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4.1	 Introduction

Many products require efficient high-performance processing to meet the 
growing computational requirements of numerous media applications. 
Tailoring a processor’s architecture and system interfaces to minimize pro-
cessing overhead and inefficiencies in data transfers is required to provide 
efficient processing for these media applications. In addition, efficiency and  
low power require the use of techniques that remove the dependency on the 
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108	 Unique Chips and Systems

processor clock speed to obtain adequate performance. Applications such 
as high-definition (HD) multistandard video processing require almost con-
tinuous processing at the highest performance level. Because power use is 
highly dependent on frequency, very little power savings can be achieved in 
these high-compute applications by varying clock frequencies to minimize 
power use during less-demanding program segments. Use of a flexible par-
allel architecture is an important means to provide high performance with-
out having a high dependence on the clock rate.

As an example, the high-profile H.264/AVC video encoding standard for 
picture sizes of 1920 × 1080 and larger represents one of the most computa-
tionally intensive algorithms to be implemented in future commercial and 
consumer products. The performance requirements greatly exceed the capa-
bilities of current generation multigigahertz general-purpose processors. In 
addition, the video encoding standards require a great deal of flexibility to 
support the numerous coding tools, such as the discrete cosine transform, 
support for adaptive block sizes, intraspatial prediction, intertemporal predic-
tion, support for interlaced coding and lossless representation, and deblock-
ing filtering, to name only a few [1]. This flexibility requirement imposes 
programmable capability in the encoding hardware. To address these video 
requirements and provide an alternative to obtaining performance from a 
high-speed clock, a processor requires a highly flexible approach to paral-
lel processing. The RACE-Hypercube processor, running at relatively low 
clock frequencies, provides multiple forms of selectable parallelism and an 
architecture that is moldable to an application.

To meet the performance and flexibility requirements in a cost-effective 
manner the RACE-H processor provides a hybrid architecture consisting 
of a scalable array processor enhanced with a scalable array of application-
specific hardware-assist coprocessing units. To make such a hybrid proces-
sor widely available at low cost requires the use of standard design practices 
that allow the design to be fabricated at multiple semiconductor suppliers. 
This means that custom-designed SOCs, optimized to a particular manufac-
turing process, cannot be easily used. Consequently, the standard approach 
of increasing clock speed on an existing design in an attempt to meet higher 
performance requirements is not feasible.

The need to support multiple standards, such as MPEG-2, MPEG-4, and 
VC-1 standards as SMPTE 421M, and to quickly adapt to changing standards, 
has become a product requirement [2]. To satisfy this need, programmable 
DSPs and control processors are being increasingly used as the central SOC 
design component. These processors form the basis of the SOC product plat-
form and permeate the overall system design including the on-chip memory, 
DMA, internal buses, and the like. Consequently, choosing a flexible and 
efficient processor, which can be manufactured by multiple semiconductor 
suppliers, is arguably the most important intellectual property (IP) decision 
to be made in the creation of an SOC product.

In recent years, a class of high-performance programmable processor IP has 
emerged that is appropriate for use in high-volume embedded applications 
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A Rotated Array Clustered Extended Hypercube Processor	 109

such as digital cellular, networking, communications, video, and console 
gaming [3,4,5]. This chapter briefly describes the RACE-H processor as an 
example of the architectural features needed to meet the highest demands of 
the H.264.AVC high-profile video encoding requirements. The next section 
provides a brief description of the RACE-H architecture. Section 4.2, titled 
“The RACE-H Processor Platform,” describes how the RACE-H archi-
tecture fulfills system requirements, with a focus on the DMA subsystem 
and development tools. The “Video Encoding Hardware Assists” section 
briefly discusses examples for processor element hardware assists. The “Per-
formance Evaluation” section presents performance results and projections 
and Section 4.6 concludes the chapter.

4.2	T he RACE-HTM Architecture

In numerous application environments, there is a need to significantly aug-
ment the signal-processing capabilities of a MIPS, ARM, or other host proces-
sor. The RACE-H processors provide streamlined coprocessor attachment 
to MIPS, ARM, or other hosts for this purpose. The RACE-H architecture 
offers multiple forms of parallelism that are selectable at each stage of devel-
opment, from SOC definition through software programming. Through 
selectable parallelism, the RACE-H processors achieve high performance 
at relatively low clock rates, thereby minimizing power use.

These forms of parallelism include 14 degrees of parallelism that may be 
selected. The first degree concerns the number of very long instructional 
word (VLIW) slots that are executed. The total number of slots available for 
execution is determined at implementation time where up to eight instruc-
tion slots may be implemented in the RACE-H architecture. The number 
of slots that may be executed up to the maximum number implemented can 
then be selected and vary instruction by instruction during program execu-
tion. The second degree includes the determination of supported application-
specific instructions and the selection of the appropriate instructions for 
algorithmic operations. The third degree concerns the number and type of 
selectable application-specific hardware assists implemented in each process-
ing element (PE), allowing program control over the enabling and operation 
of each hardware assist. By attaching hardware assists to each PE, the hard-
ware assist capability of the core scales with the RACE-Hypercube dimen-
sions. The fourth degree is determining the number of PEs to implement and 
for specific algorithmic use to mask the PE array as needed for optimum power 
and performance efficiency. The fifth degree concerns operating the core as a 
single-issue uniprocessor for control single-thread operation. The sixth degree 
concerns operating the core as a variable-length indirect VLIW (iVLIW) uni-
processor for increased performance in uniprocessor tasks. The seventh degree 
supports operating each PE as a single-issue PE for all enabled PEs. The eighth 

51741_C004.indd   109 10/15/07   8:12:27 PM

Copyright 2008 by Taylor and Francis Group, LLC
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degree supports operating each PE as a variable-length iVLIW issue PE for 
all enabled PEs. The ninth degree allows the selection of 32-bit packed data 
operations, including single 32-bit, dual 16-bit, and quad 8-bit operations 
which can be mixed on each instruction slot in a VLIW. The tenth degree 
allows the selection of 64-bit packed data operations, including single 64-bit, 
dual 32-bit, quad 16-bit, and octal 8-bit operations that can be mixed with 
each other and with packed 32-bit data operations on each instruction slot 
in a VLIW. The eleventh degree concerns conditionally executing instruc-
tions independently within a VLIW and independently within each PE. The 
twelfth degree supports the independent selection of mesh, torus, hypercube, 
and hypercube-complement PE-to-PE communications concurrently on the 
array with DMA, load, store, and the other execution unit operations. The 
thirteenth degree allows for independent threaded array operations across 
the number of implemented and enabled PEs to be controlled by a single 
controller and the fourteenth degree supports background DMA operations 
that may be scaled across the number of DMA lanes implemented to match 
the dimensions of the RACE-Hypercube.

To provide for these multiple degrees of freedom, the RACE-H proces-
sor is organized as an array processor using a sequence processor (SP) array 
controller and an array of distributed indirect VLIW PEs. The SP and each PE 
is provided with a small VLIW memory (VIM) that stores program-loaded 
VLIWs, where the VLIWs may be indirectly selected for execution. By vary-
ing the number of PEs on a core, an embedded scalable design is achieved 
with each core using a single architecture. This embedded scalability makes it 
possible to develop multiple products that provide a linear increase in perfor-
mance and maintain the same programming model by merely adding array 
processor elements as needed by the application. As the processing capability 
is increased, the PE memory interface bandwidth is increased, and the system 
DMA bandwidth may be increased accordingly. Embedded scalability drasti-
cally reduces development costs for future products because it allows for a 
single software development kit (SDK) to support a wide range of products.

In addition to the embedded scalability, RACE-H processors are configu-
rable in hardware organization and in software use of on-chip resources. 
For example, the processor hardware may be configured in the number and 
type of processor cores included on a chip, number of VLIW slots, supported 
instructions, the sizes of the SP’s instruction memory, the distributed iVLIW 
memories, the PE/SP data memories, and the I/O buffers, selectable clock 
speed, choice of on-chip peripherals, and DMA bus bandwidth. The proces-
sor software may configure the use of the hardware dynamically instruction 
by instruction. Multiple RACE-H processors may also be included on a 
chip and organized for data pipeline multiprocessing between the multiple 
SP/PE-array processors. Within a RACE-H processor, the parallelization of 
subapplication tasks may also use forms of thread parallelism with a central-
ized host-based control, described later in this chapter.

Figure 4.1 shows the major architectural elements that make up a typical 
RACE-H processor. The RACE-H processor combines PEs in clusters that 
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also contain a sequence processor (SP), uniquely merged into the PE array, 
and a cluster-switch. The SP provides program control, contains instruction 
and data address generation units, and dispatches instructions fetched from 
the SP instruction memory to the PEs in the array. Both the SP and PEs each 
include a common set of execution units using the same indirect VLIW archi-
tecture for all processing elements. Figure 4.1 illustrates a five-issue variable 
length VLIW organization where the instruction set is partitioned into store, 
load, execute 1 (EX1), execute 2 (EX2), and execute 3 and communicate (EX3/C) 
instruction slots. The architecture is easily expandable to support the addi-
tion of another load unit and additional execution units.

The RACE-H processor is designed for scalability with a single archi-
tecture definition and a common toolset. The processor and supporting 
tools are designed to optimize the needs of a SOC platform by allowing a 
designer to balance an application’s sequential control requirements with 
the application’s inherent data parallelism. This is accomplished by hav-
ing a scalable architecture that begins with a simple uniprocessor model, as 
used on the SP, and continues through multi-array processor implementa-
tions. The RACE-H architecture supports a reasonably large array proces-
sor, as well as a simple stand-alone uniprocessor, the SP. In more detail, a 
RACE-H2×2, RACE-H4×4, and RACE-H4×4×4, are shown in Figure 4.2. The 
RACE-H architecture allows organizations with multiple SPs where each 
SP controls a subcluster of PEs. For example, a 4 × 4 may be made up of four 
2 × 2 clusters each with their own SP or a 4 × 4 may be configured with only a 
single SP controlling the 16 PEs. In a similar manner, a 4 × 4 × 4 3D-cube may 
have multiple configurations of SPs and PEs depending upon a product’s 
requirement.

The RACE-H architecture uses a distributed register file model where the 
SP and each PE contain their own independent compute register file (CRF), 
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Figure 4.1
RACE-H processor architecture elements.
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up to eight execution units (five shown), a distributed very long instruction 
word memory (VIM), local SP instruction memory, local PE instruction 
memory, local data memories, and an application-optimized DMA and bus 
I/O control unit. The CRF is reconfigurable dynamically to act as a 32 × 32-
bit or 16 × 64-bit register file instruction by instruction and can vary within 
a VLIW and is totally integrated into the instruction set architecture. An 
8 × 32-bit address register file (ARF) and a 24 × 32-bit miscellaneous register 
file (MRF) are also defined in the instruction set architecture. Extending to 
support 128-bit wide and larger width register files is also architecturally 
supported. The balanced architectural approach taken for the CRF provides 
the high- performance features needed by many applications. It supports 
octal byte and quad halfword operations in a logical 16 × 64-bit register file 
space without sacrificing the 32-bit data-type support in the logical 32 × 32-
bit register file. Providing both forms of packed data independently on each 
execution unit allows optimum usage of the register file space and minimum 
overhead in manipulating packed data items.

In the RACE-H architecture, the address registers are separated from 
the compute register file. This approach maximizes the number of registers 
for compute operations and guarantees a minimum number of dedicated 
address registers. It does not require any additional ports from the compute 
register file to support the load and store address generation functions and 
it still allows independent PE memory addressing for such functions as local 
data dependent table lookups.

The RACE-H instruction set is partitioned into four groups using the 
high two bits of the instruction format: a control group, an arithmetic group, 
a load–store group, and a reserved proprietary instruction group. Figure 4.3 
shows 32-bit simplex instructions in groupings that represent an example 
of five execution unit slots of a VLIW plus a control group (01). Up to eight 
execution slots are architecturally defined allowing for additional load and 
execution units. Group (00) is reserved for future use. The execution units 
include store and load units and a set of execution units. For example, a first 
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execution unit is EX1, supporting arithmetic instructions. A second execution 
unit is EX2, supporting, for example, multiply, multiply accumulate, and 
other arithmetic instructions. A third execution unit is EX3/C, supporting 
data manipulation instructions such as shift, rotate, permute, bit operations, 
various other arithmetic instructions, PE-to-PE communication, and hard-
ware-assist interfacing instructions.

Providing a common set of execution units is also supported by the archi-
tecture. The load and store instructions support base plus displacement, 
direct, indirect, and table addressing modes. In addition, many application-
specific instructions are used for improved signal-processing efficiency. An 
example of these instructions is the set of multiply complex instructions for 
improved FFT performance described in reference [6]. In addition, the load 
unit and EX3/C unit have tightly coupled machine (TCM) instructions which 
are used to control hardware-assist coprocessors attached to each PE. Any 
of the five slots of instructions can be selected on a cycle-by-cycle basis, for 
single-, two-, three-, four-, or five-issue VLIWs, in this particular five-issue 
VLIW example. The single RACE-H instruction set architecture supports 
the entire RACE-H family of cores from the single merged SP/PE0 1 × 1 
to any of the highly parallel multiprocessor arrays (1 × 2, 2 × 2, 2 × 4, 4 × 4, 
4 × 4 × 4, …); for more details see reference [7].

The control and branch instructions are executed by the SP and in the 
PEs, when the PEs are operating independently. The SP and PEs are also 
capable of indirectly executing VLIWs that are local to the SP and in each 
PE. Note that VLIWs are stored locally in VLIW memories (VIMs) in each 
PE and in the SP and are fetched by a 32-bit execute VLIW (XV) instruction. 
To minimize the effects of branch latencies, a short variable pipeline is used 
consisting of Fetch, Decode, Execute, and ConditionReturn for non-iVLIWs 
and Fetch, PreDecode, Decode, Execute, and ConditionReturn for iVLIWs. 
The PreDecode pipeline stage is used to indirectly fetch VLIWs from their 
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Figure 4.3
RACE-H instructions.
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local VIMs. It is noted that an XV instruction supplies an offset address to 
a local VIM control unit, which computes a VIM address based on a local 
VIM base address register. In addition, the VLIWs located at the same VIM 
address in different PEs do not have to be the same VLIW. These architectural 
features allow for independent program action at each PE, referred to as syn-
chronous multiple instruction multiple data (SMIMD) operation. In addition, 
an extensive scalable conditional execution approach is used locally in each 
PE and the SP to minimize the use of branches.

All loads–stores and arithmetic instructions execute in one or two cycles 
with no hardware interlocks. The TCM instructions initiate multicycle oper-
ations that execute independently of other PE instructions. Furthermore, all 
arithmetic, load–store, and TCM instructions can be combined into VLIWs, 
stored locally in the SP and in each PE, and can be indirectly selected for 
execution from the small distributed VLIW memories. In one of the sup-
ported architectural approaches, a Load iVLIW (LV) instruction is used by 
the programmer or compiler to load individual instruction slots making up a 
VLIW with the 32-bit simplex instructions optimized for the algorithm being 
programmed. These VLIWs are used for algorithm performance optimiza-
tion, are reloadable, and require only the use of 32-bit execute VLIW (XV) 
instructions in the program stored in the SP instruction memory.

Many algorithms require an additional level of independent operations 
at each PE. The RACE-H architecture supports independent and scal-
able program thread operations on each PE. Figure 4.4 illustrates a scal-
able thread flowchart of independent and scalable thread operations for the 
RACE-H4×4. The SP controls the thread operation by issuing a thread start 
(Tstart) instruction. The Tstart instruction is fetched from SP instruction 
memory and dispatched to the SP and all PEs. Based on the Tstart, each PE 

SP Imem Instr. . . . 
SP Imem Instr.
SP Imem Tstart

PE0 Local Instr. . . . 
PE0 Local Instr.
PE0 Local Tstop 

PE1 Local Instr. . . . . . 
PE1 Local Instr.
PE1 Local Tstop 

...

PE15 Local Instr. . . . . 
PE15 Local Instr.
PE15 Local Tstop 

SP Imem Instr.
SP Imem Instr.. . .

Figure 4.4
4 × 4 independent PE threads.
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switches to local independent PE operations fetching PE local instructions 
from PE instruction memory. The PE instruction memory may store all types 
of PE instructions including PE branch instructions and a thread stop (Tstop) 
instruction. As shown in Figure 4.4, each PE operates independently until its 
operations are complete, at which point each PE fetches a Tstop instruction. 
A Tstop instruction causes the PE to stop fetching local PE instructions and 
then to wait for SP dispatched instructions. Once all PEs have completed 
their local independent operations, the SP continues with its fetching opera-
tion from the SP instruction memory and dispatches PE instructions to the 
array. In SIMD operations, a dedicated bit in all instruction formats controls 
whether an instruction is executed in parallel across the array of PEs or 
sequentially in the SP.

To more optimally support the PE array containing the distributed register 
files, the RACE-H network is integrated into the architecture providing 
single-cycle data transfers within PE clusters and between orthogonal clus-
ters of PEs. The EX3/C communication instructions can also be included into 
VLIWs, thereby overlapping communications with computation operations, 
which in effect reduces the communication latency to zero. The RACE-H 
network operation is independent of background DMA operations which 
provide a data streaming path to peripherals and global memory.

The inherent scalability of the RACE-H processor is obtained in part 
through the advanced RACE-Hypercube network which interconnects the 
PEs. Consider, by way of example, a two-dimension (2D) 4 × 4 torus and the 
corresponding embedded 4D hypercube, written as a 4 × 4 table with row, 
column, and hypercube node labels. (See Figure 4.5A.)

In Figure 4.5A, the PEi,j cluster nodes are labeled in Gray-code as follows: 
PEG(i),G(j) where G(x) is the Gray code of x. The array of Figure 4.5A is trans-
formed by a series of operations that rotate columns of PEs. First, columns 2, 
3, and 4 are rotated one position down. Next, the same rotation is repeated 
with columns 3 and 4 and then, in a third rotation, only column 4 is rotated. 
The resulting 4 × 4 table is shown in Figure 4.5B.
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Figure 4.5
Hypercube RACE-H network.
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Notice that the row elements in Figure 4.5B, for example {(1,0), (0,1), (3,2), (2,3)}, 
contain the transpose PE elements. By grouping the row elements in clusters of 
four PEs each, and completely interconnecting the four PEs in a cluster, connec-
tivity among the transpose elements is obtained and extends the connectivity 
beyond the connectivity provided by a hypercube. In the new matrix of PEs, 
the east and south wires, as well as the north and west wires, are connected 
between adjacent clusters. For example, using Figure 4.5A note that node (2,3) 
connects to the east node (2,0) with wraparound wires in a torus arrangement. 
Node (2,3) also connects to the south node (3,3). Now, using Figure 4.5B, note 
that nodes (2,0) and (3,3) are both in the same row cluster adjacent to the row 
cluster containing node (2,3). This means that the east and south wires can 
be shared and, in a similar manner, the west and north wires can be shared 
between all clusters. This same pattern occurs for all nodes in the transformed 
matrix. This effectively cuts the wiring in half as compared to a standard torus, 
and without affecting the performance of any SIMD array algorithm.

Because the rotating algorithm maintains the connectivity between the 
PEs, the normal hypercube connections remain. For example, in Figure 4.5B, 
PE (1,0/0100) can communicate to its nearest hypercube nodes {(0000), (0101), 
(0110), (1100)} in a single step. With the additional connectivity in the clusters 
of PEs, the longest paths in a hypercube, where each bit in the node address 
changes between two nodes, are all contained in the completely connected 
clusters of processor nodes. For example, the circled cluster contains node 
pairs [(0100), (1011)] and [(0001), (1110)] which would take four steps to com-
municate between each pair in previous hypercube processors, but takes 
only one step to communicate in the RACE-H network. These proper-
ties are maintained in higher-dimensional RACE-H networks containing 
higher-dimensional tori, and thus hypercubes, as subsets of the RACE-H 
connectivity matrix. The complexity of the RACE-H network is small and 
the diameter, the largest distance between any pair of nodes, is two for all d 
where d is the dimension of the subset hypercube [8]. The distance between 
mesh, torus, hypercube, and hypercube-complement nodes is one.

4.3	T he RACE-HTM Processor Platform

The RACE-H processors are designed to act as independent processors that 
may attach to ARM, MIPS, or other hosts. The programmer’s view of a RACE-
H multiprocessor is a shared memory sequentially coherent model where 
multiple processors operate on independent processes. With this model, an 
SOC developer can quickly utilize the signal-processing capabilities of the 
RACE-H core subsystems because the operating system already runs on 
the host processors. In its role as an attached coprocessor, the RACE-H core 
is subservient to the host processor. A core driver running on the host oper-
ating system manages all the RACE-Hypercube processor resources on the 
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core. A RACE-H system interface allows multiple RACE-H cores to be 
attached to a single-host processor.

To complement the configurable hardware, there is a RACE-H library of 
both DSP and control software routines. In addition, existing host-optimized 
compilers may be used for the sequential code that remains resident on the 
host allowing the parallel code to be optimized for the RACE-H cores.

Data and control communication between thread coprocessors and sys-
tem components (such as a host control processor, memories, and I/O) is 
carried out using a DMA subsystem, one or more system data buses (SDBs), 
and a system control bus (SCB). The SDB provides the high bandwidth data 
interface between the cores and other system peripherals including system 
memory. The SDB consists of multiple identical lanes, and is scalable by 
increasing the number of lanes or increasing the width of the lanes. The SCB 
is a low-latency coprocessor-to-coprocessor/peripheral messaging bus that 
runs independently and in parallel with the SDB. This system of multiple 
independent application task-optimized cores is designed to have each core 
run an independent system-level thread supported by the programmable 
DMA engines.

The DMA subsystem consists of two or more transfer controllers, the DMA 
bus, SDB, and SCB interfaces. Each transfer controller manages data movement 
between the SDB and coprocessor memories, one direction at a time, across a 
single data “lane” of the DMA bus. Transfer controllers operate independently 
of each other, fetching their own transfer instructions from core memories 
once initiated by either the SP or the host control processor. Transfer signal-
ing instructions and hardware semaphores may be used to synchronize data 
transfer with array processing and host processor activities. Figure 4.6 shows 
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Memories D
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A
 B
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Figure 4.6
Two-lane DMA subsystem.
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a configuration with a two-lane (two transfer controllers) DMA subsystem, 
and Figure 4.7 shows a four-lane DMA subsystem. The transfer controllers 
support instructions that allow independent addressing modes for the SDB 
side and DMA bus side. For example, in an image encoding application a 
group of picture macroblocks may be read from system memory using a 
“stride” addressing mode and distributed to array memories in various pat-
terns using only two transfer instructions.

Each SDB is a high-bandwidth bus based on the AMBA 2.0 standard [9] 
and scalable in width and maximum burst length. It is used primarily for 
data flow between array coprocessor memories and system memories or I/O. 
In a multi-SDB configuration (used for very high data bandwidth), the DMA 
transfer controller and host interface connections will be allocated between 
buses to match performance requirements.

The SCB is a low-latency control bus used for communication between 
the host control processor, the SP, and the DMA subsystem. It is used for 
enabling and configuring runtime system options and also allows the SP to 
configure and control the DMA transfer controllers.

To streamline development, verification, and debugging, a range of model-
ing and prototyping platforms support system modeling, and software and 
hardware system development, including:

A cycle-accurate C-simulator, which can be used to develop RACE-
H processor software. This can be used directly with other C 
simulations, or with control processor tools and bus models to pro-
vide a software simulation model of an entire system.

•
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Four-lane DMA subsystem with two SDB-memory buses.
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A software development toolkit (SDK) consisting of the GNU GCC 
compiler and binary tools, the RACE-H ANSI-C Parallel C com-
piler, a back-end compiler to enable high-level assembly program-
ming with register allocation, instruction scheduling, and packing 
of instructions into VLIWs, and VIMA [10], a whole-program sched-
uler of iVLIW instructions.
An emulation board, can be used to model RTL of an entire SOC 
system.
A debugger.
An assortment of software libraries including a real-time frame-
work, user application program interface, debug I/O, C program 
runtime, mathematical libraries, and specialized DSP libraries.

The RACE-H debugging GUI is shared by the C-simulator and emula-
tion board. With this development environment the software can be inte-
grated and tested. Verification tools and supporting scripts and guidelines 
for the physical design are available.

4.4	 Video Encoding Hardware Assists

A number of algorithmic capabilities are generally common between multiple 
video encoding standards, such as MPEG-2, H.264/AVC, and SMPTE-VC-1. 
Motion estimation/compensation and deblocking filtering are two examples 
of compute-intensive algorithms that are required for video encoding.

Motion estimation is computationally the most expensive part of a video 
encoding process. On average it can take about 60–80% of the total avail-
able computational time, thus having the highest impact on the speed of the 
overall encoding process. It also has a major impact on the visual quality of 
encoded video sequences.

The most common motion estimation algorithms are block-matching 
algorithms operating in the time domain. Here motion vectors are used 
to describe the best temporal prediction for a current block of pixels to be 
encoded. A time domain prediction error between the current block of pix-
els and the reference block of pixels is formed, and a search is performed 
to minimize this value. The best motion vector minimizes a cost function 
based on the prediction block distance and the block pixel difference.

A block of pixels of the current video frame, which is in the search range 
of a passed frame (in temporal order), is compared with all possible spatial 
positions within the search range, looking for the smallest possible differ-
ence. For the best matching reference block, a motion vector is derived which 
describes the relative position of the two blocks.

Multiple different criteria have been proposed for the best match evalua-
tion. They are of different complexity and efficiency in terms of finding the 

•

•

•
•
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global optimum over a given search area. The sum of absolute differences 
(SAD) is the most commonly used criterion for the best match evaluation.

A hardware assist (HA) for block-matching search may be attached to each 
PE and is capable of performing full search (within a search window of 
programmable size) for integer pixel motion vectors calculation. It is capa-
ble of simultaneous extraction of results for 16 × 16, 16 × 8, 8 × 16, 8 × 8, and 
4 × 4 motion search based on the SAD criterion for each particular block size 
and given search range. The search range window may vary. For example, a 
search range such as 64 × 64 or 128 × 96 may be used. The hardware assist is 
also capable of setting up a coarse hierarchical search (through use of a spe-
cial TCM instruction) by automatically decimating pixels of a larger search 
range (64 × 64, for example) and bringing the decimated 32 × 32 search area 
into the pipelined compute engines of the hardware assist. Partial search 
results (SAD for each current block position within the search range) may be 
stored locally in each PE for further processing, or stored in the local HA/PE 
memory.

A similar hardware assist for deblocking filtering may be attached to each 
PE of the RACE-H processor, providing for a major offloading of the most 
compute-intensive operations, and allowing for real-time full-feature HD 
video encoding.

4.5	 Performance Evaluation

To illustrate the power of the highly parallel RACE-H architecture, a sim-
ple example is presented: Two vectors are to be added and the result stored 
in a third vector.

	 For (I = 0; I < 256; I ++) 
                        A[i] = B[i] + C[i].

In a sequential-only implementation, there would be required a loop of 
four instructions, two load instructions to move a B and a C element to reg-
isters, an add of the elements, and a store of the result to register A. The 
sequential implementation takes (4*256) iterations = 1024 cycles, assuming 
single-cycle load, add, and store instructions.

Assuming the data type is 16-bits and quad 16-bit packed data instructions 
are available in the processor, the vector sum could require (4*64) iterations = 
256 cycles.

Furthermore, assuming an array processor of four PEs where each PE is capa-
ble of the packed data operations, then the function can be partitioned between 
the four PEs and run in parallel requiring (4*16) iterations = 64 cycles.

Finally, assuming a VLIW processor such as the 2 × 2 RACE-Hypercube proces-
sor, a software pipeline technique can be used with the VLIWs to minimize the 

51741_C004.indd   120 10/15/07   8:12:47 PM

Copyright 2008 by Taylor and Francis Group, LLC



A Rotated Array Clustered Extended Hypercube Processor	 121

instructions issued per iteration such that (2*16) iterations = 32 cycles are required. 
This represents a 32× improvement over the sequential implementation.

With use of the 14 different levels of parallelism available on each core, 
the benchmarks shown in Figure 4.8 can be obtained on a RACE-Hypercube 
processor, with the array size shown in parentheses. (The 4 × 4 numbers are 
extrapolated from coded 2 × 2 numbers.)

The RACE-H architecture allows a programmer or compiler to select the 
level of parallelism appropriate for the task at hand. This selectable parallel-
ism includes packed 32-bit and 64-bit data operations. With each additional 
PE, the packed data support on a processor core grows such that a 2 × 2 
effectively provides four PEs each with five 64-bit execution units providing 
4*5*64 bits = 1280-bits/cycle of packed data support. A 4 × 4 provides four 
times this for 4*1280 bits = 5120 bits/cycle (640 bytes/cycle) of packed data 
support which at 250 MHz provides a performance of 160 gigabytes/sec. A 4 
× 4 × 4 3D cube effectively provides four times this for 4*5120 bits = 20,480 bits/
cycle (2560 bytes/cycle) of packed data support which at 250 MHz provides a 
performance of 640 gigabytes/sec. With at least three 64-bit hardware-assist 
functions operating independently and in parallel in each PE, an additional 
3*(8 bytes/cycle)*64 PEs*250 MHz = 384 gigabytes/sec of performance. The 
4 × 4 × 4 3D cube provides 1.024 trillion bytes/sec at a relatively low clock 

Data TypeBenchmark

16-bit real & imaginary256 pt. Complex FFT (2×2)

16-bit real & imaginary1024 pt. Complex FFT (2×2)

Performance
189 cycles 16-bit real & imaginary256 pt. Complex FFT (4×4)
383 cycles

256 pt. Complex FFT (1×1)
1024 pt. Complex FFT (4×4) 16-bit real & imaginary

16-bit real & imaginary 1115 cycles 
580 cycles 

1513 cycles 
5221 cycles 16-bit real & imaginary1024 pt. Complex FFT (1×1)

2048 pt. Complex FFT (4×4) 16-bit real & imaginary 1350 cycles 
3182 cycles 16-bit real & imaginary2048 pt. Complex FFT (2×2)

2D 8×8 IEEE IDCT (4×4) 8-bit
8-bit

18 cycles 
2D 8×8 IEEE IDCT [11] (2×2) 34 cycles 

2D 8×8 IEEE IDCT (1×1) 8-bit 176 cycles 
256 tap Real FIR filter, M samples (4×4) 16-bit 4*M + 86 cycles 
256 tap Real FIR filter, M samples (2×2) 16-bit 16*M + 81 cycles  

16-bit 64*M + 78 cycles 256 tap Real FIR filter, M samples (1×1)
4×4 Matrix * 4x1 vector (4×4) 2-cycles/4-output vector IEEE 754 Floating Point
4×4 Matrix * 4x1 vector (2×2) IEEE 754 Floating Point 2-cycles/output vector 

145 cycles8-bit3×3 Correlation (720col) (4×4)
3×3 Correlation (720col) (2×2) 8-bit 271 cycles 

3×3 Median Filter (720col) (4×4) 8-bit 360 cycles 
3×3 Median Filter (720col) (2×2) 8-bit 926 cycles 

370 cycles
1029 cycles 16-bit 

16-bit 
Horizontal Wavelet  (N Rows = 512) (2×2)
Horizontal Wavelet  (N Rows = 512) (4×4)

Figure 4.8
1 × 1, 2 × 2, and 4 × 4 RACE-Hypercube processor benchmarks.
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frequency of 250 MHz with short execution unit pipelines based on 64-bit 
data types and an architecture that is programmer friendly.

4.6	 Conclusions and Future Extensions

The pervasive use of processor IP in embedded SOC products for consumer 
applications requires a stable design point based on a scalable processor 
architecture to support future needs with a complete set of hardware and 
software development tools. The RACE-H cores are highly scalable, using 
a single architecture definition that provides low power and high perfor-
mance. Target SOC designs can be optimized to a product by choice of core 
type, 1 × 1, 1 × 2, 2 × 2, 4 × 4, 4 × 4 × 4, and by the number of cores. The tools 
and SOC development process provides a fast path to delivering verified SOC 
products. Future plans include architectural extensions, such as improved 
VIM loading techniques, extensions to 128-bit datapaths effectively doubling 
performance, programmable hardware-assist engines, and other extensions 
representing supersets of the present design that would further improve 
performance in intended applications.

Trademark Information

RACE-H, RACE-Hixj, RACE-Hixjxk, and the RACE-Hypercube are 
trademarks of Lighting Hawk Consulting, Inc. All other brands or product 
names are the property of their respective holders.
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