926 research outputs found

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Extending the HybridThread SMP Model for Distributed Memory Systems

    Get PDF
    Memory Hierarchy is of growing importance in system design today. As Moore\u27s Law allows system designers to include more processors within their designs, data locality becomes a priority. Traditional multiprocessor systems on chip (MPSoC) experience difficulty scaling as the quantity of processors increases. This challenge is common behavior of memory accesses in a shared memory environment and causes a decrease in memory bandwidth as processor numbers increase. In order to provide the necessary levels of scalability, the computer architecture community has sought to decentralize memory accesses by distributing memory throughout the system. Distributed memory offers greater bandwidth due to decoupled access paths. Today\u27s million gate Field Programmable Gate Arrays (FPGA) offer an invaluable opportunity to explore this type of memory hierarchy. FPGA vendors such as Xilinx provide dual-ported on-chip memory for decoupled access in addition to configurable sized memories. In this work, a new platform was created around the use of dual-ported SRAMs for distributed memory to explore the possible scalability of this form of memory hierarchy. However, developing distributed memory poses a tremendous challenge: supporting a linear address space that allows wide applicability to be achieved. Many have agreed that a linear address space eases the programmability of a system. Although the abstraction of disjointed memories via underlying architecture and/or new programming presents an advantage in exploring the possibilities of distributed memory, automatic data partitioning and migration remains a considerable challenge. In this research this challenge was dealt with by the inclusion of both a shared memory and distributed memory model. This research is vital because exposing the programmer to the underlying architecture while providing a linear address space results in desired standards of programmability and performance alike. In addition, standard shared memory programming models can be applied allowing the user to enjoy full scalable performance potential

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    FPGA implementation of a Cholesky algorithm for a shared-memory multiprocessor architecture

    Get PDF
    Solving a system of linear equations is a key problem in the field of engineering and science. Matrix factorization is a key component of many methods used to solve such equations. However, the factorization process is very time consuming, so these problems have traditionally been targeted for parallel machines rather than sequential ones. Nevertheless, commercially available supercomputers are expensive and only large institutions have the resources to purchase them or use them. Hence, efforts are on to develop more affordable alternatives. This thesis presents one such approach. The work presented here is an implementation of a parallel version of the Cholesky matrix factorization algorithm on a single-chip multiprocessor built on an APEX20K series FPGA developed by Altera. This multiprocessor system uses an asymmetric, shared-memory MIMD architecture, built using a configurable processor core called Nios, which was also developed by Altera. The whole system was developed on Altera\u27s SOPC Development Kit using the Quartus 11 development environment. The Cholesky algorithm is based on an algorithm described in George, et al. [9]. The key features of this algorithm are that it is scalable and uses a queue of tasks approach [9], which ensures dynamic load-balancing among the processing elements. The implementation also assumes dense matrices in the input. Timing, speedup and efficiency results based on experiments run on uniprocessor and multiprocessor implementations are also presented

    Performance Analysis of Hardware/Software Co-Design of Matrix Solvers

    Get PDF
    Solving a system of linear and nonlinear equations lies at the heart of many scientific and engineering applications such as circuit simulation, applications in electric power networks, and structural analysis. The exponentially increasing complexity of these computing applications and the high cost of supercomputing force us to explore affordable high performance computing platforms. The ultimate goal of this research is to develop hardware friendly parallel processing algorithms and build cost effective high performance parallel systems using hardware in order to enable the solution of large linear systems. In this thesis, FPGA-based general hardware architectures of selected iterative methods and direct methods are discussed. Xilinx Embedded Development Kit (EDK) hardware/software (HW/SW) codesigns of these methods are also presented. For iterative methods, FPGA based hardware architectures of Jacobi, combined Jacobi and Gauss-Seidel, and conjugate gradient (CG) are proposed. The convergence analysis of the LNS-based Jacobi processor demonstrates to what extent the hardware resource constraints and additional conversion error affect the convergence of Jacobi iterative method. Matlab simulations were performed to compare the performance of three iterative methods in three ways, i.e., number of iterations for any given tolerance, number of iterations for different matrix sizes, and computation time for different matrix sizes. The simulation results indicate that the key to a fast implementation of the three methods is a fast implementation of matrix multiplication. The simulation results also show that CG method takes less number of iterations for any given tolerance, but more computation time as matrix size increases compared to other two methods, since matrix-vector multiplication is a more dominant factor in CG method than in the other two methods. By implementing matrix multiplications of the three methods in hardware with Xilinx EDK HW/SW codesign, the performance is significantly improved over pure software Power PC (PPC) based implementation. The EDK implementation results show that CG takes less computation time for any size of matrices compared to other two methods in HW/SW codesign, due to that fact that matrix multiplications dominate the computation time of all three methods while CG requires less number of iterations to converge compared to other two methods. For direct methods, FPGA-based general hardware architecture and Xilinx EDK HW/SW codesign of WZ factorization are presented. Single unit and scalable hardware architectures of WZ factorization are proposed and analyzed under different constraints. The results of Matlab simulations show that WZ runs faster than the LU on parallel processors but slower on a single processor. The simulation results also indicate that the most time consuming part of WZ factorization is matrix update. By implementing the matrix update of WZ factorization in hardware with Xilinx EDK HW/SW codesign, the performance is also apparently improved over PPC based pure software implementation

    Towards co-designed optimizations in parallel frameworks: A MapReduce case study

    Full text link
    The explosion of Big Data was followed by the proliferation of numerous complex parallel software stacks whose aim is to tackle the challenges of data deluge. A drawback of a such multi-layered hierarchical deployment is the inability to maintain and delegate vital semantic information between layers in the stack. Software abstractions increase the semantic distance between an application and its generated code. However, parallel software frameworks contain inherent semantic information that general purpose compilers are not designed to exploit. This paper presents a case study demonstrating how the specific semantic information of the MapReduce paradigm can be exploited on multicore architectures. MR4J has been implemented in Java and evaluated against hand-optimized C and C++ equivalents. The initial observed results led to the design of a semantically aware optimizer that runs automatically without requiring modification to application code. The optimizer is able to speedup the execution time of MR4J by up to 2.0x. The introduced optimization not only improves the performance of the generated code, during the map phase, but also reduces the pressure on the garbage collector. This demonstrates how semantic information can be harnessed without sacrificing sound software engineering practices when using parallel software frameworks.Comment: 8 page
    • …
    corecore