in some scenarios our
platform performs even better than centralized approaches.
The suggested work enables a readily global hyper-connected Internet of Things by
linking together many of the currently deployed IoT systems.

4.1 LIoTS: League of IoT Sovereignties. A Scalable ap-
proach for a Transparent Privacy-safe Federation of
Secured IoT Platforms

The Internet-of-Things (IoT) paradigm has lately gained more and more momentum in
all the fields where data are produced and processed (e.g., automotive, health care, smart
cities, industry) justifying the emergence of a plethora of IoT platforms. A common
approach for IoT systems deployment is to leverage the scalability and performance of
a cloud-based infrastructure for storing and analyzing data, in order to implement all

81

4.1. LIoTS: League of IoT Sovereignties. A Scalable approach for a Transparent Privacy-safe
Federation of Secured IoT Platforms

kinds of IoT services and applications [91]. However, this brought to an abundance of
single-scope, disjoint systems generally defined as “vertical IoT silos”.

A lot of efforts have been devoted to define standards and ontologies to enable, on the
one hand, interoperability among platforms [92, 26, 87] and, on the other hand, inter-
domain interaction [93] [94]. However, the harmonization of IoT systems often results
in a further centralization towards another cloud instance [92], which leads to scalability
issues when handling billions of devices. In addition, IoT systems owners are reluctant
to loose control over the generated data [32] which is a serious obstacle to a global and
connected Internet of Things.

As presented in chapter 1, the linkage between objects, devices, edge devices, ac-
tuators, agencies and services are becoming many-to-many, instead of the vertical silos
of one-to-one connections. Therefore, there is a need to support information exchanges
across multiple IoT platforms, formed by both cloud and edge, for more opportunities
of holistic IoT services. Furthermore, the information discovery and exchange shall be
”transparent” to the IoT services, aiming at an automation of data provisioning taking
into consideration the multitude of platforms administration domains.

This chapter presents the Leauge of IoT Sovereignties (LIoTS), a distributed IoT in-
frastructure that federates IoT systems while leaving the data ownership and sovereignty
in the hands of data owners by offering means for security and privacy control. LIoTS
enables data and services brokerage of both data queries and streams among peers of
IoT platforms, hence overcoming the known barrier of fragmented IoT vertical silos. The
proposed system takes advantage of the standardized protocol NGSI (Next Generation
Service Interface), and of open-source software components part of a well established
worldwide community, namely FIWARE Foundation, as described into chapter 3. LI-
oTS is, hence, directly benefiting from continuous advances in both standardization and
implementation, as their recent embracing of semantics and linked data concepts [89],
moving towards a global hyperconnected Internet-of-Things. The proposed approach
enacts security and privacy-preserving schemes to enforce the will of the data owners.
LIoTs design is scalable and iteratively replicable, since it allows for the construction of
super-domains of domains thanks to the transparent nature of its federation that hides
the federation overlay from both the perspectives of data providers and data consumers.
Moreover, LIoTS design smooths the integration of new sensors and devices by adopting
a plug-and-play approach to alleviates the federation burden in terms of configuration
at the time of device integration, and on resource consumption during operation time.

Experimentation demonstrates a slight loss in terms of latency for traversing the
federated and secured layer, but shows even better performance figures compared to
centralized approach in large scale scenarios with thousands of things comparable to
the city IoT deployments, such as SmartSantander [95]. The main contribution by this
chapter are highlighted as follow:

• Scalable federation by design: The proposed architecture enables the transparent
existence of multiple level of federations. This is achieved with the usage of a
brokering layer for each of the federation level, and with multiple levels of security
systems.

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 82

4.2. Background

• Sovereignty of data providers: IoT providers keep data locally on their premises,
thus maintaining their power over the owned data.

• Privacy preserved : The privacy of intra-domain users (e.g. applications, providers,
persons) is prevented to be exposed externally in the federation. This is achieved
with the multiple levels of security systems (intra-domain identities and policies
are kept only within the domain), and with the IoT Registrar, a component to
automatically generate data availability based on privacy directives given by the
IoT providers.

• High level of abstraction for IoT exchange: A powerful domain-specific language
for IoT data exchange is inherited by the usage of the NGSI protocol.

• Plug-and-Play approach: IoT providers and legacy systems are relieved from the
burden for joining and maintaining the federation (such as declaring or updating
data availability).

4.2 Background

In this section we analyze three IoT fields, centered around the concept of IoT context :
federation, security, and standards and OSS. IoT context [18, 19] is a core concept
associated with the ‘status’ of the real world. A context refers to an entity representing a
thing (e.g., a sensor, a car, a building, a power line) together with its status. The context
can be physically measured by a sensor or device, or derived by analytics functions (e.g.,
crowd estimation [96]).

4.2.1 Federation

Enabling the flowing of data among IoT platform instances and IoT services in a way
that is transparent to IoT actors is a key point for a global Internet-of-Things overlay.
A centralized approach where everything (viz. data and services) is handled by a remote
authority is often not a solution for multiple reasons. For instance, critical and strict
real-time applications need to run as close as possible to the location where data are
generated. Another reason is the exploding amount of unnecessary data flowing into the
Internet backbone, which happens, for instance, with camera-based applications which
should actually run as close as possible to the camera. Finally, data confidentiality can
be better preserved only if the data do not leave the owner’s premises. In such cases,
potential analytics from third-parties might be executed directly on local resources [3]
(see chapter 2).

A first approach is to have methods for the discovery of services that provide IoT
context [97, 87, 94]. Discovery is a pivotal element for seamless interoperability among
systems, since not only datasets but also generic IoT services are exposed. This also
enables an IoT marketplace, which is a gap identified in [98]. Still, discovery alone
is not enough to automatize communications dispatching to the right actors. This last
feature is the trait of a broker component that hides the discovery process and provisions

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 83

4.3. Related Works

data flows [3]. The mentioned approach actually empowers a transparent federation
progressing towards the intent-based programming in the IoT [99] field. Nevertheless,
the simplicity of cloud-based IoT system deployment is not neglected in this work, hence
a hybrid approach is blended for a full-fledged IoT infrastructure.

4.2.2 Privacy and Security

One of the main disincentives of sharing data is the fear of loosing control over the
produced data [32, 100]. Thus there is a clear need to include efficient and reliable
privacy and security mechanisms. The study conducted in [101] assesses that most of
the cloud-based IoT platforms often addresses typical web and network security attacks
(such as DoS, eavesdropping), whereas [98] depicts privacy and data access control as
open challenges. In this chapter we address those points by offering means for IoT owners
to smooth the federation of their systems while, at the same time, preserving privacy.

4.2.3 Standards and Open Source

The usage of standards and open source software enables a faster integration among IoT
systems [25]. Furthermore, adhesion to a well established open source community, such as
FIWARE [60], permits to take advantage of the current ecosystem, as well as of its future
developments (see chapter 3). For instance, disparate available protocol adapters, namely
IoT Agents, together with the proven fully functional interoperability with oneM2M [25]
and its wide set of supported device protocols, ease the IoT integeration. Furthermore,
FIWARE already offers processes to federate static datasets [102] (e.g., open data).

FIWARE relies on a HTTP binding to the OMA NGSI protocol which is currently
going to be integrated in the new version of the ETSI standard [89] together with an
advanced query language. Moreover, the community has specified data models for many
IoT domains. Thus, the LIoTS system inherits from the FIWARE community an openly
standardized domain-specific language (DSL) for IoT data retrieval and services usage.
Finally, efforts in the community are devoted for the introduction to the data usage
control [90]. This thesis further contribute towards the data usage control (see chapter 5).

4.3 Related Works

Aspects of this chapter have been the focus of previous works. CityHub [93] introduces
the creation of a centralized access point for IoT data (such as real-time and static
datasets). The approach is to blend hybrid cloud for including the already established
IoT systems and leverage a green-field cloud for the rest of deployment. Data are ex-
posed through HyperCat [94], which envisages the possibility of doing federated semantic
queries across multiple semantic data hubs. CityHub lacks the brokering of data requests
to data sources, since a data requestor needs to specify the endpoints within the query,
thus resulting into a non-transparent federation. The work [87] proposes a brokering
of data through semantic requests, either as synchronous queries or as data streams, to
applications. Their middleware automatically discovers semantically annotated sensor

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 84

4.4. Use Cases and Requirements

streams and associates them with application requests. A cloud data storage is handling
the registrations of available sensors. The authors of [103] proposes a context-based
query language with a centralized architecture that foresees the IoT data providers to
their data with the central authority. Differently to [87, 103], LIoTS adopts a decen-
tralized federation, enabling scalability by design, on top of a distributed security layer
that preserves privacy of data and service owners. An approach that is similar to ours is
described in [90]. The authors present a FIWARE-based system implementing the spec-
ifications and directives of the IDSA [16], namely the secured exchange of data between
IoT domains. They propose an architecture for exchanging data among two FIWARE-
based systems both protected by an Identity and Access Management (IAM). Each data
provider is considered as a domain with centralized domain data management. Brokering
context requests is possible for queries but not for subscriptions, due to the limitation of
the used component Orion mainly designed as centralized context management. LIoTS
overcomes these limitations with the introduction of other components specifically for
IoT communication brokering that enables multiple levels of federation. Our proposal
also uses multiple levels of security systems together with privacy schemes for protecting
the privacy of intra-domain users and providers from the federation.

The interesting survey [104] proposes several solutions, realized at the network layer,
such as multicastDNS (mDNS) and DNS Service Discovery (DNS-SD), for interconnect-
ing data sources to consumers. Although the solutions are lightweight and natively
offered by the Internet infrastructure, they are lacking the high level abstraction of com-
plex data search. Further, the privacy and security aspects are not easily addressable.

4.4 Use Cases and Requirements

In this section we analyse some use-cases for identifying requirements to take into account
into federation scenarios.

4.4.1 Use-Cases

A typical IoT use-case is healthcare where data is very sensitive but of the highest impor-
tance for saving lives. In present days, many medical applications rely on heterogeneous
sensors deployed, for instance, at the patient’s home [105], for monitoring and delivering
promptly hints to allow timely alerts or for having offline data analysis. Deployed sensors
push measurements to a gateway which is delegated to handle security. Gateways expose
data or send reports to remote platforms related to diversified domains (e.g. cardiovas-
cular, nephrology, nutrition) controlled by diverse administration. Big data analytics
holistic medical applications need data input from multiple domains for computing ac-
curate output. Moreover Quality of Data (QoD) must be very high, thus only allowed
and not tampered sensors/gateways should be permitted to push measurements.

In Smart Cities many sensors are deployed anywhere in the public space and man-
aged by diverse parties. For instance, there might be bus tracking sensors (measuring,
e.g., speed, location) owned by transport companies, surveillance cameras controlled by
homeland security, or crowdsensed data collected by tourist operator from smartphone

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 85

4.4. Use Cases and Requirements

app. A new smart service for citizens might offer to dynamically optimize the public
transportation by scheduling bus arrival time and route on the needs, so as serving crowd
moving within the city. For this purpose camera-based crowd detection, crowd mobility
patterns and real-time fleet capacity utilization would be input for an online analysis.
A third party organization offering such service might be not aware on who is providing
such data.

In Smart Industry, machinery production companies are building apparatuses packed
with sensors that monitors the instrumental life-cycle and operational behaviours. Nor-
mally industrial plants utilize equipments built by different machinery companies that
are specialized on distinct niches offering their own data services[90]. Some applications
aim at optimizing the production or strengthening factory security, perhaps offered by
third parties, and are realizable only if data from both the producers are consumed.
Obviously machinery companies are jealous of their data and want to keep the control
over them.

4.4.2 Federation Requirements

The first two requirements from the use-case pertain to the way the data is exchanged.
Both synchronous queries and data streams are important for analytics. In addition
data must be discoverable by data applications without the need of human intervention
especially in case dynamic changes happen in the offered portfolio, e.g. data marketplace.
An added feature is to When possible, the data discovery should happen transparently :
the process of finding the right data providers among a myriad of connected subsystems
should not be visible. The requester would form the data requests containing the de-
scription of the wanted data and a middleware, such as a broker, is in charge of procuring
them. To decouple even more the IoT infrastructure from the application developer, the
data requests should be content-based (i.e., data messages matches constraints related
to attributes) rather than topic-based (i.e., query or subscription to a channel known or
discovered in advance).

Furthermore data is often highly confidential and regulated by restrictive laws (e.g.
GDPR) defining how information must be handled. Hence in some cases the sensors
records are locally stored close to where those are produced (e.g. into edge devices),
or stored into clouds under full control of domain administration (e.g. hospitals). This
brings the necessity of coping with diverse IoT platform architectures, e.g. cloud-based
system for energy-constrained devices or edge-based system supported by gateways, and
with multiple levels of federation. In addition things handled are of enormous volume.

4.4.3 Security and Privacy Requirements

Data producers necessitate to hold the data ownership, i.e. keep the data under their
control and manage data access control. In addition a correct authentication of users
avoids uncontrolled utilization of the platform, and together with authorization con-
trol, allows only selected actors to push data thus preventing data corruption. When
providers want to expose their data they need to register the data availability within a

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 86

4.5. System Design

and the latter is offering a token-based protocol which allows components to securely
identify each other. A Policy Decision Point (PDP) is a decision engine that responds to
request with a decision based on policies stored within a Policy Information Point (PIP)
and managed through a Policy Management Point (PMP). For simplicity, in the rest of
the chapter, when referring to PDP we assume a system formed by at least the PDP,
PIP and PMP. A Policy Enforcement Point (PEP) secures a component by intercepting
communications and imposing the policies stated in the system. For this purpose it is
assisted by the IdM for authenticating requesters and by the PDP for deciding upon
policies.

4.5.1 IoT Registrar

Table 4.1: IoT Registrar input and output

Input: data

x data Piece of data arriving to the IoT Registrar i

Input: directive

q condition If data x matches condition then registration and
policy generation functions are applied.

φreg(x) registration generation functions Set of functions to be applied on input data x for
generating the registrations

φpol(x) policy generation functions Set of functions to be applied on input data x for
generating the policies

ρ priority Identifies the directive to be applied if more con-
ditions from different directives are matching

Output

reg registration reg = φreg(x)
Generated registration(s) by applying the trans-
formation functions to data x.

pol policy pol = φpol(x)
Generated policy(-ies) by applying the transfor-
mation functions to data x.

As a sort of glue between the described layer and components acts the IoT Registrar,
that makes availability registrations to discovery component on behalf of human admin-
istrators (see Fig. 4.1). As discussed before, a registration to the discovery is required in
order to allow automatic brokering of messages. A registration can be as generic as pos-
sible (raising unnecessary traffic to providers) or much detailed but disclosing sensitive
information. If such registrations are made by human administrators, making detailed
but privacy-preserving registration might require a lot of expertise for each deployment

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 88

4.5. System Design

amend but also would induce latency on an effective usage of the sources: a plug-and-
play approach would be much more advisable. The IoT registrar solves these problems
by subscribing for information and synthesizing registrations (or updates old ones) when
necessary. The IoT registrar bases the correct preserving privacy aggregation of infor-
mation on given directives. For example, it could be instructed to register sensors only
by their type (hence, if a second sensor appears of the same type and behind the same
provider address, no changes are made to the registrations set) and by loose geographical
area (for example, the location of a registration refers to the nearest municipality name
instead to the exact coordinates). Also the creation of access policies is also a challenge
for a correct behaviour of a secured IoT ecosystem [106]. Thus, we make usage of the
registrar to dynamically populate with policies the PDP.

A directive is formed as follow:

δi = (q, φreg(x), φpol(x), ρ)

where q is the condition the information x must match, φreg(x) and φpol(x) are,
respectively, the registration and policy generation functions to be applied on input data
x, and ρ is the priority to discern in case of conflicts . φreg is a set of functions for
generating the registrations (Fig. 4.1.a step 3, Fig. 4.1.b step 2). Each function might be
specified, as examples but not limited to, with a mathematical function or code snippet.
Similarly policy generation functions is a set of functions for generating the policies
(Fig. 4.1.a step 4, Fig. 4.1.b step 3). The functions of the directive are applied when the
condition matches against the data message. The priority unambiguously identifies the
directive to apply if conditions from different directives are matching.

The directives storage of the IoT Registrar manages the following set:

D = δ1, δ2, ..., δn

4.5.2 Message Flows

The IoT data traffic is typically following 4 paradigms: Publish-Query, Publish-Subscribe,
Distributed Query, Publish-Notify. In the first paradigm (Fig. 2a) a context producer,
such as a sensor, publishes context updates to a CM which stores them. When the latter
is queried it responds with the status of the requested contexts. Listing 4.1 shows an
sample of IoT context. Another example of context producers pushing data is an IoT
gateway, locally storing data, aggregating messages and periodically sending a report to
the cloud.

Listing 4.1: Sample of IoT context in NGSI

{ "contextElements ": [{

"entityId ": {"id":" bus18", "isPattern ":false , "type ":" bus"},

"attributes ": [

{"name ":" speed", "type ":" float", "contextValue ":"25"}] ,

"domainMetadata ": [

{"name ":" SimpleGeolocation", "type ":" point",

"value ": {" latitude ":43.4628 , "longitude ": -3.80031}}]

}]}

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 89

4.5. System Design

measured by a sensor upon the stimulation of step 8. All this is completely transparent
from the broker perspective as long as the services expose the same interface of the CM.

Listing 4.3: Sample of data availability in NGSI

{ "contextRegistrationResponses ": [{

"contextRegistration ": {

"providingApplication ": "http ://172.18.2.70:8060/ ngsi10",

"entities ": [{"id":".*" , "type ":" bus", "isPattern ":true }]}

}]}

The subscribe-notify paradigm (see Fig. 4.2d) is initiated by a context subscription
made by a user or application to the broker (step 1) which, as a consequence, subscribes
for the availability of context providers (step 2). When a new provider availability is
notified (step 7), due to already available registration or a fresh one (step 6), the broker
instantiates a subscription to the notified IoT provider, front-ended by the CM. If an
IoT context is already available then it is forwarded to the user (step 9,10). Every
new context matching the subscription follow the established channel (12,13) till an
amendment of data availability or subscription happens.

Typically the cloud IoT platforms implement one or both the first two paradigms im-
plying that data is continuously flowing to the cloud regardless to actual interest of users
and/or applications. The distributed query and subscribe-notify paradigms, instead,
foresee ”lazy” data flows as the data is pulled from remote provider on demand. In order
to keep the simplicity of the centralized paradigm also for the distributed paradigms,
we have introduced the IoT registrar component to be deployed locally to the provider
together with the CM. In case that the IoT system administrators do not have the pos-
sibility (or do not want) to maintain any system locally, the CM can be offered in the
cloud as a service. With this approach the motivation of minimizing traffic to cloud falls
apart, but still other advantages hold, such as the full power over the data by adminis-
trators and the federation of cloud providers overcoming interoperability issues due to
vendor lock-in silos.

4.5.3 Multi-party exchange platform system architecture

The system architecture of a secured multi-party IoT data exchange platform together
with an illustrative data exchange is shown in Fig. 4.3. Each provider silo manages its
own IoT deployment and handles data within its premises or its cloud of choice, exposing
them through a context management (see Fig. 4.2c and 4.2d).

One or more IoT providers are clustered in domains. Every domain has two inde-
pendent security systems for two scopes of action: the intra-domain security system and
the federation security system. The intra-domain security, coloured in red in Fig. 4.3, is
formed by an IdM (idIDM) and a PDP (idPDP) and various PEPs, one for each compo-
nent to secure against internal access. When a message arrives to a secured component
carrying an access token, the PEP first checks the authenticity of the sender with the
assistance of the idIdM and afterwards requests an access right check to the idPDP. If
any of the verification does not succeed the access is denied otherwise the message is
forwarded, transparently, to the secured component. The federation security system is

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 91

4.5. System Design

and fedIdMs. Thus registrations stored in a fedD are visible by anybody in the federation
and therefore it is of utmost importance to control which registrations are made. Each
domain has an IoT Registrar (IoTR) that accepts registrations and synthesize them
following directives. For brokering messages between domains each of the parties deploy
two instances of the broker: one for handling incoming request from outside the domain,
namely incoming federation Broker (inFedB), and another one to handle outgoing request
to the other domains of the federation, namely outgoing federation Broker (outFedB).
The two federation brokers are associated to two different discoveries. In fact, when
a request comes from inside the domain, the outFedB needs to inquiry the fedD for
discovering other domains providing the data of interest. When a request comes from the
outside of the domain, instead, the inFedB discovers data providers within the domain
against the idD (see Tab.4.2). Therefore all the registrations done by the IoTR to the
fedD must carry the exposed address of the inFedB (or its exposed PEP address). Each
of these boundary brokers are protected by two different PEPs, one assisted by the
intra-domain security system with the aim of regulating who in the domains may do
federated requests, and one assisted by the federation security system for moderating
requests from known federation parties.

Having two disjoint security layers allows domain administrators to decide which
section of data can be exposed. In other words, a request coming by the inFedB might
be treated differently by an IoT provider PEP than a request coming from within the
domain. In addition if domainB has different federation access policies among domainB
users, the outFedBB will receive unfiltered data, but the PEPidBB

will refine data as
prescribed in PDPB. This approach permits to hide a userB existence and associated
policies from external.

Table 4.2: Domain infrastructure settings

Access Control Registration Subscription Discovery

idB domain none none idD

idD domain none none n/a

IoTR domain none
provider avail.

to idD
n/a

outFedB
domain for query
and subscribe;
fed for notify

as provider for
everything to idD

none fedD

inFedB
domain for notify;

fed for query
and subscribe

as provider for
every registrations

in fedD
none idD

fedD domain none none n/a

Fig. 4.3 illustrates also an actual scenario: a userB within domainB subscribes for
data provided by an IoT provider residing within domainA. UserB, hence, sends a request
(1) to the PEP of the idBB carrying the userB access token. The PEPidBB

checks the
user identity, authorization and access control against the idPDPB and idIdMB and if

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 93

4.6. System Implementation

successful, the request is passed to the idBB which subscribes for provider availability (2)
passing through a PEP. For simplicity we omit the next intra-domain hereinafter. The
only resulting notification (3) contains the outFedBB, as initialization settings, which
is contacted (4) and triggers an availability subscription to the fedDB (5). Once a new
matching registrations appear (step 6-8) the provider is notified (9) and an inter-domain
channel is initialized. The outFedBB performs a subscription (10) to the inFedBA using
the federation identity and token of the domainB. The PEP of the receiver is controlling
against the fedIdMA and fedPDPA the authorizations. In case of success, a subscription
arrives to the idDA (11) and because of (6) the real provider is finally contacted (13).
At this point the inter-domain channel is established and data flowing from IoTPA to
userB (step 14-17) for each new context update.

The query scenario can be derived from the complex scenario just described and the
distributed query paradigm of §4.5.2.

4.5.4 How to scale the federation

The proposed architecture can be scaled for achieving super-domains of domains it-
eratively. For this purpose, each domain of Fig. 4.3 is seen as domain IoT provider
by the super-domain infrastructure (see Fig. 4.4). The latter manages a super-domain
set of components such as: a super-domain PDP (sdPDP) and IdM (sdIdM) synchro-
nized, respectively, with the domains federation PDP (dFedPDP) and IdM (dFedIdM),
super-domain Discovery (sdD) synchronized with the domains Federation Discoveries
(dFedDs), a super-domain IoT Registrar (sdIoTR) subscribed to the sdD, a super-domain
Broker (sdB) that references to the sdD, a super-domains federation Discovery (sdFedD)
synchronized with federation Discoveries of other super-domains, a super-domains fed-
eration PDP (sdFedPDP) and IdM (sdFedIdM) synchronized with other super-domains,
and an outgoing and incoming super-domains federation Broker (outsdFedB and ins-
dFedB). In this architecture there are three separated security layers: the intra-domain,
super-domain, and super-domains federation.

The system is quite flexible to different scenarios and configurations. It is possible to
have hybrid solutions where IoT providers are directly managed by the super-domain,
as shown in Fig. 4.4. In the shown example there are 3 levels of federation (i.e. IoT
providers, domains and super-domains) but, theoretically, the numbers of levels is un-
bounded.

4.6 System Implementation

4.6.1 Standards and Open Source software adopted

LIoTS implementation is based on open source software components published within
the FIWARE framework [5]. The FIWARE components are in some cases adopted ”as
is” and sometimes with modifications. Additionally, we implemented the IoT registrar,
subscription proxy, blockchain wrapper and adapter. Finally, we used the open source

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 94

4.6. System Implementation

sdFedPDP-
SuperDomains
Federation PDP

sdFedD-
SuperDomains

Federation Discovery

sdD-
SuperDomain

Discovery
sdIoTR-

SuperDomain
IoT Registrar

sdB-
SuperDomain

Broker

dFedD

outFedB

idPDP

idD

idB

idIoTR

IoT providers

idIdM

dFedPDP

dFedIdM

inFedB

dFedD

outFedB

idPDP

idD

idB

idIoTR

IoT providers

idIdM

dFedPDP

dFedIdM

inFedB

Distributed DB Sync.

Distributed DB Sync.

Distributed DB Sync.

sdPDP-
SuperDomain PDP

sdIdM-
SuperDomain IdM

sdFedIdM-
SuperDomains
Federation IdM

outsdFedB -
Outgoing

SuperDomains
Federation Broker

Providers level

Domain level

Super-domain level

Providers level

Domain level

D
B

 S
y
n

c
.

D
B

 S
y
n

c
.

D
B

 S
y
n

c
.

SuperDomain

IoT providers

insdFedB -
Incoming

SuperDomains
Federation Broker

Figure 4.4: Scaling the proposed architecture iteratively.

Hyperledger Fabric software as blockchain technology. Table 4.3 summarize the list of
components.

As data protocol we used the OMA/FIWARE NGSI protocol [58]. This permits the
content-based data exchange system given by the highly flexibility of its query model.
Furthermore, FIWARE community is very active on the definition of data models [80, 27]
for several application fields (e.g., smart cities, transportation, weather).

4.6.2 Domain IoT Registrar

We implemented the IoT Registrar (Fig. 4.1) component using NodeJS and relying on
the NGSI protocol. The purpose of this component is twofold: i) to register context
availability into the fedD, in order to make data available from IoT providers to other
domain’s data consumers; ii) to store policies into the fedPDP to regulate the data access
from other domains. The condition q of a directive (see §4.5.1) is modelled through the
NGSI subscription parameters, e.g.,: pattern of entities (things), attributes list, meta-
data (e.g., geographic scope). For each new directive, the IoT registrar issues an NGSI-9
subscribeContextAvailability request to the idD component and awaits a notification for
every new context information available. In case of the notification, the IoT registrar
prepare a context availability registration following the registration federation functions.

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 95

4.6. System Implementation

Table 4.3: Ad-hoc components implementation and changelog of the adopted open source components
for our prototype

Component Software Modifications

idIdM, fedIdM FIWARE Keyrock1 as it is

idPdP, fedPdP FIWARE AuthZForce2 Attribute-based rules

PEP FIWARE Wilma3 Forward subscription to subscription proxy

outFedB, inFedB,
idB

FIWARE Aeron Broker4
Configurability of exposed addresses for forwarded subscriptions

Interoperability with Orion (i.e., throttling, datamodel)
Integration with IdM (to request access tokens)

idD, fedD FIWARE NeConfMan5
Geographic discovery

Integration with IdM (to request access tokens)

CM
FIWARE Orion6; as it is

FIWARE Aeron Broker (see above)

Subscription Proxy Our implementation -

IoT Registrar Our implementation -

Blockchain Hyperledge Fabric7 as it is

Discovery wrapper Our implementation -

PDP wrapper Our implementation -

Blockchain adapter Our implementation -

Context availability registrations on the fedD should be privacy-preserving, since
they are visible outside the domain into the federation. Thus, we implement different
φreg(x) (registration generation functions) to produce registrations at various level of
details:

• Entity Level : every context availability registration refers to a single context entity
(i.e., thing, sensor), thus containing ID, type and geographic bounding box of the
entity.

• Type Level : every context availability registration refers to a type of context enti-
ties. Thus, given a type T1, there is only one registration for all type T1 entities
within the domain, containing an aggregated geographic bounding box covering
all the entities with geographic metadata. The bounding box of the registration
is updated whenever a new entity of the same type becomes available and is not
covered by the actual bounding box. No entities IDs are published outside the
domain into the fedD.

• Provider Level : this is the most privacy-preserving configuration, where only one
registration is issued for all the context information containing the bounding box
for all the geographic annotated entities. The bounding box is updated accordingly
to new entities. No types and no IDs are published into the fedD.

The default access policy into the security system is to deny access if not differently
stated with a policy. The IoTR updates access policies on the fedPDP, in order to
allow access to the registered context information from outside the domain. This task
rely on the ”providerClass” annotation specified by within the intra-domain registration
of the IoT provider (in the next section we will see this being set through a φreg(x)

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 96

4.6. System Implementation

CMIoTR

IoT Provider

SubP

PEP

idB /

inFedB

PEP

Token +
Subscribe

1

Subscribe 2

Subscribe

3

Token +

Notify

Intra-domain

IdM

CMIoTR

IoT Provider

SubP

PEP

idB /

inFedB

PEP

Token

Request
2

Notify
1

Access Token
3

4

Figure 4.5: Integration of the IoT provider with the intra-domain security layer using a Subscription
Proxy (SubP).

of the IoT provider’s IoTR). If the intra-domain registration annotates the available
information as ”openData”, the IoT Registrar stores an access policy into the fedPDP,
adding the corresponding entity type to the list of types accessible from outside the
domain. When the context information is labelled as ”protectedData”, a registration is
made into the fedD but not policy added into the fedPDP, thus, it becomes available
but not accessible from outside the domain. In this case, an external domain may
still discover the available protected data and, then, negotiate the access to them, for
example, through a blockchain-based marketplace as presented in §4.6.5. When data is
marked as ”confidentialData” no action is taken from the IoT Registrar and, therefore,
it becomes not accessible nor even discoverable from outside the domain.

4.6.3 IoT Provider implementation: privacy, security and discoverabil-
ity

The conceptual paradigms of an IoT provider depicted in Fig. 4.2.c-d do not consider
the security aspect. For protecting the Context Manager it suffices to insulate it with a
PEP component that intercepts all the incoming requests and enforces authentication,
authorization and access control. This approach is enough for synchronous communica-
tion (i.e., query) but not for asynchronous paradigm such as subscribe-notify (4.2.d). In
the latter case, the CM is initializing the communication for a notification which must
carry an access token to get through the PEP that protects the idB from tampered
or false data by unauthorized data producers. For that purpose, we introduce a Sub-
scription Proxy that subscribes to the CM on behalf of the data producer, and forward
notifications to subscribers enhanced with the access token retrieved from the idIdM (see
Fig. 4.5). The IoT provider PEP proxy is configured to forward all the subscription to
the Subscription Proxy (SubP).

We used an IoT registrar to build up a full IoT provider (see Fig. 4.1.a). It registers
the availability of context information on the idD when needed. The condition q is again
modelled through the NGSI subscription parameters, that are carried within a NGSI-10
subscribeContext used for context data messages (differently from the availability mes-
sages as in the domain IoT registrar, since a discovery component is not available within

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 97

4.6. System Implementation

the IoT provider). For every directive, the IoT registrar issues an NGSI-10 subscribeCon-
text request to the CM. The IoTR awaits for notifications (i.e., NGSI-10 notifications)
regarding new context information published into the CM. The registrar then applies the
registration generation functions to the notified context data and issues a registration
(i.e., NGSI-9 registerContext) to the idD with the availability of new entities. For the
IoT provider case, we configured the registration to be always at the entity level, thus,
specifying both the type and the entity id. The implemented φreg(x) (with a NodeJS
code snippet) aggregates the geographical location of the pushed entity with a bounding
box. We used three different directives with conditions matching to three different data
types: open data, protected data and confidential data. When data matches one of
those directive, the φreg(x) adds a ”providerClass” annotation to the registration with
the appropriate values among ”openData” (openly accessible from the federation), ”pro-
tectedData”(data available to the federation but accessible through further negotiation),
and ”confidentialData” (data only available from within the local domain). This context
metadata will then arrive, through the idD, to the domain IoT Registrar (section 4.6.2),
and is used to update the access policies on the fedPDP component.

4.6.4 Federation through Blockchain

We integrate the Hyperledger-Fabric framework [109] with the rest of the system. Each
federation domain has a blockchain peer that is connected to the LIoTS through a
blockchain adapter (BCa). The BCa provides an API with two methods:

• /validatePolicy, used to save a new policy into the ledger;

• /validateRegistration, for saving a new registration into the ledger.

This API is used by two more components: a PDP Wrapper and a Discovery Wrap-
per. These components intercept every write request to the fedPDP or fedD components
and interact with the blockchain for storing and updating policies and registrations. The
wrappers provide a method invoked by the BCa to notify the consensus reached on the
blockchain network for the new policy or registration:

• /notifyPolicy, provided by the PDP Wrapper;

• /notifyRegistration, provided by the Discovery Wrapper.

The blockchain peer notifies the corresponding BCa every time a new block is added
to the ledger, and the BCa forwards the notification to the corresponding PDP or Dis-
covery wrapper. Thus, the notifyPolicy and notifyRegistration are invoked only when a
consensus is reached into the federation and the same set of registrations and policies
are, then, updated locally in each domain, resulting to a shared status between the local
fedDs and fedPDPs. The synchronization process, with respect to the fedPDP case, is
shown in figure 4.6.

It is interesting to note that the component requesting a write operation to the
fedPDP (or fedD) receives a response only when the write operation is added to the

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 98

4.6. System Implementation

the domainA, Alice is a data consumer that needs data for her application. The IoT
Registrar of DomainB is configured to aggregate registrations at type level, while the
IoT Registrar of the IoT providers registers data availability at entity level.

Table 4.4: Data produced by Bob and registrations available from within the domain (made by the
IoT registrar of the IoT provider) and in the federation (made by the IoT registrar of the domain).

Pushed Data (by Bob)
Intra-domain Registrations
(aggregation: entity level)

Federated Registrations
(aggregation: type level)

entityId: {id: ”Entity1”, type: ”Type1”},
attributes:[
{name: ”attr1”,contextValue: ”value1”},
{”name”: ”position”, contextValue: ”2,-3”]}

entities: [
{id: ”Entity1”, type: ”Type1”}],

contextMetadata: [{
{name: ”providerClass”, value: ”protectedData”}
{name: ”SimpleGeoLocation”,

value: {nwCorner: ”2,-3”, seCorner: ”2,-3”}}}],
providingApplication: ”http://172.18.2.41:3045/v1”

entities: [
{id: ”.*”, type: ”Type1”, isPattern: ”True”}]

contextMetadata: [{
{name: ”SimpleGeoLocation”,

value: {nwCorner: ”2,-3”, seCorner: ”2,-3”}}}],
providingApplication:

”http://172.18.4.222:3045/ngsi10”

entityId: {id: ”Entity4”, type: ”Type1”},
attributes:[
{name: ”attr1”,contextValue: ”value2”},
{”name”: ”position”, contextValue: ”4,4”]}

entities: [
{id: ”Entity4”, type: ”Type1”}],

contextMetadata: [{
{name: ”providerClass”, value: ”protectedData”}
{name: ”SimpleGeoLocation”,

value: {nwCorner: ”4,4”, seCorner: ”4,4”}}}],
providingApplication: ”http://172.18.2.41:3045/v1”

entities: [
{id: ”.*”, type: ”Type1”, isPattern: ”True”}]

contextMetadata: [{
{name: ”SimpleGeoLocation”,

value: {nwCorner: ”2,4”, seCorner: ”2,-3”}}}],
providingApplication:

”http://172.18.4.222:3045/ngsi10”

Bob classifies his data as ”protectedData” since he wishes to get money on return
of sharing data. Table 4.4 shows the data pushed by Bob related to two entities (first
columns), and the produced registrations available from within the domain and into
the federation, made by the IoT provider’s IoT registrar and by the intra-domain IoT
registrar respectively. There are two intra-domain registrations, each refers to a pushed
entities. There is only one federated registration (third column of Table 4.4), with
two states that changes during time. The second federated registration overwrites the
first one after the push of the second entity since the two registrations refer to the
same set of entities (i.e., same entity type and a generic id declared by the regular
expression wildcard .*). The second registration has an updated bounding box covering
both entities. The class of the provider is ”protectedData”, thus, the intra-domain IoT
registrar generates no policy, resulting into data discoverable (because of the registration)
but not accessible (because of the default conservative policy) among the federation.
The providingApplications refers to the IoT provider’s Context Management and to
the inFedBB (or their shielding PEP components) for the intra-domain and federated
registrations respectively.

At this point the data is accessible by Bob but not by Alice (see Fig. 4.8.a-b). At the
beginning of each request, an access token is given by the fedIdM which is, then, carried
in the request. The PEP proxy of the federated broker is rejecting every request coming
outside domainB. Alice can discovery on the marketplace what data she can buy. When
she buys data by clicking the button in the marketplace (Fig. 4.8.c) a transactions is
recorded in the blockchain and a new policy is stored into the federated PDP. At this
point, Alice can receive the data for type Type1 (Fig. 4.8.d) provided by and IoT Provider
of a different domain. After 20 seconds the purchase expires, the policy is deleted from
the PDP, and, consequently, the Alice’s right to access Type1 data withdrawn.

Being our system designed and implemented following open principles, standards
and software, more complex marketplace can be used on top such as the full-fledged

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 100

4.7. Evaluation

Table 4.5: Message exchanged for each function

Query Initialize Subscription Notification

Centralized 1 1 1

Federation 7 10 4

Secured Federation >28 >40 >13

idB

PEP

idIdM

DomainBDomainA Public network

idPDP

idD

PEP

CM

inFedB
P
E
P

P
E
P

fedIDM fedPDP

fedD

PEP

outFedB
P
E
P

P

E

P

idIdM idPDP

idB

PEP

idD

PEP

IoTR

IoTR

PEP Requestors

IoT Provider

PEP

SubP

Figure 4.9: Testing architecture

compared with an unsecured publish-query paradigm (representing a centralized archi-
tecture). Fig. 4.9 illustrates the tested secure federated architecture comprehensive of
the security layer (IdMs, PEPs and PDPs). For simplicity of experimentation, we omits
the components not involved in the tests. Further, we deploy a centralized federation
security system and federation discovery.

4.7.1 Publish-Query scenario

We test the scenario where requestors within domainB request data residing into IoT
provider(s) into domainA. For testing we use from the FIWARE framework, Orion as
the Context Management (CM), Aeron IoT Broker as Broker, NEConfMan as Discovery,
AuthZForce as PDP, KeyRock as IdM, and Wilma as PEP. In addition, we uses our
prototype of IoT Registrar and Subscription Proxy. We use Apache JMeter to perform
query requests for a random number of randomly chosen entities. The test is carried
out varying number of total entities handled by the CM (100, 1000 and 10000) that
represents the size of the IoT deployment, by considering each entity a thing. We vary
also the number of concurrent requesting clients (threads) between 20 and 100. The
number of attributes per stored entity and the number of attributes queried per entity
is fixed to 100 and 20 respectively. We have taken 10000 as the top size of an IoT
deployment taking into consideration the real Smart City of SmartSantander [95] where
more than 20000 entities are handled. We ran the experiments on a single server with a
8 core Intel Xeon CPU E5620@2.40GHz and 24 GBs of RAM.

In Fig. 4.10 the latency experienced during tests is shown on the Y-axis against the
number of queried entities on the X-axis, both in logarithm scale. The colours of the

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 102

4.7. Evaluation

0 500 1000
0

200

400

600

800

T
h
ro
u
g
h
p
u
t(
E
n
ti
ti
e
s/
se

c)

20 Threads

0 500 1000
0

200

400

600

800
100 Threads

100 101 102 103

of queried entities

102

103

104

105

La
te

n
cy

(m
S
)

100 101 102 103

of queried entities

102

103

104

105

Orion, 100 Entities

Orion, 1k Entities

Orion, 10k Entities

FedNoSec, 100 Entities

FedNoSec, 1k Entities

FedNoSec, 10k Entities

FedWithSec, 100 Entities

FedWithSec, 1k Entities

FedWithSec, 10k Entities

Figure 4.10: Latency and throughput for query scenarios

lines represent the architecture tested, while the different marker shapes represent the
number of entities provided by the CM. For fair comparison, test point with a non-zero
error rate are omitted from the plots. The throughput is normalized by considering the
amount of information represented by entity contexts returned in each query response.
For example, if the throughput of a testing scenario where each request queries 100 en-
tities achieves 20 requests/sec, it is normalized to 2000 entities/sec. We can note that
the different colour lines are getting closer in latency as the number of queried entities
increases. This means that the overhead introduced by the federated architectures be-
comes increasingly negligible as the amount of requested data per query increases. In
addition, as the dimension of the deployment increases (total entities up to 10000) the
three lines are getting closer to each other indicating that the bottleneck becomes the
IoT provider. The throughput presents similar behaviour, viz. the performances of the
federated architectures get closer to those of simple IoT provider as the amount of infor-
mation exchanged in the queries as well as the dimension of single platform increases.

We performed one more test to investigate the benefit of load balancing implicit in
a distributed architecture. We compared the federated architectures (unsecured and
secured) comprising 10 CMs, each handling 1000 entities, with a single unsecured cen-
tralized CM with 10000 entities. Each of the small CM handles disjoint set of entities
whilst the big CM handles them all. We have then performed randomized queries, and,
therefore, for each query one or more CMs need to be contacted by the Broker. The
test results (Fig.4.11) show that a federated architecture performs much better than a

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 103

4.7. Evaluation

0 100 200 300 400 500
of queried entities

0

500

1000

1500

2000

2500

T
h
ro
u
g
h
p
u
t(
E
n
ti
ti
e
s/
se
c)

Throughput Plot

100 101 102 103

of queried entities

102

103

104

105

106

La
te
n
cy
(m

S
)

Latency Plot

Orion,10k Entities,20 Threads

Orion,10k Entities,100 Threads

FedNoSec,10 Orion,
1k EntitiesEach, 20 Threads

FedNoSec,10 Orion,1k EntitiesEach,100 Threads

FedSec,10 Orion,1k EntitiesEach,20 Threads

FedSec,10 Orion,1k EntitiesEach,100 Threads

Figure 4.11: Results for single- and multi-provider scenarios

centralized approach, in terms of both throughput and latency.

4.7.2 Publish-Notify scenario

The evaluation method for the Publish-Subscribe paradigm is different from the Publish-
Query case, since the data flow is asynchronous. To setup the evaluation we populate the
tested system with a varying number of subscriptions for a varying number of entities.
For the centralized scenario, the subscriptions were sent directly to the CM. For the
federated scenario, the subscriptions (NGSI-10 subscribeContext) are issued to the idBB

for entities residing in DomainA, whose availabilities are already registered in the fedD
component. The messages reach the correct IoT provider within DomainA depending
on the requested entities, and, thus, the subscription channels are established throughout
the federation.

We use a hit notification rate (HR) as a system reliability metric. This indicates the
ratio between the actual number of notification over the expected number of notifications:

HR =
notificationsCount

expectedNotifications
(4.1)

where notificationCount is the actual number of notifications received on the notifi-
cation server, while expectedNotifications is the expected number of notifications to be
received if none of them is lost.

In order for expectedNotifications to be deterministic, the subscriptions are issued
with a fixed number of total entities, such that the number of subscriptions issued for
each entity (NSE) is:

NSE =
totalNumberOfSubscriptions× numberOfEntitiesEachSubscription

numberOfEntities
(4.2)

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 104

4.7. Evaluation

Entity1,
[Attribute1:Value10]

Entity1,
[Attribute2:Value21]

Entity1,
[Attribute1:Value10]

Entity1,
[Attribute1:Value10]

Entity1,
[Attribute1:Value10,
Attribute2:Value22]

Entity1,
[Attribute2:Value22]

Throttling period Throttling period

Entity1,
[Attribute1:Value10]

Entity1,
[Attribute2:Value21]

Entity1,
[Attribute1:Value10]

Entity1,
[Attribute1:Value10,
Attribute2:Value21,
Attribute2:Value22]

Entity1,
[Attribute2:Value22]

ContextUpdate

Notification

Throttling period Throttling period

(a) (b)

Figure 4.12: Throttling behaviour: a) discard approach, b) cumulative approach

The second step of the evaluation process is to generate data for the entities. We
issue NGSI-10 updateContext requests for a single random entity at random intervals
to the IoT Provider of Domain A in order to raise notifications. Each messages carry as
attributes value the timestamp of the request. Being the whole system, composed of two
domains, hosted on the same physical machine, we can compute the experienced latency
by checking the notification arrival timestamp at the requestors within domainB.

Being NSE the number of subscription issued for each entity, the expectedNotifications
value of HR (4.1) is:

expectedNotifications = NSE × numberOfUpdates (4.3)

for simplicity, we keep NSE as an integer.
A parameter to consider in the Publish-Subscribe scenario is the throttling of the

subscription defined in the NGSI standard as the “proposed minimum interval between
notifications” [58]. However, the NGSI standard does not specify exactly how the throt-
tling should be implemented. Different implementation heavily influences the federation
behaviour in the Publish-Subscribe case. Fig. 4.12 shows two approaches to throttling.
The Orion CM implementation discards all the new data related to entities matching a
subscription if the throttling time since the previous notification for such subscription
is not passed. In addition, in the Orion CM implementation of notifications, only one
single entity is contained in each notification, leading to many notification massages of
very small dimensions. In facts, in case of a non-null throttling, the Orion CM sends
less notifications badly affecting the HR, whereas, in case of a null throttling time, the
federation is flooded by huge number of very small notification messages. This actual
implementation penalizes the federation performance since, as also shown in the Publish-
Query scenario, the impact of the overhead imposed by the federation layer decreases as
the dimension of the messages exchanged increases.

To address this problem, for the Publish-Subscribe scenario we use the Aeron IoT
Broker as a CM, instead of Orion. The Aeron component handles the throttling dif-
ferently. It stocks all the updates received during the throttling period, and it sends
a unique cumulative notification at the end of it. To benefit of the advantage of the
cumulative throttling behaviour but also to affect as less as possible the latency of each
notification, the throttling time during the tests is set to the minimum possible for Aeron

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 105

4.8. Conclusions

formance difference of the federation with the centralized case to be lower for higher
number of entities in each subscription, but never negligible. However, the overhead
imposed by the security layer is extremely negligible, since the lines representing the se-
cured federated architecture is always almost overlapping to that of the federation with
no security layer.

Differently from the Publish-Query scenario, the performance of the federated archi-
tecture do not get closer to that of the centralized approach as the number of subscription
increases. This is because the increase in the number of subscriptions (X-axis) causes a
consistent rise of the number of notification flowing throughout the federation compared
with the simple centralized CM case. Referring to the static evaluation of Tab. 4.5 (3rd
column), if numberOfSubscriptions is the number of subscriptions issued, we have the
total number of notifications flowing throughout the system as reported in Table 4.6.

Table 4.6: Message exchanged for each function

Number of Notifications

Centralized numberOfSubscriptions

Federation 4× numberOfSubscriptions

Secured Federation > 13× numberOfSubscriptions

The increase in the number of subscription causes a much bigger load on the federated
system leading to a faster degradation of the performance. This is very different from
what happens in the Publish-Query case where the increase in the number of queried
entities does not affect the number of messages but only their dimension.

4.8 Conclusions

In this chapter we have presented a distributed federation architecture scalable by de-
sign. Privacy and security are taken into consideration as they play a big role in the
overall system. The evaluation shows that overhead introduced in big scale deployments
is negligible and the federation approach is even better performing in multi provider
scenarios. Since the adoption of standard-based communications protocol, our system
will automatically inherit future advancements in the standard such as the semantics
and linked data concepts.

Data usage control is the next step for a secured IoT data exchange and, in the
next chapter, we start from the proposed architecture to design a distributed data usage
control system.

CHAPTER 4. Federation of IoT Platform and IoT Data Sovereignties 107

Chapter 5

Data Usage Control

Data usage control is of utmost importance for federated data analytics across multiple
business domains. However, the existing data usage control approaches are limited due
to their complexity and inefficiency. This chapter proposes an intent-oriented data usage
control system for federated data analytics, called IntentKeeper. The system allows users
to specify intents for data usage policies and services easily. Thus, it reduces the data
sharing complexity for data providers and consumers. Moreover, IntentKeeper enforces
preventive and proactive data usage control for better security and efficiency through
joint decisions based on policy enforcement and service orchestration. The use case
validations for the automotive industry scenario show that IntentKeeper significantly
reduces the complexity of policy specification (up to 75% for moderately complex sce-
narios) compared to the state-of-the-art flow-based approach. Lastly, the experimental
results show that the IntentKeeper system provides sufficiently short response times (less
than 40ms) with minimal overhead (less than 10ms).

5.1 IntentKeeper: Intent-oriented Data Usage Control for
Federated Data Analytics

In the past decade, big data analytics has been often carried out by companies within
their own individual centralized data infrastructure using existing open-source data pro-
cessing frameworks such as Hadoop [110], Storm [111], Spark [112], and Flink [113].
However, in the new business domains like smart cities, industry 4.0, and eHealth, data
is often generated and managed by different organizations and there is a strong demand
for data sharing across different organizations’ domains in order to create new businesses
or improve the efficiency of existing ones. This demand triggers a fundamental change
to the underlying data sharing infrastructure for supporting federated and trusted data
analytics across domains. For example, Europe promotes a federated data infrastructure
for joint businesses via two co-related initiatives, namely IDSA [16] and GAIA-X [14].

Due to the data protection and privacy regulation GDPR [114], one of the biggest
open challenges to provide such a federated data sharing infrastructure is to enforce
proper data usage control across different management domains regarding user-defined

108

5.1. IntentKeeper: Intent-oriented Data Usage Control for Federated Data Analytics

outsource the complexity of programming data services from data providers/consumers
to third-party service developers. Unfortunately, such a service model is still missing in
state of the art.

2) Policy modelling, meaning how to express data usage policies from the perspec-
tive of data providers [119, 120]. Several policy models define data usage constraints
flexibly and formally. Still, they generally represent the fine-grained low-level data us-
age constraints and usually require significant effort from data providers. For example,
LUCON [121] requires its users to specify data usage constraints of a data processing
pipeline per flow, which is feasible only when the logic of the data processing pipeline is
pre-defined and static. As pointed out by the survey in [122], existing policy models are
limited to express data usage control behaviors for dynamic data processing flows and
also face the problem of balancing the trade-off between expressiveness and ease-of-use.

3) Policy enforcement, referring to the mechanism to continuously monitor and en-
force pre-defined data usage constraints in the actual data usage process, which consists
of three phases: before usage, ongoing usage, and after usage [123]. As reported in [122],
most existing data usage enforcement mechanisms [90, 121, 124] can only support de-
tective enforcement for static and pre-defined data processing flows, mainly due to their
designs that fully decouple policy enforcement from service orchestration. They can
monitor and check whether the orchestrated data processing flows are compliant with
the defined usage policies after the data processing flows have been established; however,
they cannot enforce data usage control preventively and proactively.

To overcome the limitations of existing data usage control approaches, in this chap-
ter we introduce an intent-oriented design principle to ease the modeling of both data
usage control and service orchestration and, then, present a new data usage control ap-
proach called IntentKeeper1 to enable preventive data usage enforcement for federated
data analytics in a proactive manner. As illustrated in Fig. 5.1, the high level idea of
IntentKeeper is to take two types of inputs, usage policy from the data provider and
service intent from data consumer, and then translates both inputs directly into a set
of orchestration actions that can set up the data processing flows compliant with the
defined data usage policies.

Overall, we make the following contributions in this chapter.

• We present a new intent-oriented approach of modelling both usage policy and
service intent to reduce the complexity for data providers and data consumers.
Its effectiveness and efficiency are validated via a detailed use case study. The
validation result show that our approach can reduce the specification complexity
by 75% of moderately complex scenarios.

• We present a new mechanism to enable preventive and proactive enforcement for
data usage control by combining policy enforcement and service orchestration to
make joint decisions. This new mechanism is realized in a decentralized way by
leveraging permissioned blockchain to provide cross-domain synchronization and
traceability.

1The name is inspired by ZooKeeper [125].

CHAPTER 5. Data Usage Control 110

5.2. Background and Challenges

• We introduce the detailed design and implementation of the IntentKeeper system
and also report its performance evaluation results. The experimental results show
that the IntentKeeper system provides sufficiently short response times.

5.2 Background and Challenges

5.2.1 Data Usage Control

Data sharing between companies is a common practice in various industrial verticals,
such as smart manufacturing, supply chain management, and automotive. In the past,
data consumers and data providers/owners could negotiate agreements to allow sharing
of data under certain limitations on its usage. Consumers had to respect the agreements
after the data was shared. In the end, this approach relies on legal enforcement that
reacts after the rules are broken. However, for the upcoming data-driven economy, the
efficiency of such an approach is questionable because data providers simply have no
technical mean to trace and enforce the actual usage of their data once their data is
shared.

Recently, as an alternative approach, data usage control has become more and more
important to enable efficient and trusted data sharing across multiple domains. However,
it is facing new challenges as we start to scale up data analytics for more domains and
better openness. Let us take a concrete scenario to analyze these challenges.

5.2.2 Automotive Scenario

The targeted use case is an automotive scenario in a urban environment (see Fig. 5.2).
Electric cars from different manufacturers produce data of various sorts, such as GPS
location, battery status, mileage counting, and speed. The produced data may con-
tain personal data belonging to car owners. Often, car owners share data with their
car manufacturer for the visualization of statistics, trends, and suggestions through a
portal. The car owner, before sharing the data, might sign a pre-formatted “terms and
conditions” contract with the manufacturer that states that the usage of their personal
data might happen only after anonymization. Many organizations might be interested
in using the data collected by the car manufactures in order to derive mobility insights.
Let us assume that a market analytics company wishes to analyze the trends of electric
cars distribution, usage and growth in urban environments. The trend analysis might
be based, for instance, on statistical methods or on machine learning. This analysis is
valuable for commercial purposes, e.g., for companies deploying electric vehicle (EV)
charger stations. The target of such companies might be to minimize the number of
installed stations (thus, minimizing the costs) and to maximize the quality of service
for e-car owners by intelligently distributing the stations where the cars are usually
parked for longer periods (e.g., near offices and residential areas) and where there is a
higher concentration of EVs. The insight analysis of the analytics company might be
very sensitive for car manufacturers since it might disclose internal market trends to the
competitors. Furthermore, different car manufacturers might not want that their own

CHAPTER 5. Data Usage Control 111

5.3. Intent-oriented Data Usage Control with IntentKeeper

data get merged (separation of duties), to avoid comparative studies. In the absence
of consortium agreements within a vertical, such a scenario, that is beneficial for both
urban and environmental sustainability, while also representing an interesting business
opportunity, simply cannot take place.

5.2.3 Motivation

According to our analysis, the presented automotive scenario raises the following chal-
lenges that go beyond the capability of existing data usage control approaches.

Challenge 1: high complexity when dealing with dynamic data processing flows
The data processing flows of the required data analytics can change over time as

data sources join and leave. For example, a car manufacturer manages the reported
data streams from a large number of e-cars and might want to specify the same data
usage policy for all of the car owners. In this case, the number of data processing flows
to be enforced by a single data usage control policy will be changing over time as the
e-cars join and leave. This is challenging for the existing flow-based approaches like
LUCON [121] since they require the data processing flows to be defined in advance.

Challenge 2: policy enforcement to be considered not only “after”, but also “during”
the construction of data processing flows

Data processing flows are established to allow the permitted data usage for data con-
sumers. However, in many cases it might be too late to consider the policy enforcement
of data usage control after the establishment of the required data processing flows. For
example, the car owners might allow their e-car data to be utilized by an analytics com-
pany for the e-car growth analysis only within the car manufacturer’s domain and after
their data are anonymized. In this case, a data anonymization function needs to be in-
serted since the beginning of the requested data processing flows. Also, the e-car growth
analysis processing has to be deployed into the car manufacturer’s domain. These two
behaviors are part of the policy enforcement, but they have to be taken into account by
service orchestration during the construction process of the requested data processing
flows.

5.3 Intent-oriented Data Usage Control with IntentKeeper

To address the aforementioned challenges, we design an intent-oriented data usage con-
trol system called IntentKeeper with the following features:

• Simple usage policy specification: IntentKeeper simplifies the specification of usage
control policies for data providers via an intent-oriented data usage policy model.

• Preventive and proactive data usage control : Service orchestration works together
with policy enforcement to make joint decisions so that the orchestrated workload
can already respect relevant data usage control policies.

CHAPTER 5. Data Usage Control 112

5.3. Intent-oriented Data Usage Control with IntentKeeper

Figure 5.3: Overview of the IntentKeeper system

• Decentralized policy enforcement : Joint decisions between service orchestration and
policy enforcement across domains are made in a decentralized manner for better
scalability and reliability.

In this section, we introduce the major design aspects of IntentKeeper, starting with
a system overview.

5.3.1 System Overview

As shown in Fig. 5.3, the IntentKeeper is a decentralized system that includes a few
infrastructure services and a set of site instances, each of which is deployed and managed
within a separated organization domain.

The infrastructure services include: 1) Identity Management service that iden-
tifies and authenticates all site instances, each representing a certified domain user; 2)
Blockchain service that propagates, synchronizes, and records some important global
information across all sites, such as user-defined data usage policies, the domain name
of each site, and also the policy enforcement decisions made within each site; 3) Appli-
cation Repository that saves the docker images and metadata of all data applications
developed and registered by application providers. The infrastructure services are the
basis for the development of a marketplace for IntentKeeper. A marketplace matches
data providers with data consumers, handling data exchange agreements and policies
consequently. The state-of-the-art approach adopts blockchain technologies [126] due
to the possibility of handling smart contracts for the generation of policies triggered by
transactions. We embrace this approach and use the blockchain for both data availabil-
ity and policies. In addition, immutable storage such as blockchain permits to have a
log of all policies, services intents, and data availability. Thus, blockchain allows the
traceability of data usage that is important for auditing the system’s behavior and to
trace which consumer uses which data.

CHAPTER 5. Data Usage Control 113

5.3. Intent-oriented Data Usage Control with IntentKeeper

Each site instance represents a specific domain and has the same set of system com-
ponents as explained below.

• Policy Management provides a graphical user interface (GUI) for data providers
to specify their data usage control policies and also maintain the user-defined data
usage policies from all domains to keep them synchronized via the Blockchain
service.

• Access Control module manages traditional data access control to enforce which
user can access which data. In our design, we try to reduce the complexity for
data providers to specify and manage all kinds of low-level access control rules,
because these rules could be derived by policy enforcement on the fly during service
orchestration according to the high-level data usage control policies.

• Discovery module is managing the availability of data entities with their reg-
istered metadata and also maintaining a domain-based routing table to enable
cross-domain data exchange.

• Broker module manages all entity data published by data providers, and then
establishes the data flows between different data services via a content-based pub-
/sub interface.

• Service Orchestrator handles the high-level service requests issued by data con-
sumers, and then translates them into low-level orchestration actions, which can
establish a cross-domain data processing pipeline that is compliant with the data
usage control policies of data providers.

• Execution Engine module carries out the actual orchestration actions generated
by the service orchestrator, such as launching and configuring a dockerized task
and establishing its input and output flows.

There exist three user types in IntentKeeper: data provider, service provider, and
data consumer. Data providers use two interfaces, one for publishing their data and
the other for specifying the data usage control policies associated with their data. Data
consumers issue a service request to trigger a data processing pipeline that can utilize
the data from data providers to perform data analytics. To simplify the complexity of
defining and programming data analytics logics for both data providers and consumers,
we outsource such complexity to application developers who can develop and publish
all kinds of reusable cloud-native applications based on our service programming model
described in Section 5.3.4.

5.3.2 Trust Management

The first issue for IntentKeeper is to define a trusted ground for the entire system and
to manage its update and delegation in a decentralized environment. In the state-of-the-
art, a few studies such as PrivacyGuard [127] and FairAccess [128] consider removing

CHAPTER 5. Data Usage Control 114

5.3. Intent-oriented Data Usage Control with IntentKeeper

any central trust point using smart contracts in a blockchain system (e.g., HyperLedger,
Ethereum), but mainly for enabling authentication or access control. In terms of data
usage control, the same approach of using smart contracts to enforce all control points
of the entire data usage control logic is limited due to its low efficiency and significant
overhead. To have a more practical approach, in our design, we follow a semi-trusted
model, where each domain holds a certified enforcement component that is deemed to
be honest while carrying out the tasks it is designed for.

5.3.3 Policy Model

In our simple policy model design, when defining a policy, the data provider does not need
to know the details of service description, service deployment, or underlying computing
infrastructure. The policy specifies high-level targets (see Fig. 5.4) such as: what: data
the policy covers; who: the data provider; to whom: the data consumer (it can be
any); purpose: the data analytics service identifier (it can be any); constraints: a set of
rules defining actions to be taken before using the data, when the processing is ongoing,
and after processing the data. The first parameters (who, what, to whom, purpose)
specify the targets to be matched to apply the constraints. IntentKeeper, then, enforces
the constraints to prevent data misuse. The constraints’ action may affect the service
lifecycle altering the orchestration of service execution, or the data lifecycle (e.g., pre-
and postprocessing) with an operator that processes data, which is called policy operator.
Different policy operators are provided as atomic orchestration actions to enforce various
macro behaviors of data usage control, such as anonymization, encryption before saving,
delete after use. Since these policy operators are semantically annotated and ready for
direct use, we can largely simplify what data providers have to define.

Rule
(for pre-constraint)

Policy

Who
(data provider)

What
(which data)

To Whom
(data consumer)

Purpose
(which data service)

Constraints
(which control action)

Action

type

Action

parameters

data usage control

Define how the shared data to be used

Figure 5.4: Model of intent-oriented usage policy

Table 5.1 shows examples of policies based on the automotive scenario we introduced
earlier. The anonymize policy targets the car data to be preprocessed before being used.
In this example, it does not matter who the car consumer is and for which purpose. The
fenced policy targets the deployment orchestration of the service. That policy specifies

CHAPTER 5. Data Usage Control 115

5.3. Intent-oriented Data Usage Control with IntentKeeper

that if the analytics company wants to use car data from the car manufacturer, the
data will not leave the car manufacturer’s infrastructure. On the other hand, the data
provider will host the analytics execution locally with the data. The third policy defines
the maximum time window of car data (time series) that can be used for e-car analytics.
This time-to-live (TTL) example specifies the time window size parameter as 2 hours.

Table 5.1: Policy examples

Policy Who What To Whom Purpose Constraint

Anonymize
Car

manufacturer
car any any

preprocessing:
anonymizer

Fenced
Car

manufacturer
car

Analytics
company

any fencedData

Time-To-Live
Car

manufacturer
car any

e-car
analytics

TTL: 2 hours

Our policy model can be considered as a simplification of the Open Digital Rights
Language (ODRL) [129]. Our policy model can inherit the ODRL ontology and can be
mapped with ODRL language as in Listing 5.1.

Listing 5.1: Anonymize policy encoded in ODRL

{"uid": "http :// example.com/anonymize",

"permission ": [{

...,

"target ": "entityType:car",

"action ": "use",

"duty": [{

"action ": [{

"rdf:value ": { "@id": "preprocess" },

"refinement ": [{

"leftOperand ": "useFunction",

"operator ": "eq",

"rightOperand ": "anonymizer "}]}]

... }

5.3.4 Service Model

In the IntentKeeper system, a data service is represented by a service topology and a
set of user-defined intents. The service topology is a graph of tasks, where each task
performs some sort of data processing. Tasks in the same topology are linked with
each other based on the dependency of their data inputs and outputs. Service designers
annotate each task via a graphical editor, to define their input and output data and to
define a granularity feature that determines how input data should be divided into task
instances, for parallelization of computation. Each task instance runs within a docker
container. By design, a service topology only defines the data processing logic of a data
service.

CHAPTER 5. Data Usage Control 116

5.3. Intent-oriented Data Usage Control with IntentKeeper

To trigger the service topology, service consumers need to define an intent to express
their high-level goals of using such service. More specifically, as illustrated by Figure 5.5,
an intent can be customized to cover the following goals:

1. Service topology that defines which service logic to be triggered, and its identifica-
tion name is matched with the purpose field of the policy;

2. Scope that defines the scope to select the input data for applying the selected
service topology: locally into the domain, globally into the whole federation, or to
a specific domain;

3. Service level objective (SLO) that defines latency requirements, bandwidth saving,
or privacy/security needs;

4. Priority that defines how the triggered service deployment could utilize the shared
computing resources with the other existing services.

With such an intent-based programming model, IntentKeeper can dynamically or-
chestrate concrete service deployment plans to meet any user-defined intents more flex-
ibly, even for the same service topology.

Service Intent

Service
topology

Scope
Service Level
Object (SLO)

Topology which
consists of one
or more tasks

local

global

domain

cost

latency

accuracy

Priority

exclusive

inclusive

Figure 5.5: Model of service intent

5.3.5 Federated Service Orchestration

IntentKeeper orchestrates the service requests across the site instances to deploy services
into computing nodes (see Fig. 5.6). A service intent triggers the orchestration process
that is based on the data availability information stored in the discovery component.
Discovery keeps the registry of all the IntentKeeper sites and the data available on each
site. We design the discovery to have a partial registry to be shared between other
discovery instances. The shared registry refers only to the data visible in the federation
while the private part of the registry consists of data to be used only locally in the
domain. Sharing the registry is a fundamental operation to enable a data marketplace
where data consumers discover data.

CHAPTER 5. Data Usage Control 117

5.3. Intent-oriented Data Usage Control with IntentKeeper

The actual data follows a separate channel. Data producers push data to a broker
component that dispatches data locally to the computing nodes and cross-domains to
other IntentKeeper site instances. Computing nodes are isolated, and they communicate
only through the broker. Also, the deployed service tasks cannot communicate with
each other but must go through the broker layer. This design choice allows full visibility
to IntentKeeper of the data exchange happening within the site instance and across
instances. The following actions are designed to dynamically orchestrate tasks of the
service, both in the local computing nodes and remotely.

• ADD TASK : To launch a new task in a local computing node with the initial input
streams. When launching a new task, the computing node fetches the Docker image
for this task, and, then, launches it within a dedicated Docker container. After
that, it subscribes the input entity to the broker on behalf of the running task by
establishing a direct data channel ending into the running task. Finally, the newly
created task is reported back to the orchestrator.

• REMOVE TASK : To terminate an existing running task. The termination forces
a stop and removal of the corresponding running container, as well as the disman-
tlement of the established data flows with unsubscribe messages.

• ADD INPUT : To subscribe to a new input stream on behalf of a running task so
that the new input stream can flow into the running task.

• REMOVE INPUT : To unsubscribe from some existing input stream on behalf of a
running task so that the task stops receiving entity updates from this input stream.

• SEND TASK : To send a single-task intent to a service orchestrator within a differ-
ent IntentKeeper instance. The expected outcome of this command is the migration
of the orchestrations procedure to a remote site.

5.3.6 Policy Enforcement

IntentKeeper takes advantage of the federated data management and the service in-
tent management to orchestrate the service deployment with policy enforcement. The
Data Usage Control Policy Enforcement Point (DUC PEP) takes responsibility for this
process. After a data consumer submits a service intent to IntentKeeper, the service
orchestrator subscribes (see Alg.2) for data availability (line 4) of input data (line 3) for
each function of the submitted service (line 2) . When the local data management noti-
fies data availability for that service, the DUC PEP applies a policy control procedure
to determine a set of atomic actions that execute the orchestration compliant with usage
control.

Alg. 3 shows the policy enforcement logic. The discovery notifies the DUC PEP of
the availability of a provider for data linked to an availability subscription and, therefore,
unambiguously to a service intent. The DUC PEP retrieves all the matching policies
owned by the provider targeting the notified data, the service, and the consumer. If

CHAPTER 5. Data Usage Control 118

5.3. Intent-oriented Data Usage Control with IntentKeeper

Service

orchestrator

Domain A

Broker

Data

Producer

Data
consumer

Data

Data

Tasks

Computing

node

Computing

node
CPU

CPU

CPU

Data

Tasks

Discovery

Service

orchestrator

Domain B

Broker

Computing

node

Computing

node
CPU

CPU

CPU

Data

Tasks

DiscoveryAvailability

Service

Intent

Figure 5.6: Federated service orchestration and data management.

Figure 5.7: Usage control policy enforcements.

there are no matching policies, the procedure adopts a conservative approach and as-
sumes that the data cannot be used by the consumer (lines 4-5). Alg. 3, then, checks
the matched policies to determine the atomic actions such as prepending the prepro-
cessing functions (lines 11-12), executing the input functions on the provider side (lines
13-14), generating a runtime routine (lines 15-17) that alters the function execution life-
cycle. When all the service inputs are available (line 18), the orchestrator instantiates
all the functions in local workers. The prependFunction(F, fp) replaces every input of
fp found in the function set F with the output of fp. Then, it adds the fp to the set
F . The executeRemotely(F ,input) procedure sends all the functions having input con-
tained in their input set to the data provider by calling the service orchestration function
SEND TASK. The procedure, then, subscribes for every output of the sent functions and
removes the sent functions from the F set.

The anonymize policy in Table 5.1 expresses a preprocessing function. Once Algo-

CHAPTER 5. Data Usage Control 119

5.4. Intent-oriented Data Usage Control with IntentKeeper

Algorithm 2: ReceiveIntent(s)

Input : s← (F = {f1, f2, ..., fn}, consumer), set of
functions submitted by consumer;

fi = {op, Ii, Oi}, operator, inputs, and
outputs;

Ii = {inputi1, inputi2, ..., inputim};
Output: MsubId = (s, SubID), map s to subscriptions;

SubID = {subId11, ..., subIdnm};
Minput = (s, I), map s to required input set;
Mroutine = (s,R), map s to runtime routines;

1 begin
2 foreach fi ∈ F do
3 foreach inputij ∈ Ii do
4 subId← subscribe for availability of inputij ;
5 SubID ← SubID ∪ {subId};
6 MsubId ←MsubId ∪ {s, subId};
7 Minput ←Minput ∪ {s, Ii};

8 Mroutine ←Mroutine ∪ {s, ∅}

rithm 3 retrieves the policy, the prependFunction selects the functions having car as
input, and replaces the original input of each function with the anonymizer function
output. The procedure adds anonymizer function to the functions set of the service. A
similar approach can be followed for appending postprocessing functions. The fenced
policy of Table 5.1 implies that the analytics company can use original data, but the
data cannot leave the provider’s cloud. Therefore, executeRemotely sends to the input
provider an intent for each function that uses the input. The IntentKeeper residing in
the provider site receives the intent and proceeds with Alg. 2 and 3. The federated data
management, then, routes the output of the functions to the consumer site. Finally,
DUC PEP translates the runtime constraints given by the TTL policy into a commands
routine to be executed on the locally managed computing nodes. For instance, the TTL
policy translates to periodic REMOVE TASK-ADD TASK instructions.

To handle data availability when the service is running, a conservative approach is to
stop the service and analyze all the policies again, while, an incremental approach is to
add inputs and instantiate new functions. Though the incremental approach can have
a positive impact in a very dynamic scenario since the analytics never stops, it might
result in inconsistent status or conflicts.

CHAPTER 5. Data Usage Control 120

5.4. Intent-oriented Data Usage Control with IntentKeeper

Algorithm 3: DataAvailabilityNotification(subId, input)

Input : d, local domain;
MsubId = (s, SubID), map s to subscriptions;
SubID = {subId11, ..., subIdnm};
Minput = (s, I), map s to required input set;
Mroutine = (s,R), map s to runtime routines;
E = {s1, s2, .., }, services in execution

Output: MsubId = (s, SubID), map s to subscriptions;
Minput = (s, I), map s to required input set;
Mroutine = (s,R), map s to runtime routines;

1 begin
2 s←M.get(subId);
3 P ← retrieve policies matching input, d, s, provider;

/* check if policies allows usage */

4 if P = ∅ then
5 return

/* remove input from required inputs */

6 Minput ←Minput − {s, input};
7 F ← s.F /* set of functions of s */

8 if s ∈ E then
9 addInput(F ,input,P);

10 return;

/* prepend preprocessing to s */

11 foreach p ∈ P with fp in preprocessing rule do
12 prependFunction(F ,fp)

/* is input fenced? */

13 if input may not be used within d then
14 executeRemotely(F ,input);

/* create runtime routines */

15 foreach p ∈ P with a runtime rule do
16 routine← generate routine;
17 Mroutine ←Mroutine ∪ {s, routine};

/* if inputs are available run s */

18 if Minput.get(s) = ∅ then
19 foreach fi ∈ F do
20 ADD TASK(fi);
21 E ← E ∪ s;

22 foreach routine ∈Mroutine.get(s) do
23 schedule routine;

CHAPTER 5. Data Usage Control 121

5.4. Implementation

5.4 Implementation

5.4.1 Implementation with FogFlow

We implemented the IntentKeeper system by extending our open source edge computing
framework FogFlow [3]. The original FogFlow framework is designed to enable edge
computing with a dataflow-based programming model. It provides a distributed data
management layer and a centralized service orchestrator. In order to realize the design
of IntentKeeper, we have the following changes.

First, we changed the distributed data management layer in FogFlow to support
the decentralized discovery of entities across domains. The new discovery component
implemented for IntentKeeper is able to share and synchronize a domain-based routing
table with all the other domains via the Blockchain service. Moreover, it is able to save
certain entities like user-defined data usage policies into the blockchain persistently.

Second, we changed FogFlow’s service orchestrator to realize the policy enforcement
logic proposed in Alg. 3 and also implemented a decentralized orchestration mechanism
across multiple domains so that the service orchestrators inside different domains can
collaborate with each other in response to a user-defined service intent.

Lastly, we leveraged off-the-shelf software for the other missing components. More
specifically, Docker Hub is used as the application repository, Hyperledger is deployed
to provide the Blockchain service, and Vault is used to provide the identification man-
agement service for domain users and also the access control within each site.

5.4.2 Policy Editor

We implemented a GUI for adding policies to the system (see Fig. 5.8-a). The form
fields easily map with our policy model. We further simplified the policy definition with
the possibility to combine the fenced rule with data handling (preprocessing, runtime)
rules by selecting a box. The GUI pre-fills the list of rules with the registered policy
operators. When a user clicks on the Send button, the front-end sends the policy to the
wrapper of the local policy manager that propagates it, through blockchain, to the other
policy managers.

Fig. 5.8-b shows the registration form of a new operator to alter the data lifecycle of
services. The fields of this form are:

• operator name used to pre-fill the policy editor rule list;

• output is used during the policy enforcement to alter the service topology (by the
prependFunction procedure), and it might indicate a variation of the original input
type (by prefixing or a suffixing) or an output type replacement;

• image, tag, HardwareType and OSType are technical properties of the Docker con-
tainer that execution engine instantiates.

CHAPTER 5. Data Usage Control 122

5.5. Implementation

(a) (b)

Figure 5.8: GUI for editing a policy (a) and to register a new policy operator (b)

5.4.3 Blockchain Integration

We implement the cross-domain synchronization between discovery components (for the
IntentKeeper site registry and their provided data) and between policy management
components using the Hyperledger fabric framework [109].

In every IntentKeeper site, a wrapper component, that interacts with the blockchain,
intercepts every modification to the stored entries. Each site has a blockchain client that
stores the ledger data locally and engages with the clients of the other sites for reach-
ing consensus to alter the ledger. The ledger data is accessible with a key-value store
interface implemented by CouchDB [109] allowing the insertion, modification and dele-
tion of a key-value. The entries are stored by their unique identifiers (registration ID
and policy ID). When the wrapper intercepts a modification to the policy set or the
data registration set, it requests the blockchain client to validate the modification. The
blockchain client, then, starts a consensus procedure with the other IntentKeeper sites to
validate the modification. If the blockchain clients reach consensus on the modification,
each of them sends a notification message to the local wrapper component. The noti-
fication encapsulates the modification method (e.g., “registerContext”, “registerPolicy”,
“deleteRegistration”) with the original message body. The wrapper forwards the mes-
sage body to the local policy management or discovery components depending on the
modification method. Discovery and policy manager components receive the message
transparently through their API.

A new IntentKeeper site may join the federation at any moment. When the site
boots, the wrapper retrieves from the blockchain the current state of IntentKeeper sites
set, registrations set, and policies set. The wrapper pushes the retrieved information
to the local discovery and policy manager. Finally, the broker sends to the discovery a
new site registration that blockchain propagates. At this point, the new site is ready to
cooperate in the federation of IntentKeepers.

CHAPTER 5. Data Usage Control 123

5.5. Use Case Validation

5.5 Use Case Validation

We validate the IntentKeeper system by applying the policy examples shown in Table 5.1
to cover three different use cases of the automotive scenario.

Use Case 1 — Anoymize Before Use: a privacy preserving agreement can be signed
by the car owners before they publish their data to the car manufacturer’s cloud. Such
an agreement is realized by a data usage policy that constrains the car owner data
to be anonymized before any use by anybody. This constraint specifies the name of
the anonymizer function to be used as the preprocessing function. After the policy
correctly propagates among the domains, the service orchestrator modifies every service
that requests such data. The orchestrator prepends the anonymizer function before the
other tasks of the triggered service topology.

Use Case 2 — Fenced Data: the car manufacturer sets the policy to enforce the orig-
inal data to never leave provider premises. IntentKeeper orchestrates all the associated
data analytics functions to be executed remotely within the car manufacturer domain.
The data consumers can only receive the generated outputs of these functions.

Use Case 3 — Time-to-Live: this policy aims to avoid profiling of users by forcing
the deletion of EV data every two hours. IntentKeeper schedules a periodic routine that
instructs the computing nodes to destruct (e.g., REMOVE TASK) and re-deploy (e.g.,
ADD TASK) the functions. Destructing a function instance consequently destructs all
in-memory data of the executing function.

We modelled the e-car analytics service as depicted in Fig. 5.9-a. The two functions
growth analysis and distribution analysis are of arbitrary nature, they might apply sta-
tistical functions or machine learning models. The execution of the atomic actions in
the involved IntentKeeper site instances results into the deployment of two anonymizer
preprocessing functions, one in each car manufacturer IntentKeeper, and the scheduling
of a routine to destroy and re-deploy the e-car analytics service functions. Fig. 5.9-b il-
lustrates the actual service deployment generated by the federated service orchestration
with respect to the defined data usage policies.

Table 5.2 compares our intent-oriented usage control system with a flow-oriented one
(e.g., LUCON [121]). We analyze the number of elements that users (data owner, data
provider and data consumer) need to configure in each system in order to enforce the
usage control described in Fig. 5.9, including policies, functions, and links between func-
tions. For the flow-oriented approach, the number of functions and links increases with
the number of data providers and the number of involved policies, while, there is no such
effect for our intent-oriented approach. The number of flow-oriented policies may vary
as these may refer to a single endpoint (viz., one policy per analytics function) or to a
regular expression (viz., one policy for both functions). While IntentKeeper transpar-
ently manages to meet the compliance of the data consumer intent with data owner and
data provider policies, a flow-oriented approach controls only the communications chan-
nels by dropping or admitting a message. The flow-oriented approach burdens the data
consumers with the deployment of a service graph, composed of functions and links, that
respects the policies, and, in some cases, it burdens also the data providers with service
deployment (e.g., the fenced policy constrains to execute functions within the provider

CHAPTER 5. Data Usage Control 124

5.6. Performance Evaluation

There are two actors, a provider of car data and a data consumer requesting the e-car
analytics service. We test the impact of having the data consumer in domain B while the
data provider is in domain A compared to the case of both data consumer and provider
being in the same domain (A).

We use two identical 8 core Intel Xeon CPU E5620@2.40GHz machines with 24 GBs
of RAM each. We used the Docker framework v.18.09.0, and dockerized Hyperledger
fabric v.1.4.7. The first machine hosts the two IntentKeeper site instances, one per
domain, the second machine hosts either the blockchain for the decentralized approach
or the centralized components (i.e., policy manager and discovery) depending on the
experiment. With this setup, the communication for data availability and policy between
site instances always goes through the second machine.

The results highlight that the overhead of the policy evaluation and federated or-
chestration of the intents is negligible. Blockchain brings the major part of latency (up
to 10 seconds of latency to launch a federated analytics service). We demonstrate that
once the system launches the service, a data point needs less than 0,01s to traverse a
federated analytics pipeline.

5.6.1 Propagation Delay

First, we study the delay introduced to propagate control information, such as policies,
data availability registrations, service descriptions, and service intents. We also analyze
two configurations: i) centralized policy manager and discovery; ii) a policy manager
and a discovery within each site instances synchronized through blockchain.

Table 5.3: Propagation delay (ms) of different types of messages for two configurations of policy
manager and discovery components: centralized and decentralized with blockchain

Registrations Data Pushes Policies

Centralized 1.73 4.25 2.05

Decentralized 2476.59 2365.57 2578.66

Table 5.3 shows the propagation delay (ms) for data availability registrations, data
pushes, and policies messages. Each experiment lasts two minutes, during which 1
request per second is sent. We measure the delay from the time a message is sent
from within domain A to the time a message is notified to a subscriber in domain
B. Decentralized configuration shows higher latency due to the blockchain (∼2.4 sec)
compared to the centralized approach (less than 5 ms).

Moreover, we observe that high workload heavily affects blockchain performance.
Fig. 5.11 shows the performance on logarithmic scale of the federated system when we
increase the number of concurrent clients, from 1 to 20, sending registrations to the
discovery. The lines in Fig. 5.11 are clustered between centralized and decentralized
approaches. The decentralized system with blockchain responds with higher delays that
worsen when increasing the number of concurrent clients. The latency increases to a
critical situation (up to 2 min delay) when there are 10 or 20 concurrent clients.

CHAPTER 5. Data Usage Control 127

5.7. Performance Evaluation

the policies, decide and apply atomic actions, such as modifying the service topology to
include the preprocessing function, and sending the SEND TASK remotely (in presence,
also, of fenced policy) to domain A. The local computing node takes ∼1s to boot up
a docker container. The data consumer IntentKeeper site instance deploys the rest of
the analytics service after the first anonymized data point is available in the system.
The difference between a single node analytics (not fenced) and a federated analytics
(fenced) is negligible. The higher latency values for the decentralized system are due to
the latency delay introduced by blockchain.

Table 5.4: Service orchestration delays (in seconds) for different policies and for data consumer residing
in the data provider domain (A) or another domain (B).

System Centralized Decentralized

Policies No Rule Not Fenced Fenced No Rule Not Fenced Fenced

Consumer Domain A B A B A B A B A B A B

Policies No Rule Not Fenced Fenced No Rule Not Fenced Fenced

Consumer Domain A B A B A B A B A B A B

ADD TASK anon - - - 0.03 - 0.04 - - - 2.97 - 3.19

RUN TASK anon - - - 0.97 - 0.95 - - - 3.91 - 4.13

ADD TASK evdistr 0.03 0.03 0.03 2.03 0.03 2.02 3.69 3.47 3.54 8.97 2.92 9.18

RUN TASK evdistr 0.97 0.98 0.96 2.94 0.97 2.92 4.63 4.42 4.49 9.88 3.88 10.11

Table 5.4 reports all the experimental results considering also the case of a policy
allowing data to be used without preprocessing (no rule), and the case of both data
provider and data consumer residing on the same domain A such that the policies have
no effect. The experiments are repeated 5 times. Fig. 5.12 and Table 5.4 contain the
averaged results.

5.6.3 Service Latency

Lastly, we observe the service latency. In this experiment, after the system runs the
service, we evaluate the performance of IntentKeeper for streaming federated analytics.
We measure the time a data point needs to traverse the established service pipeline, both
in case of a single node environment and federated environment (two IntentKeeper site
instances). We repeat each experiment 10 times.

Fig. 5.13 shows that the latency introduced by the federated configuration for data
analytics is negligible (less than 0.4s). The latency is considerably higher (∼7s) when
the control information flow is decentralized. This happens when the data entering the
pipeline refers to a yet unseen device such as a new car. In this case, the new car needs
to be first announced through the discovery, thus, the blockchain. When a data point
refers to a device already seen by the pipeline, the latency is negligible as shown by
the last three measurements in Fig. 5.13 (less than 10ms). When not affected by the
blockchain, IntentKeeper’s performance is inline with the NGINX guideline for real time
web service [130].

CHAPTER 5. Data Usage Control 129

5.7. Related Work

1N,C 1N,D 1N,C Fed,C 1N,D Fed,D 1N,D 1N,D Fed,D
0

2

4

6

8

Se
rv

ice
 L

at
en

cy
 (s

)
domain A domain B domain A domain B

new cars same car

Figure 5.13: Latency of the data processing pipeline after being established: Centralized (C) and
Decentralized with blockchain (D) approaches; single node (1N) and federated (Fed) analytics. We push
data either always from new cars or always from the same car.

5.7 Related Work

5.7.1 Federated Data Analytics

In terms of big data analytics, there has been a new trend of moving from single-domain
based data analytics to federated data analytics across multiple domains. Initially,
Hadoop was the dominating framework to do scalable data analytics within a cluster.
Later, Apache Spark and Flink became more popular due to their capability of enabling
efficient data processing for both historical data and stream data. Recently, as more
data is generated and managed by different business partners inside different manage-
ment domains, federated data analytics is becoming an attractive approach for service
providers to leverage raw data across different data silos. The most common example
of federated analytics is federated learning [131, 132], which can train an AI model over
decentralized datasets by performing the model training locally on each data set. The
data usage pattern of transfer learning is similar to the fenced data supported by In-
tentKeeper. According to the International Data Space Association (IDSA) report [16],
although federated analytics is highly desirable by enterprises, its adoption is still limited
due to the shortage of data usage control and common service model.

5.7.2 Data Usage Control

In the state-of-the-art, a few generic low-level policy models are proposed for data us-
age control. For example, UCONABC [133] has a data usage model to restrict the usage
decisions between subjects and objects in terms of authorizations, obligations, and condi-
tions, which can be further defined with subjects and objects’ attributes. An extension of
UCON is proposed in [134]. LUCON [121] is a policy language for controlling data flows
between endpoints. However, users need to write detailed data usage control rules per
flow. The Open Digital Rights Language (ODRL) [129] is a policy expression language
that provides a flexible and interoperable information model, vocabulary, and encoding
mechanisms for representing statements about the usage of content and services. Overall,
those policy models have the difficulty to express data usage control policies for dynamic

CHAPTER 5. Data Usage Control 130

5.8. Conclusions and Future Work

data processing flows. As compared to those generic models, our intent-oriented policy
model is more straightforward for data providers to define, since it can refer to the same
service model as data consumers to specify data usage logic and directly use high-level
policy operators to realize usage control behaviors.

A few systems provide data usage control in distributed environments. Kelbert [135]
introduces a data usage control mechanism for distributed systems based on cross-system
data flow tracking and policy propagation. This mechanism does not provide any service
model, and it needs to hook system calls to monitor/control data usage. Therefore, it
cannot influence data usage pipelines for making them compliant with user-defined usage
policies. MYDATA [136] enables fine-grained masking and filtering of data flow based
on various plugins. Recently, a FIWARE-based data usage control solution is introduced
by Alonso et al. [90]. In all these systems, the orchestration of data usage services is
handled before policy enforcement in a separated process. Therefore, they can only
monitor the generated data usage flows, and, then, decide to terminate them or not in a
reactive manner. Unlike these systems, IntentKeeper can make joint decisions between
service orchestration and policy enforcement to generate data usage flows that are already
compliant with the defined usage control policies. Furthermore, IntentKeeper enables
preventive data usage control in a proactive manner, which provides better security and
higher efficiency.

5.8 Conclusions and Future Work

This chapter presents a novel data usage control system, called IntentKeeper, to support
federated and trusted data analytics across multiple organization domains. IntentKeeper
takes an intent-oriented approach to model both usage policies and data services, thereby
reducing the complexity for both data providers and data consumers. By combining ser-
vice orchestration and policy enforcement to make joint decisions, it enforces data usage
control preventively and proactively for better security and efficiency. We introduce
the detailed design and implementation of IntentKeeper and also report its use case
validation and performance evaluation results.

In the future, we plan to improve the adoption of IntentKeeper by the following: 1)
providing a list of policy templates and adding more policy operators for more usage
control patterns, 2) taking the ownership management of processed data into account,
3) expressing and enforcing usage control policies of the processed data.

CHAPTER 5. Data Usage Control 131

Chapter 6

IoT data services ecosystem

Smart city solutions are often monolithically implemented from sensors data handling
through to the provided services. The same challenges are regularly faced by different
developers, for every new solution in a new city. This is not sustainable in the mid-
and long-term. Instead, expertise and know-how can be reused and the effort shared
when embracing the hyperconnected IoT vision, where the services are decoupled from
the underlying IoT infrastructure and they rely on common interfaces and data models.
In this chapter, we present the SynchroniCity EU project’s experience of coordinating
the efforts to build 35 smart city solutions in 27 cities between Europe and South Korea
by maximizing the sharing of components. The final target is to have a live technical
community of smart city application developers. The results of this activity comes from
the involvement of tens of heterogeneous stakeholders among academia, industry, small
and medium enterprises (SMEs), and cities’ governance. All the involved smart cities
expose the same IoT interfaces and data models relying on the FIWARE-based hyper-
connected IoT implementation by SynchroniCity (see chapter 3). To share efforts, we
encourage developers to devise applications using a modular approach. Single-function
components that are re-usable by other city services are packaged and published as stan-
dalone components, named Atomic Services. We identify 15 atomic services addressing
smart city challenges in data analytics, data evaluation, data integration, data valida-
tion, and visualization. 38 instances of the atomic services are already operational in
several smart city pilots. We detail in this chapter, as atomic service examples, data
predictor components. Furthermore, we describe real world atomic services usage in the
scenarios of Santander (Spain) and Vejle, Aarhus and Odense (Denmark).

6.1 SynchroniCity and the shared ecosystem

Internet-of-Things (IoT) benefits in the smart city scenario is extensively acknowledged
by countless real application deployments [137]. The developments of these applications
usually happen as standalone activities resulting in city-wide IoT segments fragmenta-
tion, or even domain-wide within the same city [138]. The SynchroniCity project aims
to“synchronize” [5] IoT infrastructures among cities in order to overcome vendor lock-in,

132

6.1. SynchroniCity and the shared ecosystem

by adopting open solutions, and city lock-in, by adopting common interfaces [81]. The
approach of SynchroniCity is to deploy an overlay on top of existing smart city infras-
tructures. The SynchroniCity overlay is based on FIWARE, an IoT framework of open
source components implementing open API and standards. This gives the ground to city
services developers to develop applications relying on standardized interfaces and data
models. The advantage is porting IoT solutions from an environment to another with
minimal effort, thus, enabling an IoT services market ecosystem.

The initial cities, named Reference Zones (RZs), are: Antwerp, Carouge, Eindhoven,
Helsinki, Manchester, Milan, Porto, and Santander. Those cities homogenize their IoT
data with the same data models [27] and formats. This data are exposed with standard
interfaces for context management (Next Generation Service Interface - NGSI [58]), his-
torical time-series, and open data. Using these common interfaces, service developers
implemented several smart city applications addressing use cases defined by local mu-
nicipalities [12].

This chapter reports the collaboration activities among the applications developers
(including academia, SMEs and industries). The approach is to build the applications
by composing small services, namely atomic services, each implementing a single func-
tional block, towards Service-Oriented Architecture (SOA) [139]. The atomic services are
exchanged between city application developers and published in a one-stop-shop repos-
itory1 following a one-page documentation scheme. The advantage of this approach
is multi-fold: 1) small companies can leverage others’ know-how to speed-up applica-
tions implementation, breaching the barrier of monolithic vertical developments only
sustainable for big companies [140]; 2) it enables an IoT services market [141, 142]; 3)
operational smart city applications can quickly adapt to IoT evolution by having the
atomic services up to date or integrating new ones.

In this chapter we go through the process of giving rise to 15 atomic services during
22 months (from Jan 2018 till Oct 2019) in parallel with the implementation of 35 smart
city services. A bootstrap phase comprises a static analysis of use case requirements
from RZs [8] and of available off-the-shelf services. During a second phase, 12 RZs’ city
services architectures are analyzed to identify common challenges and building blocks.
The still ongoing third phase gives the developers the possibility to spontaneously offer
their IoT services as atomic services. The latter phase involves 23 city services piloted in
27 cities. In one case an application team, rather than implementing an atomic service,
leveraged the know-how of the developer of situation prediction atomic services (i.e.,
parking and traffic flow estimator) by requesting a new one for outdoor noise estimation.
This shows the marketability of developers’ know-how and IoT services. In other cases,
i.e. for 3 cities in Denmark (Aarhus, Vejle and Odense), the proposed atomic services aim
to keep pace of the IoT evolution (e.g., the new NGSI-LD standard [89]) and to smooth
integration for escaping city lock-in. These atomic services address data integration [143],
data validation, and data visualization [144]. This chapter will show:

• Analysis of cities commonalities. We evaluate data input and targeting chal-
lenges of 12 services in 9 cities. The results motivate us to create a smart city

1https://gitlab.com/synchronicity-iot?filter=atomic+service

CHAPTER 6. IoT data services ecosystem 133

6.3. Related Work

technical community.

• Design a collaborative approach for starting and maintaining the community
alive.

• Atomic services examples and usage in real scenario. We describe park-
ing/traffic/noise estimators service as examples of atomic services. In addition,
we report the experience of the real city scenarios and how they benefited by us-
ing atomic services: implement a new multi-modal transportation city service in
Santander; bring legacy city services of Vejle, Aarhus and Odense to open market.

• Evaluate the atomic service approach through a validation process and the
assessment of the community engagement.

6.2 Related Work

Building interoperable services on top of IoT systems is an open and timely research chal-
lenge, as demonstrated by the presence of recent works in the literature. Experimentation-
as-a-Service (EaaS) [92] is a paradigm to execute processing routines over a centralized
platform that offers data. Re-usable and portable experiments process data regardless its
origin. The architecture presented in [92] has the technical potential to offer experiments
as re-usable services but this is not explored by the authors. Several aspects are already
tackled to enable IoT services ecosystem, such as architectures [145, 146] and procedures
to acquire IoT services [146], or how to generate IoT services business model [147, 148].
The authors of [141] present a proof-of-concept of IoT services marketplace. None of the
mentioned works show to be embodied in reality. The reason is that a community of
such kind is not easy to self-blossom but needs to be guided.

Big cloud providers, such as Amazon Web Services [149] and Microsoft Azure [150],
offer service marketplaces, but mainly for industrial IoT projects. This is due to the
reluctance from city governance to fall in vendor lock-in trap [151, 5]. FIWARE, in-
stead, is a growing open alternative to proprietary platforms [5]. In particular, FIWARE
domain-specific enablers (DSEs) [152] are a collection of IoT applications and services for
different domains, such as manufacturing, media, e-health, agrifood or energy. The cat-
alogue is formed by re-usable components, similar to our atomic services, and monolithic
applications. The FIWARE DSEs methodology is to simply share applications’ software
built upon the FIWARE framework. However, FIWARE DSEs lacks: a) a methodology
to systematically identify re-usable components as services, b) a large number of IoT
services and involved parties, c) the attempt to keep the community alive. Hence, our
work is complementary to the FIWARE DSEs.

6.3 Smart city services

The SynchroniCity project brings together several stakeholders with the aim of building
a technical smart city community. In the following section we go through the work

CHAPTER 6. IoT data services ecosystem 134

6.3. Smart city services

Table 6.1: SynchroniCity smart city services

Smart City Theme City Service Topic
N. of

services
Involved Cities

N. of
pilots

M
o
b
il
it
y

Encouraging
non-motorized
transport

insightful (clean air, crowdsourced, safe) bicycle path
recommendation; secure bike parking; stolen bike
recovery; electric bike usage monitoring

8

Eindhoven (NL), Milan (IT), Antwerp (BE),
Santander, La Nućıa(ES), Manchester (UK),
Dublin, Donegal (IE), Faro (PT),
Helsinki (FI), Aarhus (DK)

18

Multi-modal
transportation

commuter assistant; park & ride; public transportation
usage maximization; zero emission journey planner;
barrier-free planner for disabled people;

6
Porto (PT), Santander (ES), Helsinki (FI),
Milan (IT), Carouge (CH), Seongnam (KR)

6

Enabling Mobility
as a Service (MaaS)

adaptive lighting; traffic optimization; bus stops crowd
and air monitoring; smart parking

5
Porto (PT), Santander, Torrelavega (ES),
Milan (IT), Antwerp (BE), Seongnam (KR)

10

S
u
st
a
in
a
b
il
it
y Climate Change

Adaptation
green roof management; building energy management 3

Carouge (CH), Milan (IT), Eindhoven (NL),
Porto (PT), Antwerp (BE), Vejle, Odense (DK)

8

Reducing Air and
Noise Pollution

indoor/outdoor air quality management; clean air
around schools; noise pollution planning;
urbanization impact monitoring

5
Helsinki, Tampere (FI), Santander, Bilbao,
Onda (ES), Antwerp (BE), Carouge (CH),
Edinburgh (UK), Novi Sad (RS), Eindhoven (NL)

13

Waste Management
waste collection optimization;
waste collection monitoring

2
Porto (PT), Carouge (CH), Catalayud (ES),
Aarhus (DK)

4

G
ov
er
n
an

ce

Community Policy
Suite

agile governance; data visualization; public spaces
air and noise monitoring; insights for cycling
infrastructure; smart city business intelligence; disable
people accessibility monitoring; traffic insights;
environment monitoring; bus stops crowd and air
monitoring; elderly care service monitoring

13

Manchester, Edinburgh(UK), Porto (PT),
Carouge (CH), Cabildo de la Palma,
Cartagena, Santander, Bilbao, Torrelaveda,
Onda (ES), Eindhoven (NL), Antwerp (BE),
Milan (IT), Helsinki(FI), Aarhus, Vejle,
Odense (DK)

23

Increasing citizen
engagement in
decision making

ease open data accessibility; open data visualization;
citizens engagements on urbanization

3
Porto (PT), Manchester (UK), Santander (ES),
Milan (IT), Herning (DK), Antwerp (BE),
Carouge (CH), Novi Sad (RS), Helsinki (FI)

11

Data Mining data lake value extraction 1 Carouge (CH), Bordeaux (FR), Seongnam (KR) 3

Privacy citizens awareness of IoT 2
Antwerp (BE), Manchester (UK), Dublin (IE),
Carouge (CH)

4

done towards establishing a community for smart city services. We encompass a total of
35 smart city services2 that involve 27 different cities distributed in Europe and South
Korea, reaching 72 running pilots. The themes includes (see Table 6.1): 1) mobility; 2)
sustainability; 3) governance; 4) data mining; 5) privacy.

6.3.1 Cities and Pilots commonalities

Cities have latent commonalities regarding city challenges to target and available datasets
to handle and process. In this section we analyse the initial 12 smart city services
planned by the 8 RZs plus Seongnam (Korea). The analysis outcomes demonstrates
that cities face similar challenges when developing smart services even if of different
themes. The city services are grouped by three application themes [12]: 1) human-
centric mobility, 2) multi-modal transportation; 3) community policy support. Fig. 6.1
shows the associations between data sources to city services, and, then, to applications
challenges. The data source types are grouped following the FIWARE data models [27].
The challenges are:

• C.1 - Enabling Mobility-as-a-Service (MaaS). Cities seek to shift from transporta-
tion ownership models to a service model. Targets are to enable multimodal trans-

2https://synchronicity-iot.eu/cities-pilots/

CHAPTER 6. IoT data services ecosystem 135

6.4. Collaborative approach

portations, to open real time data on transport modes, to improve efficiency of
existing infrastructure, and to redistribute stakeholder roles in the ecosystem.

• C.2 - Encouraging non-motorised (active) transport. Air pollution in urban areas
is a known problem and cities are implementing different solutions to address it.
An approach is to encourage citizens to use zero emission alternatives for short
distance urban trips.

• C.3 - Increasing citizen engagement in decision making. Often the decision on
urban policies are left to governance without great involvement of the real benefi-
ciaries: the citizens. Thus, even if cities are spending effort to become smart, the
citizens do not perceive the benefits. Citizens involvement in the process is a new
form of democracy [153].

• C.4 - Increasing diversity in political engagement. Engagement to the decision
making process is often viable only to whom can physically attend. This is not
possible to citizens lacking time (e.g., those with family responsibilities), or who
cannot easily move (e.g., elderly persons). Digitalizing the process encourages
participation from whom is often silent.

• C.5 - Climate Change Adaptation. Extreme urban climate shifts are recurrent all
around the globe. Cities are studying different solutions to mitigate dangerous
situations, such as flash flooding or extreme urban heat.

• C.6 - Reducing Air and Noise Pollution Urban environment pollution puts citizens
at different risks, such as respiratory issues (due to air pollution) or stress (due to
noise pollution [154]). Reducing or managing in an optimal way these two factors
can increase life quality.

Fig.6.1 demonstrates that cities are not alone in their problems, even for different appli-
cation themes. Thus, a technical community is desirable.

6.4 Collaborative approach

To cope with a big number of data producers, service providers and cities, SynchroniCity
designed a reference architecture [5]. It has as founding principles the avoidance of city
lock-in and vendor lock-in: the first is to ease city service replication among cities; the
second is to keep the market open. The strategy is to follow the Open and Agile Smart
Cities (OASC) Minimum Interoperability Mechanisms (MIMs) [81], to aim at a shared
ecosystem of data and services. Operational smart city deployments are homogenized
with the overlay SynchroniCity middleware, based on the open source FIWARE frame-
work [60], and data are exposed with common interfaces and data models [27]. The data
is then consumed by city services. Figure 6.2 depicts the overall concept of the shared
ecosystem To boost service providers collaboration and ignite the community, we steer
the city services development around the concept of atomic service. Developer teams

CHAPTER 6. IoT data services ecosystem 136

6.4. Collaborative approach

Air Quality
Noise Level

Parking (OffStreet)
Parking (OnStreet)

Device

Weather Forecast
Weather Observed

Bicycle patterns
(Antwerp)

Smart Parking (Carouge)

Data-driven bicycle
mobility (Eindhoven)

Clean Air Routing Service
(Helsinki)

Agile Governance
(Manchester)

Decision support system
for cycle patch (Milan)

Multimodal navigator for
disabled people (Milan)

Multimodal assistant
(Porto)

Open Interactive Map
(Porto)

Park & Move (Santander)

Commuter Parking Service
(Seongnam)

Noise Monitoring near
bars (Carouge)

Garden

Restricted Traffic Area
Point of Interests

Bus Arrival Estimation
Public Transport Stop

Public Transport Route

Bike
Bike Hire Docking

Stations
Traffic Flow

Road Segment
Vehicle

Crowd Flow Observed
Car Sharing Station

Electric Vehicle Charging
Point

Human-centric mobility

Multi-modal transport

Community policy

Devices

Parks and Gardens

Environment

Transportation

Parking

Weather

Urban Mobility

Data sources City Services (cities) Challenges

Sustainable
Mobility

Citizen
Engagement

Environment
& Wellbeing

C.1 C.2 C.3 C.4 C.5 C.6

Figure 6.1: Associations between data sources to city services, and, then, to applications challenges.
Services for the same city are in boxes of same color.

are encouraged to build the city services following a modular paradigm, embracing the
concepts of Service Oriented Architecture (SOA). If a service sub-component is generic
enough to be re-usable by another city service, then it is proposed as atomic service: a
single functional block consuming data and implementing any kind of feature, such as
managing, enriching, joining or filtering the input. Atomic service has similarity with the
concept of microservice in the fact of being a self-contained piece of software targeting a
specific task. Nevertheless, an important characteristic is that atomic services must be
re-usable. Therefore, while an atomic service instance can be a microservice, vice versa
is not always true.

Atomic services are identified during three phases (see Fig. 6.3): bottom-up, a su-
pervised top-down, and a top-down phase. The bottom-up phase is a preamble phase to
identify atomic services before city services are designed. During this period, initial city
service themes (i.e., multi-modal transportation, human-centric mobility, and community
policy suite) are described with use-cases and requirements with a shared effort among
multiple stakeholders (i.e., municipalities, data providers, service providers, technology
providers) [12]. The requirements are, then, defined by means of a questionnaire. The
synthesis from all the answered questionnaires [8] brings the identification of an initial
set of atomic services. The questionnaire aims to: 1) prioritize application requirements
for each city; 2) identify available re-usable software components; 3) identify available
know-how by developer teams. The prioritization of requirements gave us the target

CHAPTER 6. IoT data services ecosystem 137

6.4. Collaborative approach

documentation (e.g., Apiary and ReadTheDocs), and easy to deploy (i.e., Docker).

city services

requirements

identification

requirements

analysis

atomic services

identification

city services design

(starting from

atomic services)

identification

of common

components

atomic services

identification

atomic services

identification

identification of

re-usable

components

city services design

(starting from

atomic services)

Phase 0:

Bottom-up

Phase 1:

Supervised

Top-down

Phase 2:

Top-down

Figure 6.3: Collaborative approach towards the implementation of 35 city services. Some of the steps
(with meeting icon) involve interaction with the community.

6.4.1 Questionnaire

The design of the city services started with the identification of stakeholders and func-
tional requirements (FRs) for each of the initial application themes [12]: multi-modal
transportation, encouraging non-motorized transport, and community policy suite. As
methodology to define atomic services from FRs we grouped them in small subsets, and
for each of the subset we assign an atomic service to address the related FRs.

The identified FRs cover all the aspects of an application theme, and typically not all
are required by a specific city service. Moreover cities and project partners have previous
experiences with smart cities applications, thus already existing components might be
re-used simply off-the-shelf, or with minimal integration effort.

For these motivations we create a questionnaire (see Table 6.2) with the following
targets: 1) identify previous experiences with the application themes, 2) identify re-
usable software components, 3) identify possibility to interact with the SynchroniCity
infrastructure (read-only or read-write), 4) identify which packaging tool is preferred
for sharing components, 5) identify license foreseen for the atomic/city services to be
implemented, 6) prioritize application themes FRs for each city.

6.4.2 Functional Requirements (FRs) analysis.

We distribute the questionnaire to the 8 cities plus additional partners that collaborate
with other cities (some of the questions were not applicable to the latter group). The
questionnaire was answered by all the involved cities for each application themes, with
additional answers by other cities and partners of the project. Table 6.3 shows the cities
that answered the questionnaires; between brackets are the additional cities not directly
involved in the related application themes. In total 9 partners participate, categorized
in 5 municipalities, 2 SMEs, and 2 academia/research foundations.

CHAPTER 6. IoT data services ecosystem 139

6.4. Collaborative approach

Table 6.2: Atomic services and city services questionnaire

Question Answer

• Have you have already implemented an application satisfying the proposed use-cases [12]?
• If yes at the above question, can you please provide an architecture overview
(sub-components, atomic services)?

• Have you any related atomic services already implemented?
• If yes at the above question, are you willing to share them (OpenSource, Freeware, Licensing)?
• If yes at the above question, can you provide an architecture overview for each atomic

service you possess?

• Do you envision any additional atomic service to share across application of the same theme
and/or across application of different themes? Please give a brief description/suggestion.

• Is the NGSI data from the IoT infrastructure read-only towards the atomic services or the
atomic services will be capable of writing new data? (e.g., new entities or commands like in
the case of traffic light controlling)

• Which methods and related tools are desired for atomic service deployment (e.g. docker,
debian package)?

• Will the new code you implement for SynchroniCity be reusable? (Open Source, Freeware,)?

• Which FR your application shall satisfy?
(Priority 0 to 5: 0 for FR not needed, 5 for FR of
utmost importance)
In case you have implemented atomic services, which
FR do they fully or partially satisfy/support?

FR-1
Priority
(0-5)

Already satisfied;
Partially satisfied;
not implemented;

n.a.

FR-2
Priority
(0-5)

Satisfaction
level

...
Priority
(0-5)

Satisfaction
level

FR-n
Priority
(0-5)

Satisfaction
level

From the answers we filter and prioritize the functional requirements with the follow-
ing criteria: 1) threshold to filter out FRs not to be addressed because not of common
interest: more than 2 cities with priority equal or higher than 3; 2) filter out FRs already
supported by the data producers and IoT framework; 3) rank by priorities average.

Table 6.3: Functional Requirements (FRs) of common interest

Application Theme
Cities answering
the questionnaire

Total
FRs

Selecte
FRs

FRs
to address

Human-centric traffic mgmt. Ant, Ein, Mil; (Car, San) 12 8 7

Multi-modal transportation Hel, Mil, Por, San; (Car) 33 28 19

Community Policy Suite Car, Man, Por; (San) 9 8 8

In particular, for point 2), we evaluate the SynchroniCity framework [155] and the
legacy IoT systems involved. For instance, the security layer of the IoT framework
fully addresses three FRs (plus partially a fourth one). In fact, the Single Sign-On
(SSO) approach is envisioned for all the city services that are developed following the
SynchroniCity philosophy of a shared ecosystem. This, on the one hand, relieves the

CHAPTER 6. IoT data services ecosystem 140

6.5. Atomic Services

application developer from the burden of managing credentials, and on the other hand,
the city service users (e.g. citizens) to create a new user for every new city service.
Another FR was addressed by the geographical data query and subscription methods
offered by the infrastructure. Finally the cities IoT providers together with the adoption
of a common standard, such as OMA NGSI [58], and common data models, such as
FIWARE data models [27], were already addressing six data related requirements 3.
Table 6.3 summarizes the filtered FRs, a more detailed list of selected FRs can be viewed
in [156].

6.5 Atomic Services

By the end of SynchroniCity (Dec 2019) the roster accounts 15 atomic services. Table 6.4
summarizes the services by category and by the phase of selection. The first three services
entering the roster are the results of the bottom-up phase. During this phase, partners
with previous experience in smart city projects bring their expertise and previous results.
The Smart Cities Dashboard and the Grafana Dashboard are visualization tools used in
past pilots. The Routing Service (Open Trip Planner - OTP) is a data evaluation service,
which is adopted by many current city services concerning a journey. Even if Grafana
and OTP are third party software, they are still accounted as atomic services. Our
approach is not to forcefully create new components, but to share best practices and
expertise to city services developers. Indeed the final goal is to create a self-sustained
community. In the case of those two services, what is provided is the support, tutorial,
and ready-to-use packaging for smart city context.

During the supervised top-down phase, different smart city services’ architectures are
collaboratively analyzed and compared. This resulted in five atomic services: Parking
and Traffic Estimator are data analytics services that use artificial intelligence (AI)
to predict, respectively, parking and traffic situation; GTFS-RT Loader, NGSI Urban
Mobility to GTFS Adapter and GTFS Fetcher are data integration services necessary
to integrate the routing service, that digests General Transit Feed Specification (GTFS)
files, with the underlying Next Generation Service Interface (NGSI) protocol adopted by
the FIWARE-based framework.

During the top-down approach, other seven atomic services entered the community.
The (Outdoor) Noise Estimator is a data analytics service based on the same system of
the other two estimators. This predictor resulted important for the Carouge’s community
policy suite service, and we are asked to tailor a new atomic service for their needs.
The Bike Data Visualiser and Grafana NGSI Map plugin are two visualization atomic
services. The latter is a plugin for Grafana (also published in the Grafana community)
to readily use NGSI data. The Transformer GPS to NGSI Traffic Flow Observed (TFO),
and Legacy to NGSI Transformer adapt simple JSON data to the FIWARE data models,
enabling the usage of NGSI-based atomic services. The NGSI to NGSI-LD is meant to
keep the pace of the NGSI evolution towards the linked data [89]. Finally the NGSI

3As of end of 2020, the OMA NGSI has evolved to ETSI CIM NGSI-LD [89] and FIWARE data
models are evolved into Smart Data Models [80]

CHAPTER 6. IoT data services ecosystem 141

6.5. Atomic Services

Validation checks the correctness of NGSI message against the FIWARE data models
JSON schemas, increasing city services reliability.

Table 6.4: Atomic Services selected with different approaches: phase 0) bottom-up; phase 1) supervised
top-down; phase 2) top-down.

Category
data

analytics
data
eval.

data
integration

data
val.

visualization

Atomic
Service

p
ar
k
in
g
es
ti
m
at
or

tr
affi

c
es
ti
m
at
or

n
oi
se

es
ti
m
at
or

ro
u
ti
n
g

gt
fs
-r
t
lo
ad

er

gt
fs

fe
tc
h
er

n
gs
i
to

gt
fs

gp
s
to

gt
fs

n
gs
i
to

n
gs
i-
ld

js
on

to
n
gs
i

n
gs
i
va
li
d
at
io
n

d
as
h
b
oa

rd
gr
af
an

a

b
ik
e
d
at
a
v
is
u
al
iz
er

n
gs
i
gr
af
an

a
p
lu
gi
n

Phase 0 X X X

Phase 1 X X X X X

Phase 2 X X X X X X X

6.5.1 Data analytics atomic services

In [8], we introduced the legacy solution for predicting parking area availability and traffic
flow based on time-series data. These services expose HTTP interfaces for providing
data prediction based on machine learning (ML). From these two atomic services we
assemble a third estimator for outdoor noise level. Namely, we leverage data from
outdoor deployed noise sensors (e.g. Carouge, Santander) to predict the noise level in
the next time window (e.g. 1 hour).

Fig. 6.4 shows the current architecture that is easier to configure/deploy/use from
the previous version [8] and, at the same time, more scalable, flexible and stable. Fol-
lowing the data flow, underlying IoT infrastructures (i.e., FIWARE-based Synchronicity
Framework) feed the entry point of the atomic service, so called IoT Data Manager.
This component gathers data from the various nodes/IoT devices in three ways: last
values-context information, historical data, and event-based subscription. Past, present
and future data is forwarded to the Data Storage Cluster, a decentralized datastore
based on Elasticsearch. Optionally, a FIWARE Context Broker4 is used to store the
output of the estimators as new attributes for each sensor, enabling these services to be
used as standalone solutions when combined with other components (e.g., Grafana for
visualization, Quantum Leap5 for timeseries storage).

The AI operations are performed by two components based on Keras, TensorFlow
and Scikit-Learn as ML engine:

4https://fiware-orion.readthedocs.io/
5https://smartsdk.github.io/ngsi-timeseries-api/

CHAPTER 6. IoT data services ecosystem 142

6.5. Atomic Services

Figure 6.4: Estimator atomic service(s) architecture

• Micro Training Engine(s) generate the models upon the data (i.e. historical
time series) collected at the Data Storage Cluster. A model is generated for every
context entity (i.e., a thing) having a minimum number of samples (configurable;
by default, 1000). Since new data is continuously streamed onto the system, the
trainer is scheduled to periodically re-train the models (by default, in a daily basis).
The trainers can be configured with different algorithms, training window size, and
train/test ratio.

• Micro Inference Engine(s). For each sensor, given the model generated by a
training engine and a sample chunk containing the latest observations, the inference
engine calculates the predictions/estimations for the next time-window. There is
one micro inference engine per micro training engine. The inference is performed,
by default, every 15 minutes. The prediction values are saved into the Data Storage
Cluster and, optionally, in the context broker.

Original sensor observations and estimations are exposed by two interfaces. Data
Management is a Kibana-based dashboard that visualizes data available in the Data
Cluster Storage. The Service Manager provides an HTTP API where users can: 1) query
all the information stored in the Data Cluster Storage; 2) call a prediction from a Micro
Inference Engine and retrieve the output. The service manager is the sole component
actually different between estimators (i.e. parking, traffic and outdoor noise), since each
of the Service Managers is tailored according to its respective data API and output
format.

CHAPTER 6. IoT data services ecosystem 143

6.5. Atomic Services

6.5.2 Atomic services as building blocks for city services: multi-modal
transportation city service in Santander

In this section we describe the combination of atomic services to provide a routing service
in a multi-modal transportation scenario based on Open Trip Planner (OTP). We focus
on the routing service deployed in the city of Santander that aims to provide routes
within the city and from the city to nearby villages. The transportation and mobility
alternatives include public bus service managed by a private company, mobility facilities
within the city, which include mechanical stairs and funicular, and a private ferry service
that connects the city with two villages through the bay.

The resulting service uses the FIWARE Context Broker as the central piece, which
stores heterogeneous urban data according to the defined data models (see Fig. 6.5). In
addition, the routing engine relies on the GTFS and GTFS Real Time (GTFS-RT) data
models to generate routes. Different data providers (city services or utilities) generate
NGSI entities, that are consumed and transformed by the atomic services, so that it
can be consumed by the routing engine. It is worth noting that the public services
(i.e., buses, escalators, funiculars) create entities linking to regular GTFS files using the
GtfsTransitFeedFile data model and periodically provide arrival estimation information
by updating ArrivalEstimation entities (e.g., bus arrival at a stop). On the other hand,
the private service (i.e., ferries) lacks standard data models, thus, it uses a set of NGSI
entities to store scheduling information.

The atomic services deployed in this scenario are:

• NGSI Urban Mobility to GTFS consumes NGSI urban mobility entities and
generates GTFS feeds (i.e., .zip files) storing them locally. Then, it creates Gtfs-
TransitFeedFile entities in the context broker pointing at GTFS files.

• GTFS Fetcher feeds OTP with GTFS files. This atomic service tracks the modifi-
cations in the GtfsTransitFeedFile entities to update and reload the OTP databases
and maps.

• GTFS-RT Loader consumes ArrivalEstimation entities from the NGSI context
broker, to generate GTFS-RT file. The service subscribes to ArrivalEstimation
updates in the context broker, to propagate them to GTFS-RT feeds. The service
also exposes this real time information through a REST interface.

• Routing Service, based on Open Trip Planner, consumes GTFS and GTFS-RT
data and provides multi-modal routes, supporting customization options. The
GTFS Fetcher pushes GTFS feeds to the routing service. The routing service can
also pro-actively consume GTFS-RT from an endpoint.

6.5.3 Danish smart cities experiences

Atomic services come also from the adaptation of old solution to new technologies and
standards. Danish cities is working to establish successful smart city solutions for at

CHAPTER 6. IoT data services ecosystem 144

6.6. Evaluation

Figure 6.6: Validation layout

the NGSI Grafana plugin, and custom Redis data store with Quantum Leap. We also
enhance reliability by the adopting the NGSI Validation atomic service. In addition, we
already implemented the NGSI to NGSI-LD atomic service as preparation for the NGSI
transition to linked data [89].

6.6 Evaluation

While the process of identification and publication of new atomic services is still ongoing,
we validated the quality of the eight bottom-up and supervised top-down services. In
the process, we also analyze the community engagement.

6.6.1 Validation

Synchronicity atomic services are distributed with documentation regarding the deploy-
ment process, provided functionalities (e.g. the consumed/produced datasets) and their
APIs. In this sense, the validation focus is set on three main aspects: 1) documentation
regarding requirements (e.g., software and hardware), installation process and usability;
2) deployment and integration with the SynchroniCity framework; 3) the features cov-
ering city service themes functional requirements. The latter point makes sense only for
atomic services chosen under supervised phases, while designing city services per theme.
For atomic services chosen during the top-down phase, this validation step cannot be
verified since the features relate to single city services and not to city service themes.

We define a set of compositions, called scenarios, that relate atomic services based on
consumed data sources and provided outcomes. These scenarios require an integration
with a SynchroniCity core infrastructure to collect data. Each of these compositions
evaluate the provided documentation that describes the involved atomic services, the

CHAPTER 6. IoT data services ecosystem 146

6.6. Evaluation

integration with SynchroniCity framework, and their interoperability capabilities. We
set up three scenarios:

• The Routing scenario combines GTFS information feeds with the SynchroniCity
OTP-based routing service to provide multi-modal routes. It validates the capa-
bilities of the atomic services framework to support GTFS files management and
GTFS-RT feeds generation to build multi-modal routes within the city. The lay-
out of this scenario corresponds to the Santander application (see §6.5) and puts
together NGSI, GTFS and OTP services on top of the Santander SynchroniCity
framework.

• The Estimation scenario exploits data from ParkingSpot, OnStreetParking and
TrafficFlowObserved entities provided by the Santander deployment, both last
value and historical data, to feed the Parking and Traffic estimators services. Both
services combined offer an overview of the current and incoming traffic situation
on a city, providing also valuable information to upper mobility services or appli-
cations.

• The third scenario, City Data Visualization, is composed by the Smart City
Dashboard and Grafana Dashboard atomic services that provide views of the avail-
able IoT data and their impact on different city indicators. These two services
consume data from the NGSI context broker.

We emulate a SynchroniCity core framework with a testing environment (see Fig-
ure 6.6) that includes components and data sources. Following their documentation, we
deploy the atomic services that directly consume SynchroniCity resources. Then, we
deploy and check the rest of atomic services that consume output from the first ones
(and if applicable, also from the SynchroniCity components). Finally, we validate the
documented functionalities of each atomic service. This is an iterative process, thus,
each detected issue in any of the validation steps, including provided documentation, is
reported to the service developer to allow improvements in the next iteration.

Figure 6.7 shows a status summary shared with atomic services developers or, in case
of external third party components (e.g., Grafana and OTP), the designed responsible.

6.6.2 Community Engagement

The number of atomic services increased consistently throughout time, reaching a total
of 15 atomic services. Fig. 6.8 shows also the trend of their adoption by city services,
reaching a total of 38 “success stories”. Each integration of an atomic service in a
city service is counted (e.g., the multi-modal transportation city service of Santander
described in §6.5.2 counts 4 adopted atomic services).

Atomic service providers are fairly distributed among the three categories of academia,
industry, and SMEs (see Fig. 6.9). Among the atomic services users (i.e., parties involved
in the development of city services that integrate an atomic service), also the governance
category have similar share with the others. Typically, governance parties have not much

CHAPTER 6. IoT data services ecosystem 147

6.6. Evaluation

Figure 6.7: Validation summary of SynchroniCity atomic services (May 2019)

resources for development. This explains why their contribution to atomic services is
limited while the adoption is fostered. If we count the parties as many times as they are
involved in a city service (third set of bars in Fig. 6.9), we can observe that SMEs and
governance take big advantage to this shared effort. Being academia usually the most
willing to share and to experiment, this category of parties result to be the biggest in
terms of providers and users. Industry also helped with 4 atomic services, but the low
number of adoption is due to their involvement into a limited number of city services.

Table 6.5: Third party services adoption

Academia Governance Industry SME tot

Own Adoption 6 1 1 10 18

External Adoption 7 6 3 4 20

Atomic services are adopted almost evenly by the same developer party and by
third parties. Table 6.5 shows these numbers together with the detailed by stakeholder
category. It is interesting to note that while academia group is open to share and adopt
ready solutions, governance and SMEs have opposite attitudes. In particular governance
re-uses third parties software whereas SMEs are keen to implement their own service

CHAPTER 6. IoT data services ecosystem 148

6.7. Evaluation

0

10

20

30

40

S
e

p
'1

7

O
ct

'1
7

N
o

v
'1

7

D
e

c'
1

7

Ja
n

'1
8

F
e

b
'1

8

M
a

r'
1

8

A
p

r'
1

8

M
a

y
'1

8

Ju
n

'1
8

ju
l'

1
8

A
u

g
'1

8

S
e

p
'1

8

O
ct

'1
8

N
o

v
'1

8

D
e

c'
1

8

Ja
n

'1
9

F
e

b
'1

9

M
a

r'
1

9

A
p

r'
1

9

M
a

y
'1

9

Ju
n

'1
9

ju
l'

1
9

A
u

g
'1

9

S
e

p
'1

9

O
ct

'1
9

Atomic Services

Used Atomic Services

Phase 0

Bottom-up

Phase 1

Supervised Top-down

Phase 2

Top-down

Figure 6.8: Trend of atomic services and their adoption by city services

Table 6.6: City services categorizations

City Services Adopted AS

Public governance projects 12 26

6-months pilots 16 0

Individual exploitations 8 12

and offer it in the market. This is explained by the fact that startups develop their core
technology to build product differentiation. This is demonstrated also in Table 6.6 where
the city services of Table 6.1 are categorized in public governance projects, 6-months
pilots driven by startups, and individual exploitation of a single stakeholder. We note
that startups project do not adopt any atomic service, mostly due to the short time
project spent to develop their core technology. Cities projects, instead, are confirmed
to will to re-use technologies. These two attitudes are complementary and the atomic
services community helps providers to meet customers.

If we analyze the distribution of atomic services categories by city services categories
we can notice that the multi-modal transportation is the category with the biggest
number of atomic services adopted. That is because the city services in this category were
the most deeply designed with common effort [8] across the bottom-up and the supervised
top-down phases. Furthermore this kind of services involved advanced data manipulation
(i.e., parking and traffic prediction analytics) and evaluation (i.e., routing service), with
necessary data integration (i.e., to and from GTFS). Community policy suite services
take advantages from atomic services, mainly from the visualization typology (especially
Grafana) being this kind of applications oriented to aid human decisions.

CHAPTER 6. IoT data services ecosystem 149

6.7. Conclusions

6 6

21

4 3
6

4 4

17

1

5

14

0

5

10

15

20

25

AS providers AS users AS per city service

contribution

Academia Governance Industry SME

Figure 6.9: Distribution of atomic service contribution and usage per stakeholder

1

9

1

5

4
1

2

1

2

7

0

5

10

15

20

Encourgaging

non-motorized

transport

Multi-modal

transportation

Enabling Mobility

as a Service

(MaaS)

Community

Policy Suite

Visualization

Data Validation

Data Integration

Data Evaluation

Data Analytics

Figure 6.10: Distribution of atomic service categories among city service categories

6.7 Conclusions

In this chapter we presented the collaboration among many stakeholders for the imple-
mentation of 35 city services piloted in 27 cities. The approach is to encourage developers
to have modular design of their applications in order to identify re-usable IoT services,
named atomic services. The identification of atomic services went through three phases,
with one still open since it envisions contribution from the open community of smart city
developers. We identified 15 atomic services addressing IoT challenges in data analytics,
data evaluation, data integration, data validation, and visualization. We present exam-
ples of atomic services (related to data analytics) and their usage in real application in
Santander and Denmark. We performed validation on the quality of the atomic services
and an assessment of the adoption by smart city application. It resulted that a total of
38 instances of different atomic services are operating in several city services.

CHAPTER 6. IoT data services ecosystem 150

Chapter 7

HyperConnected Smart City
Services

Understanding crowd mobility behaviors would be a key enabler for crowd management
in smart cities, benefiting various sectors such as public safety, tourism and transporta-
tion. This chapter discusses the existing challenges and the recent advances to overcome
them and allow sharing information across stakeholders of crowd management through
Internet of Things (IoT) technologies. The chapter proposes the usage of the new feder-
ated interoperable semantic IoT platform (FIESTA-IoT), which is considered as“a system
of systems”. The platform can support various IoT applications for crowd management
in smart cities. In particular, the chapter discusses two integrated IoT systems for crowd
mobility: 1) Crowd Mobility Analytics System, 2) Crowd Counting and Location System
(from the SmartSantander testbed). Pilot studies are conducted in Gold Coast, Aus-
tralia and Santander, Spain to fulfill various requirements such as providing online and
offline crowd mobility analyses with various sensors in different regions. The analyses
provided by these systems are shared across applications in order to provide insights and
support crowd management in smart city environments.

In addition, we leverage the information transparency through semantic interoper-
ability and present another example application, namely Smart City Magnifier (SCM).
We take advantage of a semantic approach to resource and context management, show-
ing a seamless and transparent federation of different heterogeneous systems towards a
holistic smart city monitoring service. SCM encompasses: semantic mediation, linking
of data to entities and of entities to entities, and data augmenting through situation
awareness.

7.1 Crowd Mobility

Sustainable development of cities is a major global challenge as more than half of the
world population is living in urban areas. The smart city concept allows optimizing
services for urban areas because or as a result of the advancement of the new technologies
ranging from very small devices to big data centers. These technologies can be considered

151

7.1. Crowd Mobility

leveraging existing technologies and infrastructure. To make such a system of systems
useful, semantic models based on an appropriate ontology are needed for transparently
exchanging data, analytics results, and allowing to share new insights from different
crowd management applications. The federation of data, results, and learned insights is
the key technical enabler to understand the crowd mobility behaviors in a smart city.
Finally, privacy preservation is a problem of utmost importance for smart cities. While
various data from vast deployment of sensors travel through the IoT systems, preserving
privacy at a level closer to the data contributors (providers) is an important challenge.

This chapter describes the recent advances in IoT for understanding crowd mobility
in smart cities. The federated and interoperable semantic IoT (FIESTA-IoT) platform for
smart cities is introduced for the specific perspective of crowd management applications.
Fig. 7.1 illustrates the outlook of the smart city applications leveraging the smart city
platform for sharing information across various stakeholders. While the platform is
currently in use for several smart city testbeds, the chapter focuses on two IoT systems for
crowd mobility, namely Crowd Mobility Analytics System (CMAS) and Crowd Counting
and Location System (CCLS) and discusses the aspects related to the aforementioned
limitations.

Two pilot studies are conducted in Gold Coast, Australia and Santander, Spain,
where various sensors are deployed in urban areas. The first pilot study uses CMAS in
Gold Coast for a medium-scale smart city deployment. The requirements of the pilot
include analyzing heavy or light pedestrian traffic at streets with or without vehicles.
The second pilot study uses CCLS in an indoor market in Santander. The requirements
include detecting people (crowd size) and locating their positions at public buildings of a
city and other critical infrastructures. In both pilots, data anonymisation limits tracking
devices for long time periods. On the other hand, online and offline analytics information
needs to be shared across various stakeholders such as city councils and visualized in
several interfaces using IoT technologies and infrastructure to provide insights for crowd
management in smart cities.

7.1.1 Crowd Mobility Analytics using the Smart City Platform

Federated and Interoperable IoT Platform

Smart city data is often gathered by solutions where dedicated networks of sensors or
data sources produce observations to be consumed by specific applications. The systems
usually differ from each other, serving for distinct purposes, and they are mostly not
interoperable [69, 157]. In this regard, creating crowd management services that harness
the abundant data from a smart city (e.g., environmental data, road traffic information)
would require either ad-hoc integration or creation of new systems. This situation raises
a new requirement of an integrated “system of systems” or “container of systems”.

To overcome this challenge, we propose a crowd mobility-based instantiation of the
FIESTA-IoT platform [92] and provide semantic interoperability from IoT deployments
to the services (shown in Figure 7.2). The heterogeneous IoT deployments on the IoT
Devices and Systems (bottom layer) are integrated to the Cloud and data is anonymised

CHAPTER 7. HyperConnected Smart City Services 153

7.1. Crowd Mobility

SSN (Sensors/Devices)

Time

M3-lite

(Taxonomy)

QU (Quantity

Kinds/Units)

WGS84(position)

ssn:Sensor

ssn:SensingDevice

ssn:Device

iot-lite:Coverage

ssn:Observation

ssn:SensorOutput ssn:ObservationValue

qu:QuantityKind

qu:Unit

m3-lite:Direction

ssn
:o

b
se

rve
d

B
y

ssn
:m

a
d

e
O

b
se

rva
tio

n

ssn:observationResult

ssn:hasValue

iot-lite:hasUnit

iot-lite:hasCoverage

geo:Point

ssn:System ssn:Platform
ssn:onPlatform

ssn:attachedSystem

geo:location geo:location

time:Instant

ssn:observationSamplingTime

IoT-lite (Resources/

Entities/Services)

m3-lite:Counter m3-lite:PeopleCountSensor

m3-lite:CountPeople

m3-lite:PeopleStayDurationSensor

m3-lite:PeopleStayDurationAverage

Ontology Core Concepts

subClassOf

Object Property

Cardinality: Some
Object Property

Cardinality: Max1
Object Property

Cardinality: Exactly1

Legend

Crowd Mobility Concepts

iot-lite:Rectangle

iot-lite:Circle

iot-lite:Polygon

Other specific Crowd Mobility subclasses
 SubClasses

m3-lite:

CountPeople

m3-lite:CountPeopleStaying

m3-lite:CountPeopleMoving

m3-lite:

PeopleCountSensor

m3-lite:PeopleFlowCountSensor

m3-lite:StayingPeopleCountSensor

m3-lite:

Direction

m3-lite:DirectionAzimuth

m3-lite:DirectionHeading

qu:

Unit

m3-lite:SecondTime

m3-lite:Item

Namespaces:

IoT-lite: http://purl.oclc.org/NET/UNIS/fiware/iot-lite

M3-lite: http://purl.org/iot/vocab/m3-lite

SSN: http://purl.oclc.org/NET/ssnx/ssn

Time: http://www.w3.org/2006/time

QU: http://purl.org/NET/ssnx/qu/qu

WGS84: http://www.w3.org/2003/01/geo/wgs84_pos

Figure 7.3: Modeling crowd mobility information based on FIESTA-IoT ontology.

ing by aggregating the semantic data and assessing the situations related to physical
objects (i.e., Contextualization Service) at different levels of abstraction such as build-
ings level or street level. Assessment of the situations can be performed through; a)
pre-defined thresholds, b) anomaly detection, c) time-series analysis, d) artificial intel-
ligence. The obtained situations are displayed on the dashboard in Figure 7.1, named
Smart City Magnifier, which reports alerts regarding traffic status, crowd flows, critical
events (e.g., fire bursting), and so on. Moreover, crowd mobility applications such as
Gold Coast Operation Center and SmartSantander Maps receive the results (generated
by CMAS, CCLS or other IoT services) from the Cloud and provide visualizations.

Crowd Mobility Semantic Model

In order to provide seamless interoperability and information transparency from IoT
systems to the crowd management applications, the crowd mobility outcomes are se-
mantically annotated following the FIESTA-IoT ontology [26] as shown in Fig. 7.3 (with
a stress on the specific taxonomy of M3-lite for crowd mobility).

Rich and complex knowledge is represented with an ontology as things are connected
to each other through relationships. Things are not identified as individuals, but as
classes of individuals. Moreover, a class might have sub-classes. For example, people-

CHAPTER 7. HyperConnected Smart City Services 155

7.1. Crowd Mobility

CounterX is an instance of PeopleCountSensor class which is a subclass of Counter (see
Fig. 7.3). The classes can be defined and described in taxonomies and an ontology may
use classes from different ontologies or taxonomies. Relationships between classes are
known as properties and it is possible to define properties’ cardinality. Each class and
property used in an ontology is uniquely identified by a namespace prefix and the class
or property specific name. For example, m3-lite:PeopleCountSensor is a class defined in
the M3-lite ontology. For the sake of readability, in this paragraph we are omitting the
namespace prefix while they are shown with prefix in Fig. 7.3.

The core concept is the SensingDevice, representing a sensor that produces Obser-
vation, which is a measurement (or computation) of a phenomenon related to an object
happened at a specific Instant. For example, a crowd mobility detector can be seen as
a Device composed of multiple SensingDevices. In this sense, such a detector can have
one PeopleFlowCountSensor and one StayingPeopleCountSensor, which are subclasses
of PeopleCountSensor. The Observation(s) is expressed with a QuantityKind having a
Unit. Following our example, the QuantityKind associated to the data generated by the
PeopleFlowCountSensor is CountPeopleMoving (subclass of QuantityKind) with Item as
its Unit and with the Direction property expressed either in geodetic DirectionAzimuth
or as a generic DirectionHeading. The directions start from the Point that is the location
of the physical Platform. Platform is meant as the supporting dock to which the De-
vice is attached. The StayingPeopleCountSensor generates CountPeopleStaying values
expressed in Item. The system also consists of PeopleStayDurationSensor that generates
PeopleStayDurationAverage values measured in SecondTime. Each SensingDevice might
have a Coverage, specified either as Polygon/Rectangle/Circle or as a simple Point. This
indicates the geographic extent of the Observation.

Integrated IoT Systems

Mobility Analytics System The CMAS (extended from our system in [96]) is inte-
grated with the platform via semantic annotation of the outcome. The developed system
consists of Wi-Fi sniffers, stereoscopic cameras, IoT gateways, and data analytics mod-
ules. The Wi-Fi sniffers are capable of capturing wireless probes broadcasted by mobile
devices. Based on the captured Wi-Fi probes, the system can count the mobile devices
in these sensing areas. The cameras are co-located with specific Wi-Fi sniffers deployed
at the dedicated calibration choke points. A built-in people counting software runs in
the cameras. Both Wi-Fi device detection and people counting results are reported to
to the Cloud, where data analytics modules reside, through the IoT gateways. Three
analytics modules are developed: crowd estimation, people flows, and stay duration. The
crowd estimation module outputs number of people by correlating the stereoscopic cam-
era counts and the number of Wi-Fi enabled devices at the calibration points. Based on
the correlation between the two data modalities, the calibration of the data analytical re-
sults are applied in other sensing areas without cameras. The module monitoring people
flows infers crowd movement in these areas. Finally, the stay duration module estimates
the waiting times and the number of waiting people. All analytics results are exported
to the Federated Cloud Infrastructure so the crowd analytics results are discoverable and

CHAPTER 7. HyperConnected Smart City Services 156

7.1. Crowd Mobility

available for applications in the smart city platform.

Crowd Counting and Location System Different from CMAS, CCLS aims at
analysing crowd behaviour in public buildings of a city, as well as critical infrastruc-
tures. The system relies in the analyses of IEEE802.11 frames to discover devices in
the surroundings of the deployment, normally within the monitored areas. Similar to
CMAS, the deployed nodes capture “Probe Request” frames sent by smartphones, which
include a Wi-Fi interface in “active search” mode, incorporated in most of them. How-
ever, CCLS does not only aim at detecting people, but also aims at locating them. For
this, the system stores the RSSI and sequence number from the captured frames. It is
possible to locate people by processing this information using RSSI-based algorithms. All
the post-processing is performed in an edge server, where all the measurements are sent
after the corresponding anonymisation techniques are applied. Once the anonymised
raw measurements are analyzed and the counting and location analytics applied over
them (i.e., the estimated crowd size and positions are obtained), these observations are
semantically annotated and pushed to the Federated Cloud Infrastructure. For the se-
mantic modelling, each crowd estimator is modelled as an PeopleCountSensor, with a
specific Coverage (representing the area to which the estimations apply), that generates
CountPeople observations expressed in Item.

Privacy Considerations

One of the essential requirements is dealing with tracked devices’ privacy. Nowadays,
privacy is one of the major public concerns. In this sense, data protection laws have to
be observed when handling data that could be personal. Quite restrictive rules apply in
most countries of the world, being the countries from the European Union (EU) some
of the most restrictive ones. These rules are recently updated through the General Data
Protection Regulation (GDPR) [159] enforcement.

The Wi-Fi sensors in CMAS and CCLS deal with MAC addresses, which are consid-
ered personal data under the new EU regulation. As it is stated in the GDPR [159], “The
principles of data protection should apply to any information concerning an identified or
identifiable natural person”. Therefore, Wi-Fi-based tracking services in public or pri-
vate spaces can be performed only if the service obtains the user’s opted-in permission,
or data is anonymised in such manner that the user is no longer identifiable, as men-
tioned in the 26th article from the aforementioned regulation. The Article 29 Working
Party, recently replaced by the European Data Protection Board (EDPB), is in charge
of analysing the compliance of the privacy rules. In a document released to analyze the
ePrivacy regulation compliance with GDPR [160], the Data Protection Working Party
states that Wi-Fi tracking can only be performed either if there is consent or the personal
data is anonymised. Within the same document, four conditions are mentioned for the
latter case to be compliant with the GDPR:

• The purpose of the data collection from terminal equipment is restricted to mere
statistical counting.

CHAPTER 7. HyperConnected Smart City Services 157

7.1. Crowd Mobility

• The tracking is limited in time and space to the extent strictly necessary for this
purpose.

• The data will be deleted or anonymised immediately afterwards.

• There exist effective opt-out possibilities.

Considering that user’s permission request is impossible to obtain in normal condi-
tions within the subject of the experimentation, the only option is to anonymise data
regarding to MAC addresses. Thus, experimentation security measures must be un-
dertaken to address both, data integrity and anonymisation. Therefore, any type of
experimentation or service provision must take into account this concern, which is usu-
ally underestimated by system developers.

CCLS in Santander is based on the Spanish Personal Data Protection Laws and
the Spanish Law Protection Office recommendations for data anonymisation [161]. The
recommendation consists on the use of a cryptographic hash function with randomly
generated hash keys. More precisely, the HMAC protocol, which provides such mecha-
nisms, is recommended. In the SmartSantander deployment, we implement the HMAC
algorithm along with the SHA256 hashing function, with a 12-bytes randomly gener-
ated key. Finally, in order to ensure a non-reversible process, this implementation also
comprises a procedure to destroy and renew the key during specific session periods. For
CMAS in Gold Coast, the hashed and salted Wi-Fi probe data is sent to the Cloud. The
stereoscopic cameras do not record video or perform face detection. The cameras simply
count the passage of people through predefined lines at the choke points. The outputs of
the camera are people count-in and -out values. The main drawback of this procedure is
the limitation of tracking devices throughout long periods (as in [162]) or longer travels
within the city, but it is the price that must be paid to meet the privacy requirements.

7.1.2 Pilot Studies in Australia and Spain

Pilot Deployment in Gold Coast

Pilot Setup The deployments in Gold Coast include 17 Wi-Fi sensors and 2 stereo-
scopic cameras. The Wi-Fi sensors are custom-built devices for outdoor deployments.
Two cameras are used at the calibration choke points, where there is a camera and a
Wi-Fi sensor deployed together. The cameras are the Hella Advanced People Sensor
APS-90E deployed at a height about 3.6 meters. Each camera is configured to capture
the entire choke point for accurate counting.

The deployments target two regions. These sensors deployed in these areas are con-
sidered as Cluster 1 for (expected) heavy pedestrian traffic and Cluster 2 for light traffic
places. Each cluster has a stereoscopic camera for the calibration. The collected data
is sent to the Cloud where two virtual machines are created for the clusters. Clustering
the areas allows applying CMAS to city-scale by sharing the raw data load.

Pilot Operation The pilot study activities started in September 2017 and CMAS has
been in use starting from November 2017. Various types of pilot tests are conducted on

CHAPTER 7. HyperConnected Smart City Services 158

7.1. Crowd Mobility

the field during the operation of the pilot. Manual counting is performed using video
footages taken from different deployment areas. In comparison to manual counting,
the cameras provide an accuracy between 88% and 98%, which mainly depends on the
weather and lightning conditions. Furthermore, field tests for heavy and light traffic areas
resulted in 93% and 89% crowd size accuracy compared to manual counting. The results
obtained from outside the choke points give further confidence to treat stereoscopic
camera results as near ground truth as proposed in [96].

Figure 7.4: Heatmap from Mercado del Este in Santander.

Gold Coast pilot successfully tests the crowd mobility analytics services by leveraging
federation of clusters and interoperability using the semantic model to share the results
with stakeholders. This shows that similar systems can be developed and leveraged by
future crowd management applications using the smart city platform.

Pilot Deployment in Santander

Pilot Setup CCLS is deployed in the“Mercado del Este”market, a restored symmetric
building that contains shops, restaurants, a regional tourist office, and a museum. This
building is particularly interesting as it usually receives significant numbers of visitors
due to its central location, with exceptionally crowded periods.

The system is composed of 8 devices installed within the market building. These
devices include a Wi-Fi interface aimed at detecting surrounding Wi-Fi enabled visitors’
devices. Internet connectivity is provided through the Municipality Network, and the
devices are powered using Power over Ethernet connected to the market’s electrical grid.
In addition to the wireless interfaces, half of the devices also include environmental
sensors measuring temperature and humidity. Device deployment is carried out with the
collaboration and supervision of the municipality and the market managers. Considering
the main goal of monitoring people within the market, two parameters are considered
in order to get market status snapshots over the time. First, the number of visitors
within the market in different time frames and second, the location of the visitors in the
different areas of the market.

CHAPTER 7. HyperConnected Smart City Services 159

7.2. Crowd Mobility

aggregated and averaged for 1 hour.
Figure 7.5-a shows the average number of Wi-Fi devices detected for one-week pe-

riod. There exists an increased activity in Cluster 1 region especially during Friday
(23/03/2018) and the following weekend. This can be due to crowdedness in the shop-
ping street and the beach area contained in this region. Moreover, there is a peak in
Saturday that can be due to an event or gathering. Figure 7.5-b shows the change of the
coefficients (ratios). The ratios are computed at the calibration choke points (providing
near-ground truth for the measurements). The hourly ratio is computed such that num-
ber of people count-in and count-out events are divided to the number of Wi-Fi probes.
First, for Cluster 2 with light traffic, correlation coefficient is mostly (almost all days)
higher compared to Cluster 1. Second, correlation coefficient values lie mostly in the
range of (0.2, 2), whereas the peak value is about 2.8. This indicates that the results
based on Wi-Fi-only measurements are likely to have less accuracy most of the times of
the days and the correlation changes throughout the days. Lastly, there exists certain
regularity in the correlation from one day to another, which can be learned through a
time period and then applied to other time periods where camera is temporarily inactive
or removed. On the other hand, as seen in the peak hours of Cluster 2, the ratios do not
lie within a narrow range. One reason can be events affecting the volume of pedestrians.
Lastly, Fig. 7.5-b shows relatively higher variance of the coefficient for areas with light
pedestrian traffic. Calibration could be necessary for shorter time intervals.

Overall, it is observed that effective use of Wi-Fi sensing and combining them with
sensing by stereoscopic cameras produce accurate sensing in large scale for both the
heavy and light pedestrian traffic areas. Moreover, the variance between heavy and
light traffic shows the usefulness of the clustering approach which treats these regions
separately.

7.1.4 Related Work

There are recent studies that focus on understanding of human mobility through IoT
devices such as wireless sensors. Jara et al. [164] observed the relation between traffic
behavior and temperature conditions as a smart city application through deployment of
IoT devices in Santander. Tong et al. [165] propose usage of Wi-Fi sensors to understand
passenger flows. Evaluation through simulation results shows high accuracy. Zhao et
al. [166] survey the recent advances in understanding human mobility in urban environ-
ments. The study lists some of the existing urban human mobility datasets collected
such as GPS, GSM, Wi-Fi, and Bluetooth traces. Similarly, Zhou et al. [167] discuss the
topic of human mobility in urban environments and present a taxonomy of crowdsensed
input data types and application outcomes such as crowd density and flows within build-
ing, and people transportation mode identification (cycling, running, bus riding). Lastly,
Montjoye et al. [162] focus on the privacy aspect by analyzing long period Wi-Fi traces
and show that 95% of the individuals can be uniquely identified using spatiotemporal
datasets.

CHAPTER 7. HyperConnected Smart City Services 161

7.2. Smart City Magnifier: a portable application on hyperconnected IoT

selected by the user, for instance, by focusing a graphical map widget. In Figure 7.6 the
geographical scope situations are visualized by the leftmost columns of gauge widgets
and the related timeseries plots. In the second case, situations are made by iteratively
abstracting geographic things (i.e. entities). The lowest is the sensor level where the
situations are referred to items making observations, that for simplicity we call sensors.
Examples of sensors situations might be temperature (i.e. too low, too high) or correct-
ness (e.g. reporting the exact same value in the past 2 days). Higher levels of abstraction
might be building, street, neighbourhood, city, region and country level. These higher
level things might geographically encompass sensors or observations (e.g. social media
posts) to which were not originally associated. For example sensors observations might
be linked at the same time to a building, a street and so on. City situations analytics
tasks infer environmental situations in different part of a urban area (e.g., per street,
per neighbourhood, per city), or emergency situations such as fire breaks or flood. The
knowledge graph, in this case, is identifying for which entities a situations can be com-
puted and a the same time which are the related observation to take into consideration.
The situations are then symbolized with a traffic-light schema (red for alert, yellow for
a warning and green for a good status) and drawn in the map (see Figure 7.6). The
different abstraction levels is then selected by the top sliding bar which will then changes
the pins in the map widget. Different views of situations (e.g. environmental, deploy-
ment) are selectable by tabs. The whole applications is conceived to work in an agnostic
manner regarding the IoT data sources and leverage the linked data knowledge.

7.2.2 Semantic Interoperability for Information Transparency

An example of a semantic approach to IoT interoperability is the combination of open
standards such as OMA NGSI with the semantic concept of ontology (see Figure 7.7)
such as the one developed within the FIESTA-IoT EU project1 [26] which is a synthesis
of known ontologies and taxonomies (such as Semantic Sensor Network-SSN2, M3-lite3,
IoT-lite4) with the aim of covering the contexts generated by multiple heterogeneous IoT
deployments. The ontology is conceived to deal with resources description and observa-
tions.

In an ontology, rich and complex knowledge is represented as a graphs of nodes,
expressing things, and links between nodes that express the relationship between two
things. Things are categorized in classes and every thing is an instance of a class. A class
may have sub-classes, and an instance of a class is also an instance of all the super-classes
of such class. Classes and relationships are specified into taxonomies and an ontology can
use classes and relationships from one or more taxonomies. Each class and property used

1Federated Interoperable Semantic IoT Testbeds and Applications: FIESTA-IoT. Available online:
http://fiesta-iot.eu/ (Accessed on the 15th of December 2020)

2Semantic Sensor Network - SSN. Available online: https://www.w3.org/TR/vocab-ssn/ (Accessed
on the 15th of December 2020)

3M3-lite. Available online: http://ontology.fiesta-iot.eu/ontologyDocs/m3-lite.html (Ac-
cessed on the 15th of December 2018)

4IoT-lite. Available online: https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/ (Ac-
cessed on the 15th of December 2020)

CHAPTER 7. HyperConnected Smart City Services 163

7.2. Smart City Magnifier: a portable application on hyperconnected IoT

The mapping of the FIESTA-IoT ontology with the NGSI format is shown in Fig-
ure 7.7. The instance of the ssn:Sensor is used as the Name of the EntityId, whereas
the specific class of such instance is set as its Type, the isPattern (that is used to
indicate whether EntityId identifies a range of entities) is set always to false. Each
ssn:Observation is uniquely linked to a ContextAttribute that takes the qu:QuantityKind
as Name, the class of dul:hasDataValue as Type and the ssn:ObservationValue as Con-
textValue. Furthermore, each ContextAttribute has one AttributeMetadata for the
qu:Unit and another one for the time:Instant. The location of the sensor is stored
as a DomainMetadata for all the attributes.

OMA NGSI is currently under study of the Context Information Management (CIM)
working group of the European Telecommunications Standards Institute (ETSI) for
evolving in a new version that incorporates linked data concepts is and formatted in
NGSI-Linked Data (NGSI-LD) [89]. Therefore, it is allowed, if not even recommended,
the usage of an ontology in combination with the context management.
The new ETCI CIM standard suggests a porting from legacy NGSI to the new NGSI-LD.
Further, the FIWARE data models are already ported as an ontology6. We have used
such directions to port the Smart City Magnifier on NGSI-LD.

7.2.3 Smart Cities Enabled by Future Hyperconnected IoT

Figure 7.8 shows the concrete implementation architecture of the Smart-City Magnifier
application. Data are acquired by many Semantic Mediation Gateways (SMGs) that
have the purpose of semantically translating from a format (protocol and data model)
to another format. In this application, SMGs transform data to NGSI format mod-
elled with FIESTA-IoT ontology. The integrated IoT deployments are either coming
from the FIESTA-IoT system [168, 92], from crowd mobility IoT deployments in New
Zealand, from the smart city of Murcia offered by the SMARTIE EU project [169], or
from the cities complying with SynchroniCity (section 3.2). The deployments behind
the FIESTA-IoT framework are exposing the IoT data either through the FIESTA-
IoT historical triple store accessible via SPARQL Protocol and RDF Query Language
(SPARQL) queries or via exposed IoT endpoints, discoverable again through a SPARQL
query, for every available sensors. In both cases, the data format is plain JSON-Linked
Data (JSON-LD) annotated with the FIESTA-IoT ontology. Through the FIESTA-IoT
platform, more than 7500 sensors or resources could be accessed from 10 testbeds report-
ing environmental data (e.g., outdoor temperature, humidity, particles concentration,
luminosity, noise level), road traffic monitoring (e.g., vehicle speed, traffic intensity), car
and bike parking spots, public transportation status (e.g., bus estimated arrival times,
vehicle localization), garbage management, soil and trees monitoring (urban parks and
garden, rural areas), pedestrian presence detector, electromagnetic outdoor exposure,
smart building/office information (e.g., human presence, power consumption, heating
ventilation and air conditioning-HVAC system, solar panels), signal power and power
consumption of wireless sensors, and sea water quality (e.g., pH, Ammonium). The

6https://fiware.github.io/data-models/context.jsonld

CHAPTER 7. HyperConnected Smart City Services 165

7.2. Smart City Magnifier: a portable application on hyperconnected IoT

external knowledge bases such as OpenStreetMap7. One observation might be associated
to one or more real-world things, for instance, an observation of outdoor temperature
sensor attached to a building wall can be associated to such building, to the street where
the building is located, to the neighbourhood and to the city. At the same time, one
thing can have more than one observations associated, for example, if two temperature
sensors are located on two buildings in the same street, such street has two sources of
temperature observations. Since the data contextualization does not need raw data from
other sources, it can be executed on the edge or on the cloud specific of the data source
domain without accessing the federation. The Data Aggregation groups the incoming ob-
servations by the inferred things. The aggregation makes usage, for instance, of statistics
means. The Indicators Computation is calculating smart city Key Performance Indica-
tors (KPIs) [170] assessing the status of city and identifying critical situations. The
latter two data analytics tasks necessitates cross-domain data and therefore they make
data requests trough the federation.

The output of the analytics is handled again by the federated IoT Brokers. The
dashboard is then acquiring the information and visualizing it on a map presenting the
alerts and warnings with the means of several visualization widget tools. The same vi-
sualization dashboard is used for visualizing all the situations inferred from the IoT silos
integrated in Europe, Korea and New Zealand, with a total of 16 city areas (Guildford
in the United Kingdom, Santander and Murcia in Spain, Seoul in South Korea, Toulouse
and Paris in France, Heraklion and Volos in Greece, Waterford in Ireland, Milan and
Minervino Murge in Italy, Wellington and Christchurch in New Zealand, Porto in Por-
tugal, Helsinki in Finland, Carouge in Switzerland). Since the analytics processing tasks
are working on homogeneous semantically annotated data, the geographic scope of the
dashboard map can simply be navigated to focus on a different city.

7.2.4 Cloud-Edge stream processing

FogFlow (as seen in chapter 2.2) is a distributed execution framework to support dy-
namic processing flows over cloud and edges. It can dynamically and automatically
composite multiple NGSI-based data processing tasks to form high level IoT services,
and, then, orchestrate and optimize the deployment of those services within a shared
cloud-edge environment, with regards to the availability, locality, and mobility of IoT
devices. Processing tasks are packed in docker8 container and are automatically pulled
by the system from a shared Docker repository (e.g. DockerHub9).

7OpenStreetMap project. Available online: https://www.openstreetmap.org/ (accessed on 2nd of
December 2020)

8https://www.docker.com/
9https://hub.docker.com/

CHAPTER 7. HyperConnected Smart City Services 167

7.2. Smart City Magnifier: a portable application on hyperconnected IoT

Figure 7.9: SCM service topology designed through the FogFlow graphic user interface.

The processing tasks are placed in a topology similar to the one shown in Fig. 7.9,
where:

• Two input streams enable the data flow of resources’ observations and resources’
status information in the analytics tasks

• Contextualizer task associates virtual entities, making usage of the NGSI Nomina-
tim service, to the incoming observations flowing. Contextualizing, in this scope,
is the act of inferring the location context (e.g. a building, a street, a square,
a suburb, a city etc.) to which each geotagged observation belongs. We imple-
mented the NGSI Nominatim an NGSI service that exposes an NGSI interface to
request the associations of a geographic point (formed by a latitude and longitude)
to a set of real geographic items touched by such point. The system is using the
OpenStreetMap Nominatim10 we service as remote service.

• Aggregator task (named Stats) aggregates the incoming observations by the virtual
entities. The aggregation makes usage of simple statistics means, such maximum,
minimum, average.

• IoT quality of deployment task (named qualityofdeployment) calculates the quality
of deployment (in the form of number of resources, geographical density of resource,
etc.,) for each of the virtual entities contextualized.

• IoT deployment monitor taskmonitors the amount of observation coming from
resources from each the virtual entities contextualized. It takes as input statistics

10https://nominatim.openstreetmap.org

CHAPTER 7. HyperConnected Smart City Services 168

7.3. Conclusions

of the observations for each of the virtual entities (output of the stats task) and
the quality of deployment parameters (output of the qualityofdeplotment task) and
monitor the activity of the sensor through the time.

7.3 Conclusions

The presented crowd mobility work focuses on finding insights behind crowd mobility
such as detecting crowdedness. However, understanding more complex crowd mobility
behaviour in a large-scale city area such as movements of groups [171] (e.g., family) could
be helpful for crowd management and enhancing smart mobility in the cities. The col-
lected mobility information can serve as input of human mobility simulations to further
study how city dynamics are affected by crowd mobility patterns. With the combination
of real mobility dataset in a simulated environment, learning new mobility insights opens
up new opportunities for new crowd management strategies (e.g., congestion avoidance,
evacuation planning, demand management) that can further improve the public ser-
vice and safety in smart cities. In future developments, the semantic interoperability
through ontologies can be leveraged more extensively for cross-infrastructure commu-
nication and knowledge sharing. The new advancements of the NGSI-LD protocol are
centered around the concepts of linked data. This opens a new horizon where knowledge
graphs are shared among various infrastructures and, while their administrators own
the produced data, it is still accessible seamlessly and transparently by all actors in the
multi-infrastructure federation.

The Smart City Magnifier application shows the possibility to develop data analytics
services on top of an information transparent system where data is seamlessly available
through a common interface. We make usage of the software-defined services approach
and design analytics part as a topology of atomic processing tasks. We also integrate
external knowledge base, such as OpenStreetMap, through the same NGSI data inter-
face. The application relies on the FogFlow orchestration to deploy analytics task when
needed. The data coming from the diverse data providers are handled on different con-
text managements that are federated among them. In future developments, we will
move more towards a context-based serverless approach [172]. For instance, the condi-
tions check to color the indicators green, yellow, or red happens at the visualization time.
This checks might run on the back-end continuously and triggered on the occurrence by
the service orchestration.

CHAPTER 7. HyperConnected Smart City Services 169

Chapter 8

Conclusions and Future Work

In this thesis, we have studied the evolution of Internet-of-Things towards a global
interconnection and interworking of heterogeneous devices, systems and services. We
have provided key technical solutions to enable the hyperconnected IoT vision and we
have reported experiences to apply them on real world multi-party scenarios. We have
also discussed standards and open sources aspects on both 5G and IoT that we have
adopted and expanded throughout the thesis as basis to achieve a viable data sharing.

Overall, in this thesis we have focussed on four main topics: i) decentralization of an
IoT deployment across the whole service computing stack such as edge, fog and cloud;
ii) federation of (decentralized) IoT systems managed by diverse parties; iii) enforcing
data usage control throughout the federation of decentralized IoT systems; iv) realiz-
ing real hyperconnected IoT services and an IoT services ecosystem among 27 cities
across Europe, Asia and Oceania. We horizontally leveraged several technical enablers
such as service-defined data analytics, comprehensive of elastic edge-cloud orchestration,
information transparency, data contextualization, and semantic discovery.

The experiments conducted on the several proposed solutions show that the path
towards an hyperconnected IoT is not only beneficial for the economy [32] but also
viable and, even, advantageous in terms of performances, scalability, and reduced ser-
vices management complexity. Further, in this thesis we extensively demonstrate that
a context-based data management approach for IoT is very beneficial for IoT services
development, deployment and management. The proposed mechanisms are well fitting
with ETSI MEC and the FIWARE ecosystem, and readily to be applied and exploited.

We can summarize the contribution of this thesis as follows:

• In chapter 2 we present a novel approach to optimally handle IoT deployments on
a 5G infrastructure. The basic idea is the synergistic cooperation of the IoT tenant
and the 5G operator to trade-off resources among slices and avoid service degra-
dation. In addition, we explore the correlated fog computing topic and propose a
programming model to decouple the IoT service development to the orchestration
among cloud and edges. Further, the services are also decoupled to the context
management and the data discovery and provisioning is performed transparently
by the proposed system, namely FogFlow.

170

8.0.

• In chapter 3 we analyze the benefits that a Multi-access Edge Computing (MEC)
platform might bring to a well developed smart city deployment such as Smart
Santander. To address the identified requirements, we propose an ETSI MEC-
based architecture that facilitates IoT networks and services deployments but also
encompasses an IoT gateway middleware for handling high-computation applica-
tions with low-latency requirements. We also investigate FIWARE, one of the most
prominent standard-based open source IoT platforms, presenting how it is used in
three different real world scenarios reporting lessons learnt from these experiences.
We, then, compare FIWARE with commercial and other open sources solutions
assessing its strengths in terms of information transparency, semantic mediation,
and services handling, and its readiness towards commercial exploitations.

• In chapter 4 we propose an architecture to federate decentralized IoT platforms
managed by multiple parties. The proposed architecture is scalable by design al-
lowing federation of federations, thanks also to the two-levels approach for the
security and context management. The data managed through a context-oriented
approach, and data flows establishment happens transparently from the data con-
sumers and data providers perspectives. The experiments show that the overhead
for enabling a hyperconnection of systems is much lower in case of big amount of
data exchanges. In addition, the results demonstrate that the federation allows the
performances scalability of IoT systems when the size of IoT scenarios increases.

• In chapter 5 we introduce a novel data usage control system, namely IntentKeeper,
adopting a service-defined data analytics approach. The proposed system simpli-
fies the data usage policies definition for the data providers and policies-compliant
data analytics services definition for the data consumers into highly dynamic sce-
nario such as hyperconnected IoT. By combining service orchestration, context
management, and policy enforcement, IntentKeeper enforces data usage control
preventively and proactively.

• In chapter 6 we present the methodology to develop a shared ecosystem for IoT
services involving different stakeholders. The methodology relies on a FIWARE
framework bringing information transparency due to the semantic interoperability
of the FIWARE data models. We applied the methodologies among 35 city services
piloted into 27 different cities.

• In chapter 7 we shows examples of smart city services that leverage the global
interconnection of IoT resources. We develop new concepts of crowd mobility that
uses data seamlessly from different providers. In addition, we present a smart city
generic monitoring application that transparently uses data from 16 city deploy-
ments to infer situations of the real world and associate them to real things. We
show also how to implement such service using the FogFlow programming model
relying on it for the service orchestration.

With this thesis we have addressed several aspects towards an hyperconnected data

CHAPTER 8. Conclusions and Future Work 171

8.0.

sharing, however there are future works that the author of this thesis plan to follow as
next steps.

Data sharing is beneficial for the data analytics ecosystem and our intent-oriented
data usage control approach greatly facilitates to handle the complexity of multi-party
and distributed systems. However, we have assumed that the actual data owner and the
data provider are the same role. This is not always the case and might keep exposed
the problem of personal data handling for companies (e.g., data covered by the GDPR).
Another open challenges is the transitivity of usage control: how to transfer the original
data provider’s (data owner’s) rights onto the processed data and how to determine
when to stop the rights transferring on following data processing. The data consumers,
that spend efforts and costs to process data, need to have a clear view on the carry over
restrictions on the processed data.

Another open challenge for the data sharing is the data traceability. A retrospective
on how the data has been used and from where the processed data comes is impor-
tant for both the data producers and data consumers. Data producers wants to have
transparency on where the their data has been used in order to auditing the actual en-
forcements of their policy, or even to apply policies not yet specified at the time the data
was shared (e.g., GDPR principle of the ”right to be forgotten”) [173]. Data consumers
desire to have full understanding on the impact on their business of every usage of data
and the possibility to check ”what-if” conditions in case of changes of policies. In this
thesis we have moved some steps towards the traceability direction with the usage of
distributed ledger technologies, but a deep study on the traceability model integrity is
needed.

Data sharing promises to have positive impact on the economy if adopted in a shared
ecosystem (e.g., possibility to sell data, reduction of costs for service development) but
this has not yet happened in the reality. A known obstacle is the effort to integrate
systems. In this thesis we have approached the semantic mediation between systems
mostly with ad-hoc Semantic Mediation Gateways (SMGs). Such an approach is clearly
not scalable for a global IoT . However, a good burst towards a realization of an hy-
perconnected IoT might be automatic means of ontology matching [174] perhaps taking
advantages of AI techniques.

CHAPTER 8. Conclusions and Future Work 172

References

[1] Flavio Cirillo, Fang-Jing Wu, Gürkan Solmaz, and Ernö Kovacs. Embracing the
future internet of things. Sensors, 19(2), 2019.

[2] V. Sciancalepore, F. Cirillo, and X. Costa-Perez. Slice as a Service (SlaaS) opti-
mal IoT slice resources orchestration. In GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, pages 1–7, Dec 2017.

[3] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa.
Fogflow: Easy programming of iot services over cloud and edges for smart cities.
IEEE Internet of Things Journal, 5(2):696–707, April 2018.

[4] Lanfranco Zanzi, Flavio Cirillo, Vincenzo Sciancalepore, Fabio Giust, Xavier
Costa-Perez, Simone Mangiante, and Guenter Klas. Evolving multi-access edge
computing to support enhanced iot deployments. IEEE Communications Stan-
dards Magazine, 3(2):26–34, 2019.

[5] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B. Cheng, and E. Kovacs. A standard-
based open source iot platform: Fiware. IEEE Internet of Things Magazine, 2(3),
Sep. 2019.

[6] F. Cirillo, N. Capuano, S. P. Romano, and E. Kovacs. Liots: League of iot
sovereignties. a scalable approach for a transparent privacy-safe federation of se-
cured iot platforms. In 2019 IEEE 44th Conference on Local Computer Networks
(LCN), pages 226–229, 2019.

[7] Flavio Cirillo, Bin Cheng, Raffaele Porcellana, Marco Russo, Gurkan Solmaz,
Hisashi Sakamoto, and Simon Pietro Romano. IntentKeeper: Intent-oriented Data
Usage Control for Federated Data Analytics. In 2020 IEEE 45th Conference on
Local Computer Networks (LCN), Nov. 2020.

[8] F. Cirillo, D. Straeten, D. Gómez, J. Gato, L. Diez, I. E. Maestro, and R. Akha-
van. Atomic services: sustainable ecosystem of smart city services through pan-
european collaboration. In 2019 Global IoT Summit (GIoTS), pages 1–7, June
2019.

[9] Flavio Cirillo, David Gómez, Luis Diez, Ignacio Elicegui Maestro, Thomas Bar-
rie Juel Gilbert, and Reza Akhavan. Smart city iot services creation through large
scale collaboration. IEEE Internet of Things Journal, 2020.

173

8.0. REFERENCES

[10] Gurkan Solmaz, Fang-Jing Wu, Flavio Cirillo, Erno Kovacs, Juan Ramón San-
tana, Luis Sánchez, Pablo Sotres, and Luis Munoz. Toward understanding crowd
mobility in smart cities through the internet of things. IEEE Communications
Magazine, 57(4):40–46, 2019.

[11] Didier Helal, Samuel Dubouloz, Jorgen Mortensen, Paolo Baldi, and Paul Royo.
Real time 3d environmental noise monitoring and mapping using large-scale in-
ternet of things. In INTER-NOISE and NOISE-CON Congress and Conference
Proceedings, volume 259, pages 7937–7948. Institute of Noise Control Engineering,
2019.

[12] M. Hultermans et al. SynchroniCity D3.1 - Specification and design of initial IoT
applications. Technical report, SynchroniCity, Jan. 2018.

[13] Panu Maijala, Zhao Shuyang, Toni Heittola, and Tuomas Virtanen. Environmental
noise monitoring using source classification in sensors. Applied Acoustics, 129:258–
267, 2018.

[14] GAIA-X project. GAIA-X: Driver of digital innovation in Europe. Featuring the
next generation of data infrastructure. Technical report, 2020.

[15] F. Wu, G. Solmaz, and E. Kovacs. Toward the future world of internet-of-things.
In 2018 Global Internet of Things Summit (GIoTS), pages 1–6, June 2018.

[16] International Data Spaces Association (IDSA). IDS Reference Architecture Model
- v2.0. Technical report, 2018.

[17] Bin Cheng, Apostolos Papageorgiou, Flavio Cirillo, and Martin Bauer. Geelytics:
Enabling on-demand edge analytics over scoped data sources. In IEEE Interna-
tional Congress on Big Data, June 2016.

[18] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness.
In Hans-W. Gellersen, editor, Handheld and Ubiquitous Computing, pages 304–307,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[19] Anind K Dey. Understanding and using context. Personal and ubiquitous comput-
ing, 5(1):4–7, 2001.

[20] Ovidiu Vermesan and Peter Friess. Building the hyperconnected society: Internet of
things research and innovation value chains, ecosystems and markets, volume 43.
River Publishers, 2015.

[21] Karolj Skala, Davor Davidovic, Enis Afgan, Ivan Sovic, and Zorislav Sojat. Scalable
distributed computing hierarchy: Cloud, fog and dew computing. Open Journal
of Cloud Computing (OJCC), 2(1):16–24, 2015.

CHAPTER 8. REFERENCES 174

8.0. REFERENCES

[22] Salvatore Longo and Bin Cheng. Privacy preserving crowd estimation for safer
cities. In UbiComp workshop on Smart Cities: People, Technology and Data,
pages 1543–1550, September 2015.

[23] oneM2M. oneM2M Technical Specification (Document number: TS-0022-V2 3 1).
Technical report, 3 2018.

[24] Open Mobile Alliance. Open Mobile Alliance, Next Generation Service In-
terfaces (NGSI) - OMA TS NGSI Context Management - V1.0-20120529-
A. http://www.openmobilealliance.org/release/NGSI/V1 0-20120529-A/ OMA-
TS-NGSI Context Management-V1 0-20120529-A.pdf.

[25] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. Le Gall, and M. Zhao. Standards-based
worldwide semantic interoperability for iot. IEEE Communications Magazine,
54(12):40–46, December 2016.

[26] R. Agarwal, D. G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza, L. Sanchez,
N. Georgantas, and V. Issarny. Unified iot ontology to enable interoperability
and federation of testbeds. In 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), pages 70–75, Dec 2016.

[27] FIWARE Found. FIWARE data models.

[28] Raphaël Ventura, Vivien Mallet, Valérie Issarny, Pierre-Guillaume Raverdy, and
Fadwa Rebhi. Estimation of urban noise with the assimilation of observations
crowdsensed by the mobile application ambiciti. pages 5444–5451, 2017.

[29] Denise Lund, Carrie MacGillivray, Vernon Turner, and Mario Morales. World-
wide and regional Internet of Things (IoT) 2014-2020 forecast: A virtuous circle
of proven value and demand. Technical report, International Data Corporation
(IDC), May 2014.

[30] Rob van der Meulen and Viveca Woods. Gartner says smart cities will use 1.6
billion connected things in 2016. Technical report, Gartner, Inc., December 2015.

[31] Microsoft. What’s new with the data culture at Microsoft. Technical report,
Microsoft Corporation, August 2015.

[32] PWC. Data exchange as a first step towards data economy. 2018.

[33] Fatih Kilic and Claudia Eckert. iDeFEND: Intrusion detection framework for
encrypted network data. In Proceedings of the 14th International Conference on
Cryptology and Network Security (CANS’15), volume 9476 of Lecture Notes in
Computer Science, pages 111–118. November 2015.

[34] Watts N. et al. The 2018 report of the lancet countdown on health and cli-
mate change: shaping the health of nations for centuries to come. The Lancet,
392(10163):2479 – 2514, 2018.

CHAPTER 8. REFERENCES 175

8.0. REFERENCES

[35] Gurkan Solmaz and Damla Turgut. Pedestrian mobility in theme park disasters.
Communications Magazine, IEEE, 53(7):172–177, July 2015.

[36] Daniel Iland and Elizabeth Belding. EmergeNet: Robust, rapidly deployable cel-
lular networks. Communications Magazine, IEEE, 52(12):74–80, December 2014.

[37] M. Deruyck, J. Wyckmans, L. Martens, and W. Joseph. Emergency ad-hoc net-
works by using drone mounted base stations for a disaster scenario. In 2016 IEEE
12th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob)(WIMOB), volume 00, pages 1–7, Oct. 2016.

[38] Ling Li. China’s manufacturing locus in 2025: With a comparison of “made-
in-china 2025” and “industry 4.0”. Technological Forecasting and Social Change,
135:66 – 74, 2018.

[39] NGMN Alliance. Description of the Network Slicing Concept. NGMN 5G P1, Jan.
2016.

[40] K. Samdanis, X. Costa-Perez, and V. Sciancalepore. From Network Sharing to
Multi-tenancy: The 5G Network Slice Broker. IEEE Communications Magazine,
54(7):32–39, July 2016.

[41] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia, and
A. Banchs. Mobile Traffic Forecasting for Maximizing 5G Network Slicing Re-
source Utilization. In INFOCOM’17, May 2017.

[42] C. Pereira, A. Pinto, D. Ferreira, and A. Aguiar. Experimental Characterisation
of Mobile IoT Application Latency. IEEE Internet of Things Journal, 2017.

[43] L. Toka et al. A Resource-Aware and Time-Critical IoT Framework. In INFO-
COM’17, May 2017.

[44] J. S. Leu et al. Improving Heterogeneous SOA-Based IoT Message Stability by
Shortest Processing Time Scheduling. IEEE Transactions on Services Computing,
7(4):575–585, Oct 2014.

[45] M. A. Nef et al. Enabling QoS in the Internet of Things. In CTRQ 2012: The
Fifth International Conference on Communication Theory, Reliability, and Quality
of Service, 2012.

[46] S. Oh et al. A Scheme to Smooth Aggregated Traffic from Sensors with Periodic
Reports. Sensors, 17(3), 2017.

[47] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han. Resource Management in
Cloud Networking Using Economic Analysis and Pricing Models: A Survey. IEEE
Communications Surveys Tutorials, 2017.

[48] C. A. Gizelis and D. D. Vergados. A Survey of Pricing Schemes in Wireless Net-
works. IEEE Communications Surveys Tutorials, 13(1):126–145, 2011.

CHAPTER 8. REFERENCES 176

8.0. REFERENCES

[49] L. Ramaswamy et al. Towards a Quality-centric Big Data Architecture for Fed-
erated Sensor Services. In 2013 IEEE International Congress on Big Data, pages
86–93, June 2013.

[50] T. Jacobs et al. D.14.2.2: FIWARE GE Open Specifications (IoT Chapter) - IoT
Broker Release 5. Future Internet Core, 2016.

[51] M. Richart, J. Baliosian, J. Serrat, and J. L. Gorricho. Resource Slicing in Vir-
tual Wireless Networks: A Survey. IEEE Transactions on Network and Service
Management, 13(3):462–476, Sept 2016.

[52] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sas-
try, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and H. Bakker. Network
Slicing to Enable Scalability and Flexibility in 5G Mobile Networks. IEEE Com-
munications Magazine, May 2017.

[53] C. Papadimitriou et al. Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, Inc., 1982.

[54] CityPulse, 2017.

[55] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs. Building a Big Data
Platform for Smart Cities: Experience and Lessons from Santander. In IEEE
International Congress on Big Data, pages 592–599, Jun. 2015.

[56] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing
and Its Role in the Internet of Things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, pages 13–16, 2012.

[57] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and
Beate Ottenwälder. Incremental deployment and migration of geo-distributed sit-
uation awareness applications in the fog. In Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems, pages 258–269. ACM,
2016.

[58] Open Mobile Alliance. NGSI Context Management. OMA-TS-NGSI
Context Management-V1 0, OMA, May 2012.

[59] M. Bauer, E. Kovacs, A. Schülke, N. Ito, C. Criminisi, L. W. Goix, and M. Valla.
The context api in the oma next generation service interface. In 2010 14th Inter-
national Conference on Intelligence in Next Generation Networks, pages 1–5, Oct
2010.

[60] FIWARE Found. Fiware foundation.

[61] WISE-IoT Consortium. European WISE-IoT project. http://wise-
iot.eu/en/home/.

[62] Open & agile smart cities, 2017.

CHAPTER 8. REFERENCES 177

8.0. REFERENCES

[63] Aeron broker, 2017.

[64] Orion broker, 2017.

[65] B. Cheng, A. Papageorgiou, and M. Bauer. Geelytics: Enabling on-demand edge
analytics over scoped data sources. In Proceedings of IEEE International Congress
on Big Data, pages 101–108, June 2016.

[66] Openfog consortium, 2017.

[67] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, Kirak Hong, David Lil-
lethun, and Umakishore Ramachandran. Mcep: A mobility-aware complex event
processing system. ACM Trans. Internet Technol., 14(1):6:1–6:24, August 2014.

[68] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and
Boris Koldehofe. Mobile fog: A programming model for large–scale applications
on the internet of things. Network, 12(F13):F14, 2013.

[69] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things
for smart cities. IEEE Internet of Things Journal, 1(1):22–32, Feb 2014.

[70] Maria A. Lema et al. Business Case and Technology Analysis for 5G Low Latency
Applications. IEEE Access, 5:5917–5935, 2017.

[71] A. Reznik et al. Cloud RAN and MEC: a perfect pairing, Feb. 2018.

[72] A. Martinez-Balleste, P. A. Perez-martinez, and A. Solanas. The pursuit of citizens’
privacy: a privacy-aware smart city is possible. IEEE Communications Magazine,
51(6):136–141, Jun. 2013.

[73] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. A Survey on
Mobile Edge Networks: Convergence of Computing, Caching and Communications.
IEEE Access, 5:6757–6779, 2017.

[74] OpenFog Consortium Architecture Working Group. Openfog reference architecture
for fog computing. Technical report, Feb 2017.

[75] X. Sun and N. Ansari. EdgeIoT: Mobile Edge Computing for the Internet of
Things. IEEE Communications Magazine, 54(12):22–29, Dec. 2016.

[76] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust. Mobile-Edge
Computing Architecture: The role of MEC in the Internet of Things. IEEE Con-
sumer Electronics Magazine, 5(4):84–91, Oct. 2016.

[77] ETSI MEC ISG. Mobile Edge Computing (MEC); Framework and reference ar-
chitecture. DGS MEC 003, ETSI, Apr. 2016.

[78] ETSI MEC ISG. Mobile Edge Computing (MEC); General principles for Mobile
Edge Service APIs. DGS MEC 009, ETSI, Jul. 2017.

CHAPTER 8. REFERENCES 178

8.0. REFERENCES

[79] ETSI MEC ISG. Mobile Edge Computing (MEC); Mobile Edge Platform Appli-
cation Enablement. DGS MEC 011, ETSI, Jul. 2017.

[80] FIWARE Found. and TMForum. Smart Data Models.

[81] Open and Agile Smart Cities (OASC). Minimal interoperability mechanisms
(mims). Technical Report V1 16.01.2019, OASC, January 2019.

[82] N. Koshizuka, S. Haller, and K. Sakamura. Cpaas.io: An eu-japan collaboration
on open smart-city platforms. Computer, 51(12):50–58, Dec 2018.

[83] Ken Sakamura. Open IoT platform and IoT engine, Jun 2016.

[84] D. C. G. Valadares, M. S. L. da Silva, A. E. M. Brito, and E. M. Salvador. Achieving
data dissemination with security using fiware and intel software guard extensions
(sgx). In 2018 IEEE Symposium on Computers and Communications (ISCC),
pages 1–7, 2018.

[85] Quyet H. Cao, Madhusudan Giyyarpuram, Reza Farahbakhsh, and Noel Crespi.
Policy-based usage control for a trustworthy data sharing platform in smart cities.
Future Generation Computer Systems, June 2017.

[86] Abayomi Otebolaku and Young-Gab Kim. D2.3 - end-to-end security and trust
framework. Technical report, Wise-IoT, October 2017.

[87] John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-Paul
Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman, Arkady Za-
slavsky, Ivana Podnar Žarko, Lea Skorin-Kapov, and Reinhard Herzog. Openiot:
Open source internet-of-things in the cloud. In Ivana Podnar Žarko, Krešimir
Pripužić, and Martin Serrano, editors, Interoperability and Open-Source Solutions
for the Internet of Things, pages 13–25, Cham, 2015. Springer International Pub-
lishing.

[88] S. K. Datta and C. Bonnet. A lightweight framework for efficient m2m device
management in oneM2M architecture. In 2015 International Conference on Recent
Advances in Internet of Things (RIoT), April 2015.

[89] ETSI. Context Information Management (CIM); Application Programming Inter-
face (API). Technical Report ETSI GS CIM 009 V1.1.1, ETSI ISG CIM, January
2019.

[90] Álvaro Alonso, Alejandro Pozo, José Manuel Cantera, Francisco de la Vega, and
Juan José Hierro. Industrial data space architecture implementation using FI-
WARE. Sensors, 18(7), 2018.

[91] P.P. Ray. A survey on internet of things architectures. King Saud U. J. - Comp.
and Info. Sciences, 30(3), 2018.

CHAPTER 8. REFERENCES 179

8.0. REFERENCES

[92] J. Lanza, L. Sánchez, J. R. Santana, R. Agarwal, N. Kefalakis, P. Grace, T. El-
saleh, M. Zhao, E. Tragos, H. Nguyen, F. Cirillo, R. Steinke, and J. Soldatos.
Experimentation as a service over semantically interoperable internet of things
testbeds. IEEE Access, 6:51607–51625, 2018.

[93] R. Lea and M. Blackstock. City hub: A cloud-based iot platform for smart cities.
In IEEE CLOUDCOM 2014, Dec.

[94] Tachmazidis I. et al. A hypercat-enabled semantic internet of things data hub. In
The Semantic Web. Springer, 2017.

[95] Luis Sanchez, Luis Muñoz, Jose Antonio Galache, Pablo Sotres, Juan R. San-
tana, Veronica Gutierrez, Rajiv Ramdhany, Alex Gluhak, Srdjan Krco, Evangelos
Theodoridis, and Dennis Pfisterer. Smartsantander: Iot experimentation over a
smart city testbed. Computer Networks, 61:217 – 238, 2014.

[96] Fang-Jing Wu and Gürkan Solmaz. Crowdestimator: Approximating crowd sizes
with multi-modal data for internet-of-things services. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’18, pages 337–349, New York, NY, USA, 2018. ACM.

[97] B. Carballido Villaverde et al. Service discovery protocols for constrained machine-
to-machine communications. IEEE Comm. S. Tut., 16(1), 2014.

[98] J. Mineraud et al. A gap analysis of internet-of-things platforms. Computer Com-
munications, 89-90, 2016.

[99] S. Nastic et al. Patricia – a novel programming model for iot applications on cloud
platforms. In 2013 IEEE SOCA, 2013.

[100] Z. Yan et al. A survey on trust management for internet of things. Journal of
Network and Computer Applications, 42, 2014.

[101] R. Roman et al. On the features and challenges of security and privacy in dis-
tributed internet of things. Computer Networks, 2013.

[102] Idra - Open Data Federation Platform. https://idra.readthedocs.io (accessed
17/05/2019).

[103] Alireza Hassani, Alexey Medvedev, Pari Delir Haghighi, Sea Ling, Arkady Za-
slavsky, and Prem Prakash Jayaraman. Context definition and query language:
Conceptual specification, implementation, and evaluation. Sensors, 19(6), 2019.

[104] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet
of things: A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys Tutorials, 17(4):2347–2376, Fourthquarter 2015.

[105] Z. Zhu et al. Wearable sensor systems for infants. Sensors, 2015.

CHAPTER 8. REFERENCES 180

8.0. REFERENCES

[106] M. Abomhara and G. M. Køien. Security and privacy in the internet of things:
Current status and open issues. In 2014 PRISMS, May 2014.

[107] K. R. Özyilmaz, M. Doğan, and A. Yurdakul. Idmob: Iot data marketplace
on blockchain. In 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), pages 11–19, 2018.

[108] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, and C. Rong. A comprehensive survey
of blockchain: From theory to iot applications and beyond. IEEE Internet of
Things Journal, 6(5):8114–8154, 2019.

[109] E. Androulaki et al. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. In ACM Proceedings of the 13th EuroSys Conference,
2018.

[110] Apache Hadoop. https://hadoop.apache.org/.

[111] Apache Storm. https://storm.apache.org/.

[112] Apache Spark. https://spark.apache.org/.

[113] Apache Flink. https://flink.apache.org/.

[114] Paul Voigt and Axel von dem Bussche. The EU General Data Protection Regulation
(GDPR): A Practical Guide. Springer Publishing Company, Incorporated, 1st
edition, 2017.

[115] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. ACM Transactions on Information and System Security, 9(4):391–420,
November 2006.

[116] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey Voas. Attribute-
based access control. Computer, 48(2):85–88, 2015.

[117] Usage Control In The Interation Data Spaces. https://www.

internationaldataspaces.org/wp-content/uploads/2019/11/

Usage-Control-in-IDS-V2.0_final.pdf.

[118] Ravi Sandhu and Jaehong Park. Usage control: A vision for next generation
access control. In International Workshop on Mathematical Methods, Models, and
Architectures for Computer Network Security, pages 17–31. Springer, 2003.

[119] Jaehong Park and Ravi Sandhu. Towards usage control models: Beyond traditional
access control. In Proceedings of the 7th ACM Symposium on Access Control Models
and Technologies, 2002.

[120] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. Formal
model and policy specification of usage control. ACM Transactions on Information
and System Security, Nov 2005.

CHAPTER 8. REFERENCES 181

8.0. REFERENCES

[121] Julian Schütte and Gerd Stefan Brost. LUCON: Data flow control for message-
based iot systems. In 2018 17th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pages
289–299. IEEE, 2018.

[122] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. Survey: Usage control in
computer security: A survey. Computer Science Review, 2010.

[123] Alexander Pretschner, Manuel Hilty, Florian Schütz, Christian Schaefer, and
Thomas Walter. Usage control enforcement: Present and future. IEEE Security
& Privacy, 6(4):44–53, 2008.

[124] Florian Kelbert and Alexander Pretschner. Data usage control for distributed
systems. ACM Transactions on Privacy and Security, April 2018.

[125] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In USENIX annual
technical conference, number 9, 2010.

[126] K. R. Özyilmaz, M. Dog̈an, and A. Yurdakul. IDMoB: IoT Data Marketplace
on Blockchain. In 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), pages 11–19, 2018.

[127] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. Enforcing private data
usage control with blockchain and attested off-chain contract execution. arXiv
preprint arXiv:1904.07275, 2019.

[128] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Fairaccess: a
new blockchain-based access control framework for the internet of things. Security
and Communication Networks, 9(18), 2016.

[129] ODRL Information Model 2.2. https://www.w3.org/TR/odrl-model.

[130] NGINX. Is your API real time? https://www.nginx.com/blog/

api-real-time-test-latency-responsiveness-nginx-rtapi-tool/.

[131] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Bren-
dan McMahan, et al. Towards federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019.

[132] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282, 2017.

[133] Jaehong Park and Ravi Sandhu. The UCONABC usage control model. ACM
Trans. on Information and System Security (TISSEC), 7(1):128–174, feb 2004.

CHAPTER 8. REFERENCES 182

8.0. REFERENCES

[134] Lili Sun and Hua Wang. A purpose based usage access control model. International
Journal of Computer and Information Engineering, 2010.

[135] Alexander Pretschner, Manuel Hilty, and David Basin. Distributed usage control.
Communications of the ACM, 49(9):39–44, September 2006.

[136] MYDATA. https://www.mydata-control.de.

[137] Tai h. Kim, Carlos Ramos, and Sabah Mohammed. Smart City and IoT. Future
Generation Computer Systems, 76:159 – 162, 2017.

[138] Riccardo Petrolo, Valeria Loscr̀ı, and Nathalie Mitton. Towards a smart city based
on cloud of things, a survey on the smart city vision and paradigms. Transactions
on Emerging Telecommunications Technologies, 28(1):e2931, 2017. e2931 ett.2931.

[139] M. Abu-Matar. Towards a software defined reference architecture for smart city
ecosystems. In 2016 IEEE International Smart Cities Conference (ISC2), pages
1–6, Sep. 2016.

[140] AIOTI WG02. Report on innovation ecosystems. Technical report, Alliance Inter-
net of Things Innovation, 2015.

[141] S. Kubler, J. Robert, A. Hefnawy, K. Främling, C. Cherifi, and A. Bouras. Open
iot ecosystem for sporting event management. IEEE Access, 5:7064–7079, 2017.

[142] Mika Westerlund, Seppo Leminen, and Mervi Rajahonka. Designing business mod-
els for the internet of things. Technology Innovation Management Review, 4:5–14,
07/2014 2014.

[143] P. Desai, A. Sheth, and P. Anantharam. Semantic gateway as a service architecture
for iot interoperability. In 2015 IEEE International Conference on Mobile Services,
pages 313–319, June 2015.

[144] M. Y. Khalid, P. H. H. Then, and V. Raman. Exploratory study for data visual-
ization in internet of things. In IEEE 42nd Annual Computer Sw and Applications
Conf. (COMPSAC), volume 02, pages 517–521, July 2018.

[145] A. Bröring and et al. Enabling iot ecosystems through platform interoperability.
IEEE Software, 34(1):54–61, Jan 2017.

[146] Aparna Saisree Thuluva and et al. Recipes for iot applications. In Proceedings
of the Seventh International Conference on the Internet of Things, IoT ’17, NY,
USA, 2017. Association for Computing Machinery.

[147] Werner Schladofsky and et at. Business models for interoperable iot ecosystems.
In Interoperability and Open-Source Solutions for the Internet of Things, pages
91–106. Springer International Publishing, 2017.

CHAPTER 8. REFERENCES 183

8.0. REFERENCES

[148] Xenia Ziouvelou and Frank McGroarty. A business model framework for crowd-
driven iot ecosystems. pages 262–284, 2019.

[149] Amazon Web Services. Aws marktplace.

[150] Microsoft Azure. Microsoft azure marketplace.

[151] B. Ahlgren, M. Hidell, and E. C. . Ngai. Internet of things for smart cities: Inter-
operability and open data. IEEE Internet Computing, 20(6):52–56, Nov 2016.

[152] FIWARE Found. FIWARE Domain Specific Enablers (DSEs).

[153] Sehl Mellouli, Luis . Luna-Reyes, and Jing Zhang. Smart government, citizen
participation and open data. Information Polity, 19:1–4, 2014.

[154] Lisa Goines and Leda Hagler. Noise pollution: A modern plague. In Noise Pollu-
tion: A Modern Plague, 2007.

[155] M. Maggio et al. SynchroniCity D2.10 - Reference Architecture for IoT Enabled
Smart Cities, Update. Technical report, SynchroniCity, Aug. 2018.

[156] F. Cirillo et al. SynchroniCity D3.2 - Suite of baseline implementations - basic.
Technical report, SynchroniCity, Jun. 2018.

[157] M. Yannuzzi et al. A new era for cities with fog computing. IEEE Internet
Computing, 21(2):54–67, Mar. 2017.

[158] L. Sánchez et al. Federation of Internet of Things Testbeds for the Realization of
a Semantically-Enabled Multi-Domain Data Marketplace. Sensors, 18(10):3375,
Oct. 2018.

[159] General Data Protection Regulation. Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46. Official Journal of the European Union (OJ),
59(1-88):294, Apr. 2016.

[160] Article 29 Working Party. Opinion 01/2017 on the proposed regulation for the
ePrivacy regulation (2002/58/EC), Apr. 2017. Accessed on Jan. 3, 2019.

[161] Agencia Española de Protección de Datos. Orientaciones y garant́ıas en los pro-
cedimientos de anonimización de datos personales, October 2016. Accessed on Jan.
3, 2019.

[162] Y.-A. De Montjoye et al. Unique in the crowd: The privacy bounds of human
mobility. Scientific reports, 3:1376, Mar. 2013.

[163] I Nižetić Kosović and Tomislav Jagušt. Enhanced weighted centroid localization
algorithm for indoor environments. International Journal of Computer, Control,
Quantum and Information Engineering, 8(7), July 2014.

CHAPTER 8. REFERENCES 184

8.0. REFERENCES

[164] Antonio J Jara, Dominique Genoud, and Yann Bocchi. Big data for smart cities
with KNIME a real experience in the SmartSantander testbed. Software: Practice
and Experience, 45(8):1145–1160, May 2015.

[165] H. Tong et al. Modeling large passenger flow safety by simulation and testing. In
Proceedings of IEEE ICCC’17, pages 235–239, Dec. 2017.

[166] K. Zhao et al. Urban human mobility data mining: An overview. In Proceedings
of IEEE Big Data’16, pages 1911–1920, Dec. 2016.

[167] Y. Zhou et al. Understanding urban human mobility through crowdsensed data.
IEEE Communications Magazine, 56(11):52–59, Nov. 2018.

[168] Luis Sánchez, Jorge Lanza, Juan Ramón Santana, Rachit Agarwal, Pierre Guil-
laume Raverdy, Tarek Elsaleh, Yasmin Fathy, SeungMyeong Jeong, Aris Dadoukis,
Thanasis Korakis, Stratos Keranidis, Philip O’Brien, Jerry Horgan, Antonio Sac-
chetti, Giuseppe Mastandrea, Alexandros Fragkiadakis, Pavlos Charalampidis,
Nicolas Seydoux, Christelle Ecrepont, and Mengxuan Zhao. Federation of internet
of things testbeds for the realization of a semantically-enabled multi-domain data
marketplace. Sensors, 18(10), 2018.

[169] J. Bohli, A. Skarmeta, M. Victoria Moreno, D. Garćıa, and P. Langendörfer. Smar-
tie project: Secure iot data management for smart cities. In 2015 International
Conference on Recent Advances in Internet of Things (RIoT), pages 1–6, April
2015.

[170] Minako Hara, Tomomi Nagao, Shinsuke Hannoe, and Jiro Nakamura. New key
performance indicators for a smart sustainable city. Sustainability, 8(3), 2016.

[171] Gürkan Solmaz, Jonathan Fürst, Samet Aytaç, and Fang-Jing Wu. Group-in:
Group inference from wireless traces of mobile devices. In 2020 19th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN),
pages 157–168. IEEE, 2020.

[172] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. Fog function:
Serverless fog computing for data intensive iot services. In 2019 IEEE International
Conference on Services Computing (SCC), pages 28–35. IEEE, 2019.

[173] Quyet H Cao, Madhusudan Giyyarpuram, Reza Farahbakhsh, and Noel Crespi.
Policy-based usage control for a trustworthy data sharing platform in smart cities.
Future Generation Computer Systems, 107:998–1010, 2020.

[174] Peter Ochieng and Swaib Kyanda. Large-scale ontology matching: state-of-the-art
analysis. ACM Computing Surveys (CSUR), 51(4):1–35, 2018.

CHAPTER 8. REFERENCES 185

	Abstract
	List of Publications
	1 Introduction
	1.1 Future HyperConnected IoT Framework
	1.2 Service-Defined Data Analytics
	1.3 Information Transparency
	1.4 Resource and Context Management
	1.5 Data Usage Control
	1.6 Challenges and Open Issues
	1.7 Outline of this thesis

	2 Background on IoT: 5G and Fog/Edge Computing
	2.1 Internet-of-Things network slicing on 5G
	2.1.1 Problem Statement
	IoT Broker
	5G Network Slice Broker

	2.1.2 Joint IoT Slice Traffic-aware Solution
	Interface and Data exchange
	Use case: City Council Network Slice
	Use-case: Cooperation between different domains

	2.1.3 Analysis and Practical Solution
	Algorithm Description

	2.1.4 Performance evaluation

	2.2 Fog computing for Smart City
	2.2.1 Smart City Use Cases
	2.2.2 High Level Requirements
	2.2.3 Fogflow: Programming IoT Services over Cloud and Edges
	Next Generation Service Interface (NGSI)
	Architecture Overview
	NGSI-based Programming Model
	Scalable Context Management
	Dynamic Service Orchestration
	Virtual Sensor

	2.2.4 Use Case Validation
	2.2.5 Performance Evaluation
	2.2.6 Related Work

	2.3 Research Directions

	3 Standardization and Open Source
	3.1 Evolving Multi-Access Edge Computing (MEC) to Support Enhanced IoT Deployments
	3.1.1 Smart cities as the key use case for large scale IoT deployments
	The SmartSantander case-study
	A glimpse on future evolution of smart city use cases

	3.1.2 The advantages of deploying IoT at the edge
	3.1.3 ETSI MEC Enhancements to support multi-domain IoT deployments
	The MEC IoT platform
	An API for IoT in Edge Computing
	Prototyping edge computing in a real scenario

	3.1.4 Value proposition of the MEC-based IoT Platform

	3.2 FIWARE: A Standard-based Open Source IoT Platform
	3.2.1 Public governance and growth: global IoT market
	Legacy IoT platforms are not neglected
	Harmonizing smart cities data
	IoT Marketplace
	Security
	Lessons learned for the creation of a Smart Cities global market

	3.2.2 Data analytics on IoT federation: a smart city scenario
	City Platform as a Service
	Urban water management scenario
	Lessons learned from smart city services

	3.2.3 Research and innovation: an automated driving scenario
	Federation of large scale pilots
	Semantic Interoperability
	The experience of IoT-augmented automated driving

	3.2.4 Evaluating FIWARE framework
	3.2.5 The Road Ahead
	Semantics: NGSI-LD
	Privacy: Data Usage Control

	3.3 Conclusions

	4 Federation of IoT Platform and IoT Data Sovereignties
	4.1 LIoTS: League of IoT Sovereignties. A Scalable approach for a Transparent Privacy-safe Federation of Secured IoT Platforms
	4.2 Background
	4.2.1 Federation
	4.2.2 Privacy and Security
	4.2.3 Standards and Open Source

	4.3 Related Works
	4.4 Use Cases and Requirements
	4.4.1 Use-Cases
	4.4.2 Federation Requirements
	4.4.3 Security and Privacy Requirements

	4.5 System Design
	4.5.1 IoT Registrar
	4.5.2 Message Flows
	4.5.3 Multi-party exchange platform system architecture
	4.5.4 How to scale the federation

	4.6 System Implementation
	4.6.1 Standards and Open Source software adopted
	4.6.2 Domain IoT Registrar
	4.6.3 IoT Provider implementation: privacy, security and discoverability
	4.6.4 Federation through Blockchain
	4.6.5 Application example: Marketplace

	4.7 Evaluation
	4.7.1 Publish-Query scenario
	4.7.2 Publish-Notify scenario

	4.8 Conclusions

	5 Data Usage Control
	5.1 IntentKeeper: Intent-oriented Data Usage Control for Federated Data Analytics
	5.2 Background and Challenges
	5.2.1 Data Usage Control
	5.2.2 Automotive Scenario
	5.2.3 Motivation

	5.3 Intent-oriented Data Usage Control with IntentKeeper
	5.3.1 System Overview
	5.3.2 Trust Management
	5.3.3 Policy Model
	5.3.4 Service Model
	5.3.5 Federated Service Orchestration
	5.3.6 Policy Enforcement

	5.4 Implementation
	5.4.1 Implementation with FogFlow
	5.4.2 Policy Editor
	5.4.3 Blockchain Integration

	5.5 Use Case Validation
	5.6 Performance Evaluation
	5.6.1 Propagation Delay
	5.6.2 Service Orchestration Delay
	5.6.3 Service Latency

	5.7 Related Work
	5.7.1 Federated Data Analytics
	5.7.2 Data Usage Control

	5.8 Conclusions and Future Work

	6 IoT data services ecosystem
	6.1 SynchroniCity and the shared ecosystem
	6.2 Related Work
	6.3 Smart city services
	6.3.1 Cities and Pilots commonalities

	6.4 Collaborative approach
	6.4.1 Questionnaire
	6.4.2 Functional Requirements (FRs) analysis.

	6.5 Atomic Services
	6.5.1 Data analytics atomic services
	6.5.2 Atomic services as building blocks for city services: multi-modal transportation city service in Santander
	6.5.3 Danish smart cities experiences

	6.6 Evaluation
	6.6.1 Validation
	6.6.2 Community Engagement

	6.7 Conclusions

	7 HyperConnected Smart City Services
	7.1 Crowd Mobility
	7.1.1 Crowd Mobility Analytics using the Smart City Platform
	Federated and Interoperable IoT Platform
	Crowd Mobility Semantic Model
	Integrated IoT Systems
	Privacy Considerations

	7.1.2 Pilot Studies in Australia and Spain
	Pilot Deployment in Gold Coast
	Pilot Deployment in Santander

	7.1.3 City-Scale Experiments
	7.1.4 Related Work

	7.2 Smart City Magnifier: a portable application on hyperconnected IoT
	7.2.1 Application Scenario
	7.2.2 Semantic Interoperability for Information Transparency
	7.2.3 Smart Cities Enabled by Future Hyperconnected IoT
	7.2.4 Cloud-Edge stream processing

	7.3 Conclusions

	8 Conclusions and Future Work
	References

