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Abstract. Pierpaolo Degano has been an influential pioneer in the in-
vestigation of Petri nets as models for concurrent process calculi (see
e.g. the well-known seminal work by Degano–De Nicola–Montanari also
known as DDM88). In this paper, we address the limits of classical Petri
nets by discussing when it is necessary to move to the so-called Transfer
nets, in which transitions can also move to a target place all the tokens
currently present in a source place. More precisely, we consider a simple
calculus of processes that interact by generating/consuming messages
into/from a shared repository. For this calculus classical Petri nets can
faithfully model the process behavior. Then we present a simple exten-
sion with a primitive allowing processes to atomically rename all the data
of a given kind. We show that with the addition of such primitive it is
necessary to move to Transfer nets to obtain a faithful modeling.

1 Introduction

The study of the relationship between two relevant computational models like
process calculi and Petri nets has attracted a lot of attention within the con-
currency theory community since the second half of the 80s. One of the initial
motivations for associating to process calculi a Petri net semantics was to enrich
the formers with a truly concurrent semantics, instead of the interleaving seman-
tics usually given in terms of a labeled transition system. In particular, one of the
most influential work along this line of research is the seminal work by Degano,
De Nicola, and Montanari [7] which was inspired by the observation that in Mil-
ner’s CCS [15], under the classical interleaving semantics, “causal dependencies
remain non-recoverable (for instance the behavior of α|β + α.β and that of α|β
cannot be differentiated)”. Another motivation for equipping process calculi with
Petri net semantics is to resort to analysis or decidability results well-known for
Petri nets. For instance, in [4] Petri nets were used to prove the decidability of
termination in a CCS-like process calculus with asynchronous communication
via a shared repository of data. In fact, Petri nets represent one of the most
interesting models for infinite state systems in which properties like reachability,
coverability, boundedness, as well as many others, are still decidable (see [10] for
a nicely written and comprehensive survey about decidability results for Petri
nets).



In this paper we focus on a specific research problem that we have encoun-
tered in several papers dedicated to the study of the decidability of properties,
like termination and divergence, in several classes of process calculi. By termi-
nation in this paper we mean the existence of a completed finite computation,
while by divergence we mean the existence of an infinite computation. The proof
technique that we frequently adopted is based on translations from the process
calculi of interest to Petri nets, in order to resort to already known decidability
results for Petri nets.

In the already mentioned paper [4] we considered a calculus of processes
communicating via a common data repository by means of output, input, read,
and test for absence primitives. We first proved that, if data are guaranteed to
be in the data space immediately after the execution of an output operation, the
calculus is Turing complete (hence termination is undecidable). On the contrary,
if output operations are asynchronous, in the sense that emitted data become
available only after an unpredictable delay, the calculus is no longer Turing
powerful because termination turns out to be decidable. The proof exploited a
non-trivial Petri net semantics for the asynchronous version of the calculus.

In other papers we had to consider extended versions of Petri nets. For in-
stance, in [5] we considered a similar calculus with processes communicating via
a common data space, but with a notify primitive instead of the test for absence.
The notify operation allows processes to register their interest in the emission
of a given kind of datum; when such a datum is produced, all the registered
processes receive a corresponding notification. For this calculus, we considered
Petri nets with Transfer arcs, that are arcs able to move all the tokens present
in a source place to a corresponding target place. On the contrary, in [6] we
considered Petri nets with Reset arcs, which are used to remove all the tokens
currently available in a place. In that paper, we considered a timed version of
shared data space communication, in which data have an associated time out
and must be cancelled when they expire. More recently, in [8] we considered
again Transfer Petri nets, but in the rather different context of BioAmbients,
a calculus where processes are placed inside nested locations and can execute
operations for entering, exiting or merging ambients.

Intuitively, in that papers we had to move to extended versions of Petri nets
due to the difficulty in the definition of appropriate encodings of the considered
calculi into classical Petri nets. The increased expressive power of Transfer or
Reset nets w.r.t. classical Petri nets has been investigated in [9]. In particular, we
have that properties like reachability and termination are decidable for classical
Petri nets while this is not the case for Transfer and Reset nets; properties like
boundedness is decidable for classical and Transfer nets while this is not the case
for Reset nets; and finally properties like divergence or coverability are decidable
for all of these classes of nets.1

1 In [9] a slightly different terminology is used: termination refers to the guarantee that
all the computations completes, thus corresponding to the negation of the property
that we call divergence in this paper.



From a formal point of view, there are cases that strictly require to move from
classical to extended Petri nets to equip a process calculus with a faithful Petri
net semantics. To clarify this specific point, in this paper we fully formalize in a
simplified setting one of these cases. More precisely, we identify a basic calculus
of processes performing input and output operations on a shared data space,
extended with a primitive for renaming all the data of a given kind. We first
show that for the basic version of the calculus without renaming, it is possible
to define a faithful encoding by using classical Petri nets. By faithful encoding,
here we mean that there exists a one-to-one correspondence between process
reductions in the calculus and transition firings in the Petri net. Then we move
to the version of the calculus with the renaming primitive, and we show that
termination is undecidable for this version of the calculus. This undecidability
result shows that there exists no recursive encoding from the calculus to classical
Petri nets that preserves and reflects at least termination. Then we consider
Transfer Petri nets, and we show that with this extended version of Petri nets it
is again possible to define a faithful encoding. This also proves that divergence,
as well as boundedness and coverability, are decidable for the calculus with the
renaming primitive.

Structure of the paper. In Section 2 we define the DS calculus, the initial version
of our language for processes communicating via input and output operations on
a common repository, and we present a faithful modeling of the DS calculus into
classical Petri nets. In Section 3, inspired by the copy-collect primitive proposed
in [17], we define the RenDS calculus that includes a new primitive ren(a, b)
that renames to b all the instances of a in the data space. For this calculus we
prove the undecidability of termination (hence also the impossibility to equip
RenDS with a termination preserving classical Petri net semantics) and then we
show a faithful modeling in terms of Transfer Petri nets. Section 4 draws some
concluding remarks.

2 The DS calculus

In this section we present the syntax and the semantics of a simple calculus of
processes communicating by introducing and consuming data into/from a shared
repository.

Definition 1 (Processes). Let Name, ranged over by a, b, . . ., be a denumer-
able set of names. Processes are defined by the following grammar:

α ::= in(a) | out(a)
P ::=

∑
i∈I αi.Pi | !α.P | P |P

The basic process actions are in(a) and out(a) denoting the consumption/emission
of one instance of datum a from/into the shared data space. The term

∑
i∈I αi.Pi

denotes a process ready to perform any of the action αi, and then proceed by
executing the corresponding continuation Pi. We use 0 to denote such process



in case I = ∅, and we will usually omit trailing 0. The replicated process !α.P
performs an initial action α and then spawns the continuation P by keeping !α.P
in parallel. Two parallel processes P and Q are denoted with P |Q.

Example 1. As an example, we consider a simple producer-consumer system:

!in(prod).out(job).in(done).
(
out(prod) + out(end)

)
|

!in(cons).
(
in(job).out(done).out(cons) + in(end)

)
The producer process is triggered by a prod datum; it produces a job request,
waits for the corresponding done message, and then nondeterministically decides
whether to continue with another job production phase or complete by emitting
the message end. The consumer process is triggered by a cons datum; it consumes
a job request, produces the corresponding done messages, and repeats until an
end message is received instead of a job request.

A system includes also a shared data space where data are stored and con-
sumed.

Definition 2 (Systems). A system is a pair 〈P,S〉 where P is a process and
S is a multiset over Name.

In the following, ] stands for multiset union and with S(a) we denote the
number of instances of a in the multiset S.

Example 2. Let P be the process defined in Example 1. The system〈
P, {prod, cons}

〉
represents the initial state of the produced-consumer system where the data
space contains the two prod and cons data necessary to initially trigger the
producer and consumer processes, respectively.

In order to define the operational semantics of systems we first define a
labeled transition system on processes which indicates the possible input and
output actions, and then we define a transition relation on systems which defines
the effect of the execution of process actions on the shared data space.

Definition 3 (Process semantics). The semantics of processes is defined by a
labeled transition system on processes with two kinds of labels: in(a) and out(a).
The transition system is the least one satisfying the axioms and rules reported
in Table 1.

The PRE rule simply allows a sum process to execute one of its initial action
and then continue with the corresponding continuation. REPL allows !α.P to
execute α, spawn an instance of the continuation P , and keep !α.P in parallel.
Finally, PAR allows a parallel process to execute an action.

We can now complete the definition of the operational semantics taking into
account systems.



PRE :
j ∈ I∑

i∈I αi.Pi
αj−→ Pj

REPL : !α.P
α−→ !α.P | P PAR :

P
α−→ P ′

P |Q α−→ P ′|Q

Table 1. The transition system for processes (symmetric rule of PAR omitted).

P
in(a)−→ P ′

〈P,S ] a〉 → 〈P ′,S〉

P
out(a)−→ P ′

〈P,S〉 → 〈P ′,S ] a〉

Table 2. The reduction relation for systems (brackets in singletons are omitted).

Definition 4 (System semantics). The semantics of systems is defined by
the minimal transition system satisfying the rules in Table 2.

The transitions for systems simply allows processes to consume and introduce
data from/to the shared data space.

Example 3. Let
〈
P, {prod, cons}

〉
be the producer-consumer system defined in

Example 2. According to the transition system in Definition 4, such system can
generate sequences of emissions and consumptions of prod and cons messages,
combined with the emissions and consumptions of job and done data. Such
sequences of actions could be either infinite, or –in case they are maximal, i.e.,
they cannot be extended– terminating with the production and consumption of
an end datum. In this last case, the data space is guaranteed to be finally empty
because all the job requests are consumed, as well as all the corresponding done
acknowledgement, and also the final end message is removed.

We now consider a Petri net semantics for this simple calculus. We first recall
the classical definition of Petri nets, then we discuss how to use them to model
the behavior of systems of our DS calculus.

Definition 5 (Petri nets). A Petri net is a tuple N = (S, T,m0), where S
and T are finite sets of places and transitions, respectively. A finite multiset
over the set S of places is called a marking, and m0 is the initial marking.
Given a marking m and a place p, we say that the place p contains a number of
tokens equal to the number of instances of p in m (written m(p)). A transition
t ∈ T is a pair of markings denoted with •t and t• (the preset and postset of
the transition, respectively). A transition t (also denoted with •t �→ t•) can fire
in the marking m if •t ⊆ m (where ⊆ is multiset inclusion); upon transition
firing the new marking of the net becomes n = (m \• t) ] t• (where \ and ] are
the difference and union operators for multisets, respectively). This is written as
m 7→ n.



Fig. 1. Petri net for the producer-consumer example

dec(
∑

i∈I αi.Pi) = {
∑

i∈I αi.Pi} dec(!α.P ) = {!α.P} dec(P |Q) = dec(P ) ] dec(Q)

Table 3. Process decomposition function

Petri nets are graphically depicted by representing places with circles and
transitions with rectangles. Edges connect circles to rectangles: an edge from a
circle to a rectangle indicates a place in the preset of a transition, while an edge
from a rectangle to a circle indicates a place in the postset of a transition. Dots
inside circles represent tokens inside places.

Example 4. In Figure 1 we depict a Petri net representing the behavior of the
producer-consumer system defined in Example 3. The behavior of the producer
process is reported on the left, while the consumer is on the right. Places in the
middle of the figure represent the possible data in the data space (prod, cons,
job, done and end) and the trailing empty 0 process.

We now discuss how to translate systems of the DS calculus into Petri nets.
The idea is to represent sequential processes and data by means of tokens inside
corresponding places. Sequential processes are of two possible kinds:

∑
i∈I αi.Pi

and !α.P . Parallel processes will be represented by a multiset of tokens, one for



IN : {
∑

i∈I αi.Pi, a} �→ dec(Pj) j ∈ I, αj = in(a)

OUT : {
∑

i∈I αi.Pi} �→ dec(Pj) ] {a} j ∈ I, αj = out(a)

REPIN : {!in(a).P, a} �→ dec(P ) ] {!in(a).P}

REPOUT : {!out(a).P} �→ dec(P ) ] {a} ] {!out(a).P}

Table 4. Petri net transitions

each sequential process composed in parallel. Formally, let P be a process, with
dec(P ) we denote the multiset defined in Table 3. The possible Petri net transi-
tions, denoted with T , are defined in Table 4. The execution of an in(a) action
consumes a token from place a, while an out(a) action produces such a token.
After execution of the action, tokens are produced in the places corresponding
to the process continuation. Notice that the transitions involving the replicated
processes !in(a).P or !out(a).P consume and then reproduce the corresponding
tokens; in this way the tokens remain available for future transitions involving
those replicated processes.

Definition 6. Let 〈P,S〉 be a system. We define the Petri net Net(P,S) =
(P, T,m0) as follows:

– S = {Q | Q is a sequential process in P} ∪ {a | a occurs in S or in P}
– T = {c �→ p ∈ T | dom(c) ⊆ S}
– m0 = dec(P ) ] S

Example 5. It is easy to see that the Petri net in Figure 1 corresponds to
Net(P, {prod, cons}) where 〈P, {prod, cons}〉 is the system in Example 2.

The strict correspondence between the process calculus and the Petri net
semantics is formalized as follows. We omit the proof of this correspondence
result because standard.

Proposition 1. Let 〈P,S〉 be a system, and Net(P,S) = (P, T,m0) be the
corresponding Petri net. Let Q be a process composed of sequential processes
occurring in P , and V be a multiset of data occurring in P or in S. We have
that 〈Q,V〉 → 〈Q′,V ′〉 if and only if dec(Q) ] V 7→ dec(Q′) ] V ′ in Net(P,S).

3 The RenDS calculus: shared data space with renaming

We now consider an extension of the DS calculus with a primitive for renaming
all the data of a given kind. This renaming mechanism is inspired by the copy-
collect primitive proposed in [17]. In that paper, a language with multiple data



spaces is considered, and the copy-collect primitive is used to move all the data
matching a given pattern from a source space to a target space. As in DS we
have only one data space, we adapt this primitive by considering an operation
ren(a, b) which changes to b all the instances of datum a in the data space. We
call RenDS this extended calculus.

The syntax of processes is the same as in Definition 1 with the addition of a
new action:

α ::= · · · | ren(a, b)

Example 6. We now consider an alternative version of the producer-consumer
example in which the producer can repeatedly produce job requests without
waiting for the indication that the previous job request has been accomplished.
When the consumer starts, only the job requests already issued will be served
while subsequent requests will remain pending.

!in(prod).out(job).
(
in(done) | out(prod)

)
|

in(cons).ren(job, todo).
(

!in(todo).out(done) | in(prod)
)

The producer process is triggered by a prod datum; it produces a job request
and then waits for the done message, but in parallel reproduces the prod datum
to repeatedly issue an arbitrary number of requests. The consumer process is
triggered by a cons datum; as a first action renames all the job requests in
todo, and then it serves the todo activities. Subsequent job requests will remain
pending. The consumer has also the ability to stop the producer by consuming
the prod datum.

The semantics for processes is defined as in Table 1 with the addition of the
label ren(a, b), while the semantics of systems is defined by the two rules in
Table 2 with the addition of the following one for the renaming primitive:

P
ren(a,b)−→ P ′ S ′(a) = 0 S ′(b) = S(a) + S(b) ∀c 6∈ {a, b}.S ′(c) = S(c)

〈P,S〉 → 〈P ′,S ′〉

Example 7. Let P be the process defined in Example 6. The initial system is
〈P, {prod, cons}〉 with prod and cons in the data space, to trigger the producer
and the consumer, respectively. It is worth to note that this system can either
have an infinite computation in which infinitely many job requests are issued, or
it terminates in such a way that the final system will contain the same number of
instances of the in(done) process and of the job datum, representing the pending
requests issued after the the consumer transforms the current job requests into
todo data.

We now consider the problem of modeling with Petri nets the processes of the
new calculus RenDS. Intuitively, this translation is not easy to be defined due to
the impossibility to perform in the Petri net “global” actions that act atomically
on all the tokens currently present in a place. In fact, in classical nets, transitions



always consume the same amount of tokens. On the contrary, an operation like
ren(a, b) has an effect which is dependent on the current system state, because
all the a data must atomically be renamed into b.

In order to formalize this negative result, i.e., classical Petri nets are not
sufficiently expressive to model the new calculus with renaming, we proceed
as follows. We start from the observation that the existence of a terminating
computation is decidable for Petri nets [13], then we prove that termination is
undecidable in RenDS. Hence we can conclude that there exists no computable
termination preserving encoding of RenDS into classical Petri nets. It is worth to
observe that for the DS calculus in Section 2, the presented encoding into Petri
nets obviously preserves termination (trivial corollary of Proposition 1), hence
termination is decidable in DS.

We prove the undecidability of termination in RenDS by reduction from the
halting problem in Random Access Machines (RAMs). A RAM [18], denoted
in the following with R, is a computational model composed of a finite set of
registers r1, . . . , rn, that can hold arbitrary large natural numbers, and by a
program composed by indexed instructions (1 : I1), . . . , (m : Im), that is a
sequence of simple numbered instructions, like arithmetical operations (on the
contents of registers) or conditional jumps. An internal state of a RAM is given
by (i, c1, . . . , cn) where i is the program counter indicating the next instruction
to be executed, and c1, . . . , cn are the current contents of the registers r1, . . . , rn,
respectively.

Without loss of generality, we assume that the registers contain the value
0 at the beginning and at the end of the computation, and that the execution
of the program begins with the first instruction (1 : I1). The assumption on
the initially empty registers is justified by the possibility to add to programs a
prologue that introduces the desired values in the registers, while the assumption
on the finally empty registers is justified by the possibility to add to programs a
conclusion that decrements all the registers to 0 before halting. In other words,
the initial configuration is (1, 0, . . . , 0). The computation continues by executing
the other instructions in sequence, unless a jump instruction is encountered. The
execution stops when the instruction Halt is reached. More formally, we indicate
by (i, c1, . . . , cn) →R (i′, c′1, . . . , c

′
n) the fact that the configuration of the RAM

R changes from (i, c1, . . . , cn) to (i′, c′1, . . . , c
′
n) after the execution of the i-th

instruction.

In [16] it is shown that the following two instructions are sufficient to model
every recursive function:

– (i : Succ(rj)): adds 1 to the content of register rj ;

– (i : DecJump(rj , s)): if the contents of register rj is not zero then decreases
it by 1 and go to the next instruction, otherwise jumps to instruction s.



We start by presenting how to encode RAM instructions into processes of
the RenDS calculus:

[[(i : Succ(rj))]] : !in(pi).out(rj).out(pi+1)

[[(i : DecJump(rj , s))]] : !in(pi).
(
in(rj).out(pi+1) + ren(rj , loop).out(ps)

)
[[(i : Halt)]] : in(pi).!in(loop).out(loop)

The idea is to represent the content of the register rj with a corresponding
number of instances of the datum rj in the data space. The program counter
is modeled by a datum pi indicating that the i-th instruction is the next one
to be executed. The modeling of the i-th instruction always starts with the
consumption of the pi datum. An increment instruction on rj simply produces
one datum rj , while a decrement consumes such a datum. A faithful modeling of
a test for zero on rj should be able to detect the absence of data rj . As there are
no primitives for performing such a test, we consider a nondeterministic modeling
according to which a test for zero on rj could be successful even if the data space
contains some rj instances. But if this occurs, we use the renaming primitive to
atomically rename all the currently present rj data into loop data. The presence
of loop data forbids the possibility for the RAM modeling to terminate: in fact,
the encoding of a Halt instruction enters in an infinite loop in case there is at
least one datum loop in the data space.

We now present the full definition of our encoding. Let R be a RAM with m
instructions, and let (i, c1, . . . , cn) be one of its configurations. With

[[(i, c1, . . . , cn)]]R = 〈
∏

1≤i≤m

[[(i : Ii)]], {pi, r1, · · · , r1︸ ︷︷ ︸
c1 times

, · · · , rn, · · · , rn︸ ︷︷ ︸
cn times

} 〉

we denote the system representing the configuration (i, c1, . . . , cn).
We now prove that our encoding is termination preserving, from which we

conclude the undecidability of termination for the RenDS process calculus.

Theorem 1. Let R be a RAM. We have that R terminates if and only if
[[(1, 0, . . . , 0)]]R terminates.

Proof. We start with the only if part. Assume R terminates. We have that
[[(1, 0, . . . , 0)]]R can faithfully reproduce the terminating computation of R with-
out producing any loop data. This computation of [[(1, 0, . . . , 0)]]R terminates
because the encoding of the Halt instruction definitely consumes the program
counter datum, and remains blocked trying to consume a loop datum.

We now consider the if part. Assume that [[(1, 0, . . . , 0)]]R terminates. Every
terminating computation completes by reaching the encoding of a Halt instruc-
tion (all the other instructions are replicated and reproduce the program counter
datum before terminating) and never produce any loop datum (otherwise the
enconding of the Halt instruction perform an infinite loop). The RAM R can
execute an equivalent computation reaching a Halt instruction because the in-
crement and decrement instructions can be obviously mimicked, as well as the
test for zero actions. In fact, such actions are surely executed when the tested
register is empty, otherwise a loop datum would have been produced. ut



As a trivial corollary, from the undecidability of the halting problem for
RAMs we can conclude the undecidability of termination for the RenDS calculus.

The undecidability of termination implies the impossibility to define a termi-
nation preserving encoding of the RenDS calculus into Petri nets. We can however
obtain a correspondence result if we move to Petri nets with Transfer arcs [12],
allowing for the atomic movement of all the tokens currently present in a source
place to a target place. Transfer nets represent an interesting extension of Petri
nets; in [9] it has been proven that they are more expressive than classical Petri
nets because reachability (as well as termination) is no longer decidable, while
other properties like divergence, boundedness or coverability are still decidable.

Definition 7 (Petri nets with Transfer arcs). A Petri net with Transfer
arcs is defined as a Petri net N = (S, T,m0) with the difference that the transi-
tions t in T are now triples, containing besides the preset •t and the postset t•

also a partial function tf from places to places (transitions are now denoted with

•t
tf
�→ t•). Given a transition •t

tf
�→ t• we assume that dom(tf ) ∩• t = ∅, i.e. the

places in the preset of a transition t, cannot be source places for transfer arcs of
t. As for Petri nets, a transition t can fire in the marking m if •t ⊆ m; upon
transition firing the new marking becomes n where

n(p) =

{
m(p)−• t(p) + t•(p) +

∑
p′.tf (p′)=p m(p′) if p 6∈ dom(tf )

t•(p) +
∑

p′.tf (p′)=p m(p′) if p ∈ dom(tf )

Intuitively, for places that are not sources of transfer arcs, besides the usual preset
and postset modifications, there is also the possibility to add tokens transferred
from corresponding source places of transfer arcs. For places which are sources of
transfer arcs, only the new introduced tokens must be taken into account because
the previously present tokens are consumed by the corresponding transfer arc.
Also in this case, the effect of the firing of a transition is written m 7→ n.

Typically, transfer arcs are depicted as arcs from places to places, connected
to the corresponding transition by a line.

Example 8. In Figure 2 we depict a Petri net representing the behavior of the
producer-consumer system defined in Example 7. The behavior of the producer
process is reported on the left, while the consumer is on the right. Places in the
middle of the figure represent the possible data in the data space (prod, cons,
job, todo, done and end) and the trailing empty 0 process. Notice the transfer arc
from the job to the todo place, used by the consumer to take under consideration
all and only those job requests that have been already issued when the consumer
starts.

We now discuss how to translate systems of the RenDS calculus into Petri nets
with Transfer arcs. This translation is obtained as simple extension of the one
in Definition 6. Sequential processes and the decomposition function is defined
exactly as for the previous DS calculus. The unique difference is at the level of
transitions: we simply add transitions to model the renaming of data from a to b,



Fig. 2. Petri net for the producer-consumer example with renaming

with a transfer arc from the place a to the place b. All other actions are modeled
as already done for the DS calculus. The new set of transitions, denoted with
Tren, is defined in Table 4 plus the new rules in Table 5.

Definition 8. Let 〈P,S〉 be a system of the RenDS calculus. We define the Petri
net with Transfer arcs Netren(P,S) = (P, T,m0) as follows:

– S = {Q | Q is a sequential process in P} ∪ {a | a occurs in S or in P}
– T = {c

t
�→ p ∈ Tren | dom(c) ⊆ S}

– m0 = dec(P ) ] S

Example 9. It is easy to see that the Transfer Petri net depicted in Figure 1
corresponds to Netren(P, {prod, cons}) where 〈P, {prod, cons}〉 is the system in
Example 7.

We conclude by formalizing the correspondence between the operational se-
mantics of the RenDS calculus and the corresponding Petri net with Transfer
arcs. Also in this case we omit the proof of this correspondence result because
standard.

Proposition 2. Let 〈P,S〉 be a system of the RenDS calculus, and Netren(P,S) =
(P, T,m0) be the corresponding Petri net with Transfer arcs. Let Q be a pro-
cess composed of sequential processes occurring in P , and V be a multiset of



{
∑

i∈I αi.Pi}
{a7→b}
�→ dec(Pj) j ∈ I, αj = ren(a, b)

{!ren(a, b).P}
{a7→b}
�→ dec(P ) ] {!ren(a, b).P}

Table 5. Petri net transitions for renaming

data occurring in P or in S. We have that 〈Q,V〉 → 〈Q′,V ′〉 if and only if
dec(Q) ] V 7→ dec(Q′) ] V ′ in Netren(P,S).

4 Conclusion

The relationship between traditional concurrency models like process calculi and
Petri nets has been one of those research topics, within the concurrency theory
community, to which Pierpaolo Degano gave a fundamental initial contribution
(see the seminal work [7]). A detailed description of the extremely vast literature
concerning the relationship between process calculi and Petri nets is out of the
scope of this paper. Here, we simply recall few relatively recent relevant papers.

In [1] a Petri net semantics is used to prove the decidability of termination
(called convergence in that paper) in a version of CCS with replication instead
of recursion, in which name restriction –usually called also name generation–
cannot occur inside replication. This syntactic limitation guarantees that only
boundedly many distinct names can be generated. In [14] a precise relationship
between name passing calculi –in particular the π-calculus– and classical Petri
nets has been established, by showing which are the precise restrictions to be
imposed to name-generation and name-passing mechanisms in order to resort
to a Petri net semantics. Open nets are instead used in [2] to equip with a net
semantics an asynchronous version of CCS with replication and a limited form
of restriction that cannot occur under the scope of a replication. Open nets are
classical Petri nets including open places and the possibility for distinct nets to
interact on open places. The advantage of Open nets is that they allow for a
compositional definition of the net encoding. Moreover, they naturally support
the modeling of restriction: free names (i.e. non restricted names) are modeled
with open places while bound names (i.e. restricted names) are modeled with
private places.

In this paper, we have focused on those cases in which in order to faith-
fully model a process calculus it is necessary to consider extended versions of
Petri nets. This happens, for instance, when the process calculus includes global
synchronization mechanisms. Classical Petri net transitions, in fact, always con-
sume a predefined amount of tokens from the input places, thus the number
of consumed tokens is independent from the current token distribution. Global
synchronization mechanisms, on the contrary, are defined as functions depending
on the current (global) state of the system.



In particular, we have formalized a simple data-centric calculus for which it
is possible to define a faithful classical Petri net semantics, and then we extend
it with a simple primitive that globally renames all the data of a given kind
that are currently available. We prove that the addition of this global primitive
strictly requires to move to an extended class of Petri nets (in this case we
consider Transfer Petri nets) in order to define a faithful net modeling. Formally
speaking, the encodings that we define between a process calculus and a Petri
net have a one-to-one correspondence between reductions in the process calculus
and transition firings in the Petri net. The impossibility to define an encoding,
on the contrary, consider also weaker encodings in which only termination is
preserved (i.e. a process terminates if and only if its encoding in the Petri net
has a terminating computation).

Translating process calculi into Petri nets is useful because it allows for the
application of Petri net analysis techniques, or decidability results, back to the
initial process calculi. It is interesting to observe that there are cases in which
also extended versions of Petri nets fail, like for instance in [3]. In that paper,
a process calculus with replication and name generation is defined, for which it
is possible to produce unboundedly many different active processes due to the
dynamic generation of new names. The presence of unboundedly many different
processes forbids the application of Petri nets; in fact, Petri nets only has a
predefined finite amount of possibile places (and transitions). In that paper, the
decidability of divergence was proved by resorting to Well Structured Transition
Systems (WSTS) [11], a meta model which is more general than Petri nets (and
their usual extensions) and for which a rich set of interesting properties like
divergence, coverability, or those expressible by means of simple temporal logic,
are proved to be decidable.
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