16 research outputs found

    On the Semantics of Petri Nets

    No full text
    Petri Place/Transition (PT) nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the "token game"' is too intensional, even in its more abstract interpretations in term of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category {PTNets} of PT nets, we introduce a category {DecOcc} of decorated (nondeterministic) occurrence nets and we define adjunctions between {PTNets} and {DecOcc} and between {DecOcc} and {Occ}, the category of occurrence nets. The role of {DecOcc} is to provide natural unfoldings for PT nets, i.e. acyclic safe nets where a notion of family is used for relating multiple instances of the same place. The unfolding functor from {PTNets} to {Occ} reduces to Winskel's when restricted to safe nets, while the standard coreflection between {Occ} and {Dom}, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between {PTNets} and {Dom}

    The consistency of a noninterleaving and an interleaving model for full TCSP

    Get PDF
    Zu dieser Veröffentlichung liegt kein Abstract vor

    Marked petri nets within a categorial framework

    Get PDF
    Well know categories of Petri nets lack coproducts and some re strictioné on nets, morphisms or initial markings are required in or der to guarantee the existence of colimits. Categories of Petri nets equipped with a set of initial markings (instead of a single initial marking) are introduced. It is shown that the proposed categories of nets are complete and cocomplete. Moreover,interpretations of limits and colimits are adequate for expressing semantics of concurrent sys tems. Examples ofstructuring and modeling of behavior of nets using categoria! constructions based on limits and colimits are provided

    Process versus Unfolding Semantics for Place/Transition Petri Nets

    Get PDF
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game," one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. In our formal development a relevant role is played by DecOcc, a category of occurrence nets appropriately decorated to take into account the history of tokens. The structure of decorated occurrence nets at the same time provides natural unfoldings for Place/Transition (PT) nets and suggests a new notion of processes, the decorated processes, which induce on Petri nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification

    When to Move to Transfer Nets On the limits of Petri nets as models for process calculi

    Get PDF
    International audiencePierpaolo Degano has been an influential pioneer in the investigation of Petri nets as models for concurrent process calculi (see e.g. the well-known seminal work by Degano–De Nicola–Montanari also known as DDM88). In this paper, we address the limits of classical Petri nets by discussing when it is necessary to move to the so-called Transfer nets, in which transitions can also move to a target place all the tokens currently present in a source place. More precisely, we consider a simple calculus of processes that interact by generating/consuming messages into/from a shared repository. For this calculus classical Petri nets can faithfully model the process behavior. Then we present a simple extension with a primitive allowing processes to atomically rename all the data of a given kind. We show that with the addition of such primitive it is necessary to move to Transfer nets to obtain a faithful modeling

    Petri Nets and Other Models of Concurrency

    No full text
    This paper retraces, collects, and summarises contributions of the authors --- in collaboration with others --- on the theme of Petri nets and their categorical relationships to other models of concurrency

    An algebra for process creation

    Get PDF
    corecore