
 

An algebra for process creation

Citation for published version (APA):
Baeten, J. C. M., & Vaandrager, F. W. (1991). An algebra for process creation. (Computing science notes; Vol.
9130). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f6ae6900-5da5-4096-a26d-ef6f02cac87b


Eindhoven University of Technology 

Department of Mathematics and Computing Science 

An Algebra for Process Creation 

by 

J.C.M. Baeten P.W. Vaandrager 

Computing Science Note 91/30 
Eindhoven, November 1991 



COMPUTING SCIENCE NOTES 

This is a series of notes of the Computing 
Science Section of the Department of 
Mathematics and Computing Science 
Eindhoven University of Technology. 
Since many of these notes are preliminary 
versions or may be published elsewhere, they 
have a limited distribution only and are not 
for review. 
Copies of these notes are available from the 
author. 

Copies can be ordered from: 
Mrs. F. van Neerven 
Eindhoven University of Technology 
Department of Mathematics and Computing Science 
P.O. Box 513 
5600 MB EINDHOVEN 
The Netherlands 
ISSN 0926-4515 

All rights reserved 
editors: prof.dr.M.Rem 

prof.dr.K.M. van Hee. 
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In this paper, we study the issue of process creation from an algebraic per­
spective. The key to our approach, which is inspired by the work of AMERICA & 
DE BAKKER [AB], consists of giving a new interpretation to the operator symbol 
. (sequential composition) in the axiom system BPA of BERGSTRA & KLOP 
[BK1,2,3]. We present a number of other models for BPA and show how the 
new interpretation of . naturally generalises the usual interpretation in ACP. We 
give an operational semantics based on Plotkin style inductive rules for a simple 
language wHh process creation and communication, and give a complete tinHe 
axiomatisation of the associated bisimulation model. 
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1. INTRODUCfION. 

In process algebra theories like CCS (see [Ml,2]), CSP (see [R]), MEllE (see [AUB]) and 
ACP (see [BK3]), not much attention has been paid so far to the concept of process creation. 
Instead, parallel composition is used as a primitive constructor of concurrent systems. In 
SMOLKA & STROM [S5] and V AANDRAGER [VA], process algebra semantics is given for 
languages with process creation (NIL resp. POOL), but there the process creation construct 
is translated to an architectural expression with parallel composition. 

A first attempt to deal more directly with process creation in an algebraic setting is 
described in BERGSTRA [B], where the axiomatic system ACP is extended with a 
mechanism for process creation. The key axiom here is 

E~(cr(d)'x) = cr(d)'E~(CP(d)" x). 

1 Author's current affiliation: Department of Computer Science, Eindhoven University of Technology, 
P.O.Box 513, 5600 MB Eindhoven, The Netherlands; e-mail josb@win.tue.nl. 
2 Author's current affiliation: CMA, Ecole des Mines, Sophia-Antipolis, 06565 Valbonne, France; e-mail 
frits<!i) cma.cma.fr. 
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The operator Ecp denotes an environment in which process creation can take place. If an 
action cr( d) is performed in this environment, a process $( d) is created and placed in parallel 

with the remaining process. 
Since process creation is an important concept, present for instance in ADA [ANSI], 

NIT.., POOL and UNIX [UNIX1, it seems worthwhile to look for a more direct and composi­

tional treatment of process creation which does not need a global environment like an Ecp­
operator. Here, we profit to a large extent of the work of AMERICA & DE BAKKER [AB]. 
The simple but crucial observation which they make, is that in order to give a compositional 
semantics to process creation, one has to interpret the sequential composition differently. As 

an example consider the expression 
a·new(b·c)·d. 

The intuitive semantics of this expression is a process which first performs a, after which a 

new process is created doing b followed by c. The newly created process executes in 
parallel with the continuation d. Thus, the traces of this process are abcd, abdc and adbc. 

Consequently, we cannot interpret x'y as 'first do x and then y' (as is usual), because in a 

setting with process creation process x may continue after process y has started. 
For this reason, in AMERICA & DE BAKKER [AB], a new semantic operator: is 

introduced, which serves as the interpretation of . in a setting with process creation. In the 
algebra for process creation that we present in this paper, we will interpret the . as a 
continuation operator in essentially the same way as in [AB]. After a preliminary section 

about structured operational semantics, we give, in section 3, an extensive overview of a 

number of other interpretations of '. Our motivation for including this overview is that in this 
way, we can show how our continuation operator naturally generalizes existing 

interpretations of the· symbol. What all the considered interpretations have in common, is 
that in a setting with alternative composition (+), they all satisfy the axioms ofBPA (Basic 
Process Algebra) of BERGSTRA & KLOP [BK 1,2,3]: 

x + y = y + x (x + y) + Z = x + (y + z) x + x = x 
(x + y)·z = X'z + y·z (x·y)·z = x·(y·z). 

Most of the discussion of this paper takes place in the setting of interleaving semantics. 

However, we show that a particular interpretation of· as sequential composition (like in 
ACP) and also our interpretation of . as continuation, can both be lifted in a natural way to 

the world of event structures of WINSKEL [W]. In both these interpretations, we have an 

instance of action refinement in the sense of [CDP] and [GG]. In fact, and this is surprising, 
sequential composition and continuation have the same definition on event structures, only 
sequential composition is defined on a more restricted domain of processes. Hence the rather 

substantial differences between the two operators on the level of interleaving semantics 
almost disappear on the level of 'True' concurrency. 

Whereas in AMERICA & DE BAKKER [AB1 operational as weIl as denotational models 
are presented (and proven to be equivalent), we concentrate on operational models in this 
paper. As is done in [AB], we use Plotkin-style rules for the operational semantics. There 
are a number of differences, however. 

First, we want all rules to be as simple as possible, and each rule should embody a clear 
intuition about a certain operator. Therefore, we reject a rule like 

{ ... , (51 ;52);r, ...• w) --t { ..•• 51 ;(52;r) •...• w), 

which occurs in [AB1: we think it is not part of a natural operational intuition about the ;­
operator that brackets can move to the right. 
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A second design criterion that we used in the construction of our operational semantics is 
that all rules should be in the tyftltyxt format of GROOTE & YAANDRAGER [GY). This 
format poses certain restrictions on the inductive rules which guarantee that bisimulation 
equivalence is a congruence. Thus, any set of rules in tyftltyxt format immediately induces 

an abstract compositional semantics. 
Our third design criterion was that the transition systems generated by the inductive rules 

should contain no silent or internal steps. If such transitions are present, one is more or less 

forced to say something about the nature of 't and to choose whether one adopts all of 

Milner's 't-Iaws or only a few of them. We prefer to separate the issue of abstraction from 

other concerns. 

In section 4, we present operational rules for a simple language APC for concurrent 

communicating processes with process creation. We claim that these rules meet all the 

requirements above. An interesting feature of these rules is that one of them has a look-ahead 

of more than one action: in order to compute the initial transitions of process x·y, one needs 
information about the first two transitions of x. This implies in particular, that our· operator 
is not definable up to (strong) bisimulation equivalence in terms of CCS, CSP, MEUE or 
ACP (see 4.9). 

In section 5, we present a sound and complete axiomatisation of the bisimulation 
semantics induced by the rules for APC. This axiomatisation uses a number of auxiliary 
operators. 

With a number of examples, we illustrate in section 6 how APC can be used to specify 
concurrent systems, and how identities between processes can be proved algebraically. 

ACKNOWLEDGEMENTS. The idea for an event structure semantics for the new operator 

arose following an inspiring discussion with Henk Goeman. We thank the referees for their 

many helpful suggestions. 

2. PRELIMINARIES 

An important tool that we will use in this paper to define the semantics of various languages 

is the SOS method (for Structured Operational Semantics) of PLOTKIN [PL). 
Sometimes we will take a somewhat 'denotational' approach to this method by viewing a 
collection of Plotkin style rules primarily as a way to define operations on process graphs 
(or rooted labeled transition systems). In this preliminary section we will recall some 
basic definitions from the theory of SOS. 

As a new contribution to the theory, we moreover include a precise definition of how a 
Plotkin style transition system specification determines operations on process graphs. 

2.1 We start with two disjoint countably infinite sets: a set V of variables with typical 
elements x,y,z, ... and a set N of names with typical elements c.f,g,s,t, ... A signature L is a 
subset of N x N. An element (1, n) E L is a function symbol of arity n. A function 

symbol of arity 0 is often called a constant symbol. The set of (possibly open) terms 
over a signature L is the smallest set with the properties: 
i. x E V ~ X E T(L) 
ii. (c,O) E L ~ C E T(L) 
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iii. (f.n)e L.n>O.t1 ..... tn e 'f(L) ~ f(t1 ..... tn)e 'f(L). 
T(L) is the set of closed terms over L. i.e. terms in 'f(L) that do not contain variables. A 
substitution 0 is a mapping from V to 'f(L). A substitution extends in the obvious way to 

a mapping on 'f(L). 

2.2 TRANSmON SYSTEM SPECIFICATION. 

Let A be a given set of labels. A transition system specification (TSS) over A is a 
pair P = (L.A) with L a signature and A a set of rules of the form: 

a' 
{ti --4 ti' I ie I} 

I I!... I' 

where I is an index set. ti. Ii'. I. I' e 'f(L) and ai. a e A for ie 1. The elements of {Ii ~ Ii' I ie I} 

o 
are called the premises, and I ~ I' is called the conclusion. A rule of the form a is 

I "-+ I' 

called an axiom, which, if no confusion can arise, is also written as I ~ 1'. An expression 

of the form I ~ I' with ae A and 1.I·e 'f(L) is called a transition. The letters </I.",.X will be 

used to range over transitions. 
The above format of rules is a generalization of the format proposed by DE SIMONE 

[DS]. In the De Simone format, the left-hand side of the conclusion I must be of the form 
f(X1 ..... Xn) (with f an n-ary function symbol and the Xi distinct variables) and the left-hand 
side of each premise must be one of the Xi. Besides this, there are also other restrictions. 

The notions 'substitution' and 'closed' extend to transitions and rules as expected. By 
'fSS(A) we denote the set of transiton system specifications over alphabet A. We use the 

notation P $ Q to denote the componentwise union ofTSS's P and Q. 

2.3 DERNABILITY. 
Let P = (L,A) be a TSS. A proof of a transition", from P is a well-founded, upwardly 
branching tree of which the nodes are labeled by transitions in P, such that: 
• the root is labeled with 'If; 
• if X is the label of a node q and {Xi I ie I} is the set of labels of the nodes directly above 

{</I' I ie I} 
q, then there is a rule I </I in A and a substitution 0 such that X = 0(</1) and Xi = O(</Ii) 

for ieI. 
If a proof of 'II from P exists, we say that", is provable from P, notation P I- 'II. 

2.4 LABELED TRANSmON SYSTEM. 

Let A be a given set of labels. A labeled transition system (L TS) over A is a pair .>I = 
(S, -» where S k; N is a set of states and -> k; S x A x S is the transition relation. 
Elements (s,a,s') e -> are called transitions and will (if no confusion can arise) be written 

as S ~ s'. By lL'fS(A) we denote the set of labeled transition systems over alphabet A. By 

.>I $ ~ we denote the componentwise union of LTS's .>I and ~. 
In order to associate an LTS to each TSS, we assume, for each signature L, the presence 

of injective mappings iI;: T(L) --t N. 

2.5 DEFlNmON. Let P = (L,A) be a TSS. The LTS IIS(P) is the pair (S, -» where 
S = (iI;(I) I Ie T(L)} and 
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Pf-t~t'. 

We can also easily associate a TSS to each LTS by viewing states as constant symbols and 

transitions as axioms: 

2.6 DEFINITION. Let jf = (S. -» be an LTS. The TSS tss(jf) is the pair (.E.R) where .E 

o 
contains constant symbols S for each SE Sand R = {a I (s.a.s·) E ->}. 

S -> s' 
The reader can check that for any LTS ~ Its(tss(jf)) = jf up to isomorphism. 

2.7 PROCESS GRAPHS. 
Let A be a given set of labels. A rooted labeled transition system or process graph 
over A is a pair 9 = (s. jf) where jf is an LTS over A and S a state of J't. This state is called 
the root of g. Write ROOT(g) for S and L TS(g) for J't. IGi(A) is the set of process graphs 

over A. We will not distinguish between isomorphic process graphs. 

Now let P = (.E. R) be a TSS over A and let f be an n-ary function symbol in .E. The n­
ary operation fp: IGi(A)n -t IGi(A) on process graphs can be defined as follows. Let for 

1 sisn 9i = (Si. jfi) be process graphs such that the set of constants of .E and the sets of 

states of jfi are pairwise disjointl. Then fp(g1 •...• gn) is the process graph with root 
ir(f(S1 •...• Sn)) and LTS Its(P $ tSS(jf1) $ ... $ tss(J'tn)) • .E' the signature of this LTS. 

Now Alg(P) is the .E-algebra which has domain IGi(A) (more precisely. the set of 
isomorphism classes oflGi(A)) and that associates to a function symbol f with arity n in.E the 

n-ary operation fp. By Algms(P) we denote the (unique) minimal subalgebra of Alg(P). 

2.8 DEFiNABILITY. 
Let op be an n-ary operation on IGi(A). let ~ be an equivalence relation on IGi(A) and let !f ~ 
TSS(A) be some format of transition system specifications. We say op is definable in the 

format J"up to the equiValence ~ iff there exists some TSS P E J"and n-ary f in the signature 
of P such that for all g1 •...• gn E IGi(A) we have Op(g1 •...• gn) ~ fp(g1 •...• gn). 

2.9 BISIMULATION. 

Let jf = (S. -» be an LTS over an alphabet A. A symmetric relation R !;;; S x S is called a 
(strong) bisimulation if it satisfies the so-called transfer property: 

if sRt and S ~ s' then there is at' E S with t ~ t' and s·Rt·. 

Two states s.t E S are bisimilar in jf. notation jf: s 12 t. if there exists a bisimulation 
relating Sand t. Note that bisimilarity is an equivalence relation. The definition of 
bisimilarity is from PARK [PAl. 

Two process graphs g.h E IGi(A) are bisimilar. notation 9 12 h. iff the sets of states of 

L TS(g) and L TS(h) are disjoint (otherwise a renaming has to be applied first) and 

LTS(g) $ LTS(h): ROOT(g) 12 ROOT(h). 
Let P = (.E. R) be a TSS over A. Two terms t.t· E T(.E) are bisimilar with respect to p. 

notation P: t '=' t'. ifflts(P):h;(t) '=' il:(t·). 

1 If this is not the case then we first have to rename the function symbols of l: and the states of the ~ in 
order to fulfill the condition; as we are considering process graphs up to isomorphism the details of this 
renarnin.g are irrelevant. 
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3. BASIC PROCESS ALGEBRA. 

3.1 The aim of this paper is to give an algebraic treatment of the feature of process creation. 

It will turn out that the key to our solution consists of giving a new interpretation to the 

operator symbol· in the axiom system BPA (Basic Process Algebra) of BERGSTRA & KLOP 

[BK2,3]. Therefore, we start with a review of BPA. We will see that there exist at least five 

very different interpretations of the operator symbol·. One thing that all these interpretations 

have in common is that the laws of BPA are satisfied, and this similarity may be considered 

as a surprising fact. 

3.2 The signature of BPA, l:BPA, contains a given finite set A of actions (we assume 

finiteness of A in order for our operational semantics to give rise to TSS's in the sense of 

2.2). These actions, denoted by a,b,c, ... , are constants in the language. Further, the 

signature of BPA has two binary operators: sum, denoted +, and product, denoted .. 

Processes x,y, ... constructed with these operators will always satisfy the axioms in the 

following equational specification BPA. 

x+y=y+x 
(x + y) + Z = x + (y + z) 
x+x=x 
(x + y)·z = x·z + y·z 
(x·y)·z = x·(y·z) 

TABLE 1. BPA. 

Al 

A2 

A3 

A4 

AS 

Of all operators, . will always bind the strongest, and + the weakest. Thus, x·y + Z means 
(x·y) + z. We often write xy instead of x·y. 

3.3 In the ACP framework of BERGSTRA & KLop [BK2,3], the elements of A are often 

called atomic actions, the + operator is called alternative composition, and the· op­

erator is called sequential composition. The intuition is that occurrences of actions 

a,b, ... are events without positive duration in time; they are atomic and instantaneous. The 

interpretation of (a + b)·c is a process that first does either a or b and, second, performs the 

action c after which it is finished. Since time has a direction, product is not commutative; but 
sum is, and in fact it is stipulated that the options possible in each state always form a set 
(axioms AI, A2, A3). The other distributive law x(y + z) = xy + xz is not included, because 

the moment of choice between y and z in the two processes is different. 
We would like to stress again that this is just one possible interpretation of the elements 

of the signature of BPA. 

3.4 SEQUENTIAL COMPOSITION WITH ONE MODE OF TERMINATION. 

We will now present our first model for BPA. It is given by a TSS over labels A. The 

intended meaning of x'!... y is that process x may perform an a-action, and thereby evolve 
into process y. 

In order to define the model, we have to extend the signature of BPA with an auxiliary 

constant Ii. T(l:BPA/)) is the set of closed terms over this extended signature. In the ACP 
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framework, () is called deadlock. This name suggests a particular intuition about the 

behaviour of this process which is not in accordance with the interpretation of () in our fIrst 

model. Rather, () plays the same role as NIL of CCS (see MILNER [MIl). In all models that 

we present in this paper, the constant () is characterised by being unable to perform any 

actions, i.e. () ~ x for no a,x. We write x -I> to denote that x has no outgoing transition (so 
we have () -1». 

The model we consider here, interprets . as sequential composition, where we have 
only one mode of termination: x'y starts with the execution of x, and if x can do no 

more actions, then execution of y starts. 
We present the transition system specifIcation in table 2. 

a a--->() 

x ~ x' 

x+y ~ x' 

x ~ x' 

y ~ y' 
a 

x+y ---> y' 

x-l> y '!.... y' 
x· 

TABLE 2. TSS for BPA with one mode of termination. 

A non-trivial aspect of this definition is the appearance of negative premises. This makes that 
it is not immediately clear that there exists a distinguished transition relation agreeing with 
the rules. That such a relation exists in this case is due to the fact that the presence of an 
outgoing transition of a term only depends on the presence or absence of outgoing 
transitions from terms of a lower complexity. For more information on TSS's with negative 
premises, see GROOTE [GR]. There, it is shown that the rules in table 2 do determine a 
unique transition relation. 

BLOOM, ISTRAIL & MEYER [BIM] (who also present the above rules for sequential 

composition) observe that negative premises are needed for the defInition of this operator, 

i.e. it cannot be defIned using only rules with positive premises. Below we present a proof 
of this fact. 

3.5 THEOREM. Let A be a set of labels containing at least two elements. Then the operation 
of sequential composition with one mode of termination on G(A) is not defInable up to 

bisimulation using a (positive) TSS. 

PROOF: By contradiction. Suppose that this operation, denoted by" is defInable. Then there 
exists some TSS P and a binary function symbol ';' in the signature of P such that for all 
g,h E G(A), g'h = 9 ;p h. Let a,b be distinct labels in A and let process graphs g,h,g' be as 

shown in figure l. 
Since g.h = h is bisimilar to 9 ;p h, the graph (s;t, P $ tss(L TS(g) $ tss(L TS(h)) 

must contain an outgoing a-transition from its root s;t. Since s has no outgoing transitions, 
we can transform the proof tree for this a-transition to a proof that u;t has an outgoing a­
transition in the graph (u;t, P $ tss(LTS(g') $ tss(LTS(h)), by simply replacing all 
occurrences of the constant symbol s in the proof by the constant symbol t. 
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h 
I 

g' 
u 

a b 

FIGURE 1. 

Thus, (each representant of the equivalence class 00 g' ;p h has an outgoing a-transition 

from the root. But this means that g' ;p h cannot be bisimilar to g'·h, since the latter graph 
can only start with a b-transition. This gives the required contradiction. 

We tum the structure of action relations into a model for BPA by means of the notion of 

bisimulation. The following theorems are standard (see [BK3]): 

3.6llffiOREM. Bisimulation is a congruence relation on T(LBPAo). 

3.7 llffiOREM. BPA is a complete axiomatisation of T(LBPA)I tot, i.e. for all terms S, I from 

T(LBPA) we have BPA f- s=1 ~ T(LBPNltot 1= s=1 ~ Stott. 

Notice that theorem 3.7 only talks about terms from T(LBPA), so terms not involving o. As 
was already remarked by BERGSTRA & KLOp [BKl], axiom A4 is not valid any more on 

T(LBPAo) (using the valid axiom o·x = x, we can derive a·b = (a + o)·b = a·b + o·b = a·b + 
b). Therefore, if we want to extend theorem 3.7 to the case with 0, we have to restrict A4. 

3.8llffiOREM. LetA4*, A6, A8* and A9* be the following axioms (a,b E A): 
(ax + by + y')z = axz + (by + y')z A4* 

x+o=x M 
o·x=x 

x·o=x 

A8* 

A9*. 

Then AI,2,3,4*,5,6,8*,9* form a complete axiomatisation ofT(LBPAo)/tot, Le. for all terms 

S,I from T(LBPAo) we have 
AI,2,3,4*,5,6,8*,9* f- s=1 Stott. 

If one takes a more denotational viewpoint, then Plotkin style rules are just a way to define 
operations on process graphs (see 2.7). The last two rules of table 2, for instance, determine 

the operation of sequential composition with one mode of termination: given two 

process graphs g and h, g·h is the process graph obtained by appending a copy of h to each 
endnode of g. This is a simple and natural operation on process graphs. However, it turns 
out that in a setting with parallel composition and communication we often want to interpret 
the operator symbol· differently. 

3.9 SEQUENTIAL COMPOSmON WITH TWO MODES OF TERMINATION. 
Consider a process x·y, where x describes the behaviour of a system consisting of a number 

of processors which jointly perform some parallel computation. Then it may occur that at 

some point during the execution of x a state of deadlock is reached, i.e. all processors are 
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waiting for each other, before the computation is finished. Usually, y is not allowed to start 
in such a situation, even though x has reached a state where no transitions are possible. 
Process y may start only when process x has terminated successfully. When we talk about 
sequential composition, we often assume that there are two termination possibilities: 
successful termination and unsuccessful termination. The sequential composition of x and y 
starts with execution of x, followed by the execution of y upon successful termination of x. 
Now there are different ways in which we can make this intuition more precise. We will 
present three alternatives, before focusing on the third alternative. Consecutively, we 
consider: 
a. successful termination as a hidden signal (3.10); 
b. successful termination as an attribute of actions (3.11); 
c. successful termination with v-refinement (3.12). 

3.10 SUCCESSFUL TERMINATION AS A HIDDEN SIGNAL. 
Deadlock is considered as an unsuccessful form of termination. If deadlock is characterised 
by the absence of any possibility to proceed, it seems natural to introduce a special label to 
indicate successful termination. This special label is denoted V (pronounced 'tick'). Next, 
the behaviour of process a E A is described by the rules 

a ~ E E 'i... 15. 

Here, E is a new constant symbol denoting the process that terminates immediately and 
successfully (E first appears in KOYMANS & VRANCKEN [KV]). We see that the process a 
first performs an a-transition, and then terminates successfully. The process 15 still has no 

outgoing transitions and therefore corresponds in this setting with the process which 
terminates immediately but unsuccessfully. Now what rules can we have for the sequential 
composition operator? First, we note that it would not be correct to have rules like 

x '!... x' x t.. x' 

a " x'y --> x"y x'y --> y 
because then we could derive thil~.r like 

(a'b)'c ~ (E'b)'c --> C £.. E, 
which are clearly in contrast with the intended semantics of the sequential composition 

operator. Hence v-events performed by the first argument of the· operator cannot remain 
visible. 

One possible view on sequential composition, which is taken in CCS (see MILNER 
[MI]), is that V-events do occur, but that they are 'hidden from our view'. This can be 
expressed by the following rules: 

x'!... x' 
a (for a E AU{1:}) 

x'y --> x"y 

x t.. x' 
~ 

x'y --> y 
Here 1: is the silent move of MILNER [MI]. Under this interpretation, the transitions of 
process (a'b)'c are: 

a e ~ b ~ c..J (a'b)'c --> E'b)'c --> b·c --> E'C --> C --> E --> 15. 
The introduction of 1: leads to a number of difficult questions. For instance, should the 

process (a'b)'c be considered equal to a process p with transitions 

p~qQ.r£..si.15 
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In this paper we want to deal with concrete process algebra only, i.e. we prefer not to 

consider the silent move and different alternatives for its axiomatisation and representation 

by means of action relations. Therefore, we will not pursue the above view on sequential 

composition any further in this paper. 

3.11 SUCCESSFUL TERMINATION AS AN AITRIBUlE OF ACTIONS. 

In BRINKSMA [BR], a sequential composition operator is presented which is based on the 

idea that successful termination is a visible attribute of the last action of a process. Slightly 

simplified, this looks as follows: beside the actions in A, the set of labels also contains the 
elements of the set Av = {av I aE A}. The new action rules are (a E A): 

a..J ~ x ~ x' x ai, x' 
a-+u a a . 

x·y -+ x'·y x·y -+ Y 
This approach is comparable to the approach in VAN GLABBEEK [vG] (there, a ai, 0 is 

written as a ~ V). While this is a viable approach, the problem we have with it is, that there 

seems to be a mismatch with so-called 'True' concurrency and event structures. Many alge­

braic concurrency languages can be provided with a non-interleaved semantics. A reasonable 

criterion, put forward by DEGANO, DE NICOLA & MONTANARI [DDM] and OLDEROG [0], 

is that the interleaved semantics of a language must be retrievable from the non-interleaved 

semantics. Now consider the operator II of parallel composition without synchronisation. If 

we add such an operator to the current setting, the TSS rules will be 

x ~ x' x ai, x' y ~ y' yai, y' 

xlly~x'IIy xlly~y xlly'!...xlly' xlly'!...x· 
With these rules, the transition system for a II b becomes as shown in fig. 2. 

7allb~ 

a~ /-: 

o 
FIGURE 2. 

It seems almost unavoidable that in a non-interleaved event structure semantics from which 

the above interleaving semantics is retrievable, there are 4 events a,b,av,bv. Furthermore 

we do not see how to avoid that events a and b are conflicting, whereas event bv is causally 

dependent on event a and event av is causally dependent on event b. But this would be in 

clear contradiction with the non-interleaved interpretation of a II b that one expects intuitively, 

with two events a and b that are not causally related. 

Hence, we think that it will be difficult to give a non-interleaved event structure 

semantics which is compatible with this interpretation of sequential composition. 

3.12 SUCCESSFUL TERMINATION WITH V-REFINEMENT. 

A third view on sequential composition, the view we prefer, is that we have to do with an 

instance of action refinement as studied e.g. by CASTELLANO, DE MICHELIS & 
POMELLO [CDP] and V AN GLABBEEK & GOLTZ [GG]. We again use V-labels to denote 
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successful termination, and assume we have a process domain where V-events have no 
causal successors and are (in an extended signature with parallel composition) moreover not 
concurrent with any other event. This means that a V-event, if it occurs, will always be the 
last action performed by a process. On such a domain the sequential composition of 
processes x and y can be implemented by refining every v-event of x to the process y. We 
refer to [GG] for a formal definition of refinement on various types of event structures. 

Here, we only present the action rules which correspond to the refmement view of sequential 

composition, in table 3. In this table (and everywhere in the sequel), u stands for either a or 
v. This operational semantics can be found in BAETEN & VAN GLABBEEK [BG], only there 

X 'L. 0 was written as xJ.. The present formulation is due to GROOTE & V AANDRAGER 

[GV]. 

a~E E~O 

xL!... x' y L!... t 
x+y l!... x' x+y l!... y' 

x '!.. x' x'L. x' u t "1 ~ 

X· x· 
TABLE 3. Sequential composition with action refinement. 

T(kBPA&:) is the set of closed terms over the signature of BPA extended with the 
constants 0,10. Since all rules in table 3 are in the tylt format of [GV], bisimulation is a 
congruence relation on T(kBPA&:). Notice that the term x' in the last rule can be replaced by 
0, but, if we do so, the rules are not ryft anymore. 

The rules of table 3 induce a model for BPA (modulo strong bisimulation). In addition, 
we can also give an axiomatisation for the theory including the constants 0,10. Let BPA&: be 

the theory consisting of BPA together with the axioms in table 4. 

x+O=x 
o·x '" 0 
E·X=X 
X·E=X 
TABLE 4. Termination laws. 

A6 
A7 
A8 
A9 

Thus, 0 is the neutral element for alternative composition, 10 is the neutral element for 
sequential composition. A 7 captures the intuition that a deadlocked process can never per­

form a successful termination action (notice the difference with A8*!). Note that if we added 

the distributive law x(y + z) = xy + XZ, then we could derive ab = a(b + 0) = ab + ao, and 
so a process with no deadlock possibility would be equal to one that may deadlock, a clearly 
undesirable situation. 

Now we have the following theorem, due to BAETEN & VAN GLABBEEK [BGl. 

3.13 THEOREM. BPA&: is a complete axiomatisation ofT(LBPA&:)/fot, Le. for all terms s,t 
from T(kBPA&:) we have 
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BPA& f- s=t 'f(EBPA&)I", t= S=t . ~ s",t. 

In the next section, we will extend this last view on sequential composition to a setting with 

process creation. 

4. PROCESS CREATION. 

4.1 MOTIVATION. 
In 3.12, we restricted our attention to a domain of processes where a V-event is always the 
last event in an execution. This was a natural restriction since· was interpreted as sequential 

composition and V as successful termination. Now we would like to consider the operation 
of v-refinement on a more general domain where v-events still do not have causal 

successors but with the possibility that a V-event is concurrent with a non-V-event 

These more general processes can for instance arise if one has an operation new (x) 

which removes all V-events in a process and introduces a new V-event which is concurrent 
with the remaining events of x. In such a setting every process can perform at most one v­
event in its lifetime but this is not necessarily the last event. If we interpret a as a process 

which first does an a-event followed by a V-event, and the operator symbol· as v­
refinement, then we can stepwise construct the interpretation of a·(new(b·c)·d) as in fig. 3. 

b b·c new (b·c) new (b·c)·d a·(new (b·c)·d) 

b b b " b d a 

~ ~ ~ ~ ~ 1\ 
b d 

" c c c " ~ ~ ~ c " " FIGURE 3. 

One may think of fig. 3 as a graphical representation of a labeled prime event structure (see 
[W] or [GG] for the terminology). The arrows denote the causality relation. The traces of 
this process are 

abcdv 
advbc 

abdvc 
adbcv 

The reader might notice that what we have achieved now is that we have informally given a 
denotational semantics (essentially an event structure semantics) of a simple language with 

process creation. Moreover, this semantics agrees with the intuitions concerning process 
creation that we presented in the introduction. In fact we claim that the semantics is 
compatible with the semantics given in AMERICA & DE BAKKER [AB] for a uniform and 
dynamic language (section 4). In the language of [AB], also alternative composition and~­
recursion are present. We have not described an interpretation of these operators on event 

structures because we do not want to become too technical here. Such an interpretation, 
however, is standard and described for instance in [W]. 
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In [AB], the new interpretation of . is presented as an operator "which is able to decide 

dynamically whether it should act as sequential or parallel composition". We prefer a 
different intuition because we think that the operator· does not introduce a choice or conflict 
between sequential and parallel composition, but rather that it is a natural generalisation of 
the sequential composition operator· on a domain of processes where V may occur in a non­
final position. On the domain of event structures, we give exactly the same interpretation to 
the operator symbol· as in the case of sequential composition. The only difference is that 
the domain of processes is enlarged. When we work with the extended domain of 
processes, we will call this operation continuation and the V-event the continuation 

action (sequential composition and successful termination is not an appropriate terminology 

now). 

4.2 CONTINUATION 
We will now give Plotkin-style rules, which correspond to the above event structure 
semantics. It turns out that on this level we do have to change the rules for the . operator: 
since in a product x·y the process x may continue after y has started, we have to introduce 
an auxiliary operator W for describing those states where y has started but x is not yet 
finished. See table 5. 

x ~ x' 

x·V ~ x'·V 
TABLE 5. Continuation. 

x 'L. x' y I!.... y' 

x·V l!.. x'h' 

The second rule here is a generalisation of the corresponding rule in table 3. There, if x i.. 
x', necessarily x';;o, and the term Sl~x has the same transitions as x. Now, after term x has 

executed a V event, it need not be finished yet, and the remainder will be executed in parallel 
with the following process. 

The reader may think there is a possibility missing here, viz. 

x i.. x' ~ x" 
a . 

x·y -> x"h 
However, this rule is not in accordance with our view on sequential composition with 
refinement of V-events: when y refines the V-event, any action in place of the V-event should 
involve an initial action of y. Moreover, the proposed rule leads to counter-intuitive 
behaviour: process x should behave the same as process x·e, but if x can perform V and then 
a, then x·e can also perform a before V with the rule above. 

4.3 PARALLEL COMPOSITION. 

The operator I~ is just parallel composition with the additional restriction that only the 

process on the right-hand side may perform V-events. This operator is very similar to the 

parallel composition operator in the theory ACP of [BK2,3]. In ACP, the parallel 
composition of x and y can perform a V-event only if both x and y can perform a V-event at 
the same time. When we compose processes x and y by means of our new combinator I~ , 
the composition can do a V-event when y can do a V-event. 
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With respect to interleaving, I~ behaves as one would expect: if one component can 
perfonn a certain action, the composition can also perfonn this action. In table 6, we present 
the TSS for I~. 

x~ x' 

xWy ~ x'Wy 
TABLE 6. Parallel composition. 

We should note that all our operators are defined on the domain of processes that is 

described above. Thus, any composition of processes that have at most one -V-event in every 

execution path, again gives such a process. If one has no objection to operators that lead 
outside this domain, a symmetric parallel composition can be used, and xWy is represented 

by something like d{v'}{X) /ly (where d{v'} cancels all -V's). 
In languages with process creation, parallel composition is mostly not included in the 

language. It is an auxiliary operator which is present only on a semantic level. 

4.4 PROCESS CREATION. 

The operator new can be defined by: 

new{x) = 410. 
Thus, the operator new creates a process that is put in parallel with an existing process. 

Operationally, new is characterised by the TSS in table 7. 

new{x) '!.... x·1) 
x ~ x' 

new (x) ~ new{x') 

TABLE 7. TSS for process creation. 

4.5 EXAMPLE. The tenn a·new{b·c)·d dete~ines the transition diagram in fig. 4. 

FIGURE 4. 
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4.6 COMMUNICATION. 

Although the rules of tables 5-7 gave a simple and intuitive semantics to process creation, 
this semantics is not very practical. In any practical language with process creation there 
must be a possibility of communication between a newly created process and the rest of the 
system. Therefore, we add rules for Wand· which express the possibility of 
communication. 

Like in ACP, we have a given partial binary function yon A, which is commutative and 
associative, the so-called communication function. If ,),(a,b) = c, we say a and b 
communicate, and the result of the communication is c. If y(a, b) is undefmed, we say that a 

and b do not communicate. In table 8, we present the new rules for I~ and· (as before, 
a,b,c range over A). 

We will not discuss here the consequences of the change in the action rules on the level 
of non-interleaved event structure semantics. It will be clear that· can no longer be 
interpreted as just refinement of ..f-events. The construction will now introduce a large 
number of new events which describe possible synchronisations between the original and 
the new processes. Thus, the second rule of table 8 gives the possibility, that after x has 
done a ..f-event and is put in parallel with the following y, the first action is a communication 
between x and y. 

x '!-. x' y ~ y' 

xh <2... x'IIY' 

x -L. x' '!-. x" ~ y' 

TABLE 8. Communication. 

4.7 ENCAPSULATION. 

ify(a,b) = c 

ify(a,b) = c 

As in ACP, we have encapsulation operators OH (for each set H of atomic actions), that 
block actions from H. These operator are used to block communications with the 
environment, and remove 'halves' of communication (actions that should communicate). 
The TSS is straightforward. 

x L!... x' 
ifu Ii! H 

TABLE 9. Encapsulation. 

4.8 BISlMULATION. 

Since all the action rules presented so far are in the tyfr format of GROOTE & V AANDRAGER 

[GV], we can conclude that bisimulation remains a congruence, also with respect to the new 
operators II, " OH. Thus, if T(Lpc) is the set of terms built with the signature of BPA& 
extended with these operators, then T(Lpc)/", is a well-defined structure. In the next 
section, we will proceed to find a complete axiomatisation for this structure. 
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4.9 DEFINABILITY. 
The second rule of table 8 in 4.6 is remarkable in that it is the only rule in this paper that is 
not in De Simone format (see 2.2). This fact has the following consequence. 

THEOREM. Suppose A is a set of labels containing at least three distinct elements a,b,c. 
Suppose further that the communication function '1 on A satisfies y(a,b) = c. Then the 
continuation operator· on G(A) is not defmable up to bisimulation equivalence using the De 

Simone format. 

PROOF. Similar to the proof of theorem 3.5. Suppose that· is defmable using the De Simone 
format. Then there exists some TSS P with De Simone rules only and a binary function 
symbol; in the signature of P such that for all g,h E G(A), g·h = 9 ;p h. Let process graphs 

g,h,g' be as shown in fig. 5. 

9 h 
1 

g' 

b 

a 

FIGURE 5. 

Since g·h is bisimilar to 9 ;p h, the graph (s;I, P Ell Iss(L TS(g) Ell Iss(LTS(h)) must contain 
an outgoing C-transition from its root s;t. This impli~s that P contains a rule with conclusion 
x;y £.. 1 for some 1 and as premises a subset of {x -+ x', Y ~ y'}. (Here, the labels of the 
premises are infered from the form of g,h.) 

Using this rule, it is trivial to construct a proof that u;1 has an outgoing c-transition in the 
graph (u;l, P Ell Iss(LTS(g') Ell Iss(LTS(h)). Thus, g' ;p h has an outgoing c-transition 

from the root. But this means that g' ;p h cannot be bisimilar to g'·h. This gives the required 
contradiction. 

Since the operational semantics of CCS, CSP, MEIJE and ACP can be defined using De 
Simone rules, the theorem above implies that our continuation operator cannot be defined up 
to bisimulation in terms of the operations of these process algebras. Note that the proof 
above heavily depends on the fact that we use strong bisimulation equivalence and not a 
weak equivalence that abstracts from internal actions. We expect that it will be possible to 
define the continuation operator in say ACP up to weak bisimulation equivalence. Such a 
result would also clarify why it is possible to translate POOL to ACP [VA], even though 
POOL contains a continuation operation that is very similar to the one of APe. 

Our definabiJity result suggests that the additional internal computation steps that are 
intrOduced in the translation from POOL to ACP are in fact unavoidable. 
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5. AxIOMATISATION. 

5.1 AUXILIARY OPERATORS. 

In order to give a finite axiomatisation for the structure T(Epc)/k> defined in 4.8, we will 

need some auxiliary operators, comparable to the operators lL, I in ACP. Since our parallel 

composition operator is asymmetric, we will need not two but three auxiliary operators: It, 
Jj', ~. These three operators will form the three components of the merge operator I~: It, the 

left-merge, will give the possibilities that the left-hand side performs an action, Jj', the 
right-merge, gives the possibilities that the right-hand side performs an action (together, 

these two operators give the interleaving), and finally, ~, the communication merge, 

gives the possibilities that a communication action occurs between the two processes. 

The axiomatisation to be presented also uses an additional auxiliary operator ..J. The 

process ..J(x) starts with a ..J-event. Next the process x is performed from which however all 

..J-events have been removed. When no confusion can occur, we will write ..Jx instead of 

..J(x). 

5.2 SIGNATURE. 

Now we will present the language for our Algebra for Process Creation (APC). As 

parameters of the language, we have a finite action set A, and a partial binary function ron 

A, which is commutative and associative. Then, we have constants a (for each ae A), 
constants /),£, binary operators +,", I~ ,It, Jj' , ~, and unary operators ..J, new and dH (for 

each H~). 

When we write a specification in APC, we only use a part of the signature, not the 

auxiliary operators. Formally, we can declare part of the signature to be hidden, as explained 
e.g. in BERGSTRA, HEERING & KLINT [BHK] or Y AN GLABBEEK & YAANDRAGER 

[vGY]. The visible signature of APC is L = {a I aeA} u {1),£,+,",new} U {dH I H~}, 
whereas the hidden signature contains I~ ,1t,Jj', ~ ,..J. We will write all specifications in 

section 5 in the signature L. 

5.3 AXIOMS. 

The axioms of APC are presented in table 10. There, a,b e A, H s A, and x,y,z are 

arbitrary processes. Notice that the constant £ becomes definable, by axiom Pel. 
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x+y=y+x Al 
x + (y + z) = (x + y) + z A2 
x+x=x A3 
(x + y)z = xz + yz A4 
(xy)z = x(yz) A5 
x+o=x A6 
ox=o A7 
EX=X A8 
x£=x A9 

£ =-vo PCI 
new(x)·y = xl~y PC2 
-Vx = -V(xo) PC3 
(-Vx)·y = xJI'y + x ~y 

defined PCCI 

ClH(O) = 0 
ClH(ax) = a·ClH(x) 
ClH(ax) = 0 

PCDI 
if a,; H PCD2 
ifaEH PCD3 

ClH(-VX) = -V(ClH(X)) 
ClH(X+yl = ClH(X) + ClH(y) 

PCD4 
PCD5 

TABLE 10. APC. 

xh = xlty + xJl'y + x~y 

oltx = 0 
axlty = a(x h) 
-vxltY = 0 
(x + y)ltz = xltz + yltz 

xJl'o = 0 
xJl'ay = a(xh) 
xJl'-vy = -v(xh) 
xJl'(y + z) = xJl'y + xJl'z 

ax~by = 'Y(a,b)·(xh) 
PC4 

ax~by = 0 if undefined 
-vx~y = 0 
x~-vy = 0 
(x + y)~z = x~z + y~z 
xl(y + z) = x~y + x~z 

5.4 LEMMA. We list some useful identities that can be derived from APC. 
i. oWx = x vii. new(£) = £ 
ii. new (x) = xl~£ viii. (-Vx)·o = 0 
iii. new(o) = £ ix. -VC-vx) = £ 
iv. £ltx = 0 x. (xh)·z = d(y·z) 
v. £~x = x~£ = 0 Xl. -vx = xJl'£. 
vi. o~x = x~o=o 

PCM 

PCLl 
PCL2 
PCL3 
pcu 

peRI 
PCR2 
PCR3 
PCR4 

ify(a,b) 

PCC2 
PCC3 
PCC4 
PCC5 
PCC6 

PROOF. Mostly straightforward. We give proofs for ilie difficult identities. 
i. ol~x = oltx + oJl'x + o~x = 0 + oJl'x + o~x = oJl'x + o~x = (-Vo)·x = £·x = x; 
vi. Mx = o~x + £~x = (0 + £)~x = £~x = 0; 
ix. -VC-Vx) = -VCC-Vx)·o) = -vo = £; 
x. (xh)·z = (new(x)·y)·z = new(x)·(y·z) = xl~(y·z); 
xi. -Vx = -Vx·£ = xJl'£ + x~£ = xJl'£. 

Note iliat from axiom PC2 and lemma 5.4.ii it follows that the operators new and I~ can be 
defined in terms of each other. Also, by 5.4.xi, the auxiliary operator -V is definable in terms 
of JI' and £. 

5.5 TRANSITION SYSTEM SPECIFICATION. 

We can also give a TSS for the auxiliary operators. The full set is presented in table II. 
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a a---+e 

..; 
new (x) ---+ x·o 

x l!.. x' 

x+y l!.. x' 

x I!... x' 

x·y I!... x'·y 

e---+o -.Ix ---+ x·o 

x I!... x' 

new (x) I!... new (x') 

y l!.. y' 
x+y l!.. y' 

x i.. x' y I!.... y' 

x·y l!.. x' II' y 

x i.. x' I!... x" y I?-.. y' 
c ify(a,b) = c 

x·y ---+ x" Il'y' 

x I!... x' 

y l!.. y' 

x I/'y ~ x II' y' xJl' y I!.... x Il'y' 

y I?-.. y' x I!... x' 
ify(a,b) = c 

x II' y ~ x' I/'y' x/' y ~ x'h' 

-"":':'-,-:-"":':'-- U e H 
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Again, this TSS is in tyft format, so bisimulation remains a congruence. Let us call the 

set of process expressions over this extended set of operators T(LAPC). We will prove that 
the axiom system APe is a complete axiomatisation of T(LAPC)/ '" . First, we will need some 
other results. 

5.6 DEFINITION. We define some useful sets of terms. 

1. The set of bottom terms is defined inductively by: 

• 0 is a bottom term; 

• ift,s are bottom terms, then so are a·t and t + s. 
ii. The set of basic terms is defined inductively by: 

• 0 is a basic term; 

• if t is a bottom term, then -.It is a basic term; 
• if t,s are basic terms, then so are at and t + s. 

Obviously, every bottom term is a basic term. Also, we see that a basic term is a closed term 

built from the signature 0, +, -.I, a, such that a -.I occurs at most once in every execution 

sequence, and such that we have only prefIX multiplication (as defmed below). 
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5.7 DEFINITION. We say a tenn has only prefix multiplication if for each subtenn of the 
fonn t·s, t is an action, and moreover actions only occur as the fIrst argument of '. This 

means that for these tenns, instead of having constants a and general multiplication ., we 

could also use a signature with only unary operators a·. Notice that this is the usual situation 

in CCS and CSP. 

5.8 LEMMA. Let t be a basic tenn. Then there exists a bottom tenn t' such that 

APC I- Hi = t' . 

PROOF: Straightforward induction on the structure of basic tenns. 

5.9 THEOREM. (Elimination Theorem) 

Let t be a closed APC-tenn. Then there exists a basic tenn t' such that APC I- t = t'. 

PROOF: By an inductive argument, it is enough to prove the following claim: 

Let q,q' be basic tenns and let p be syntactically equal to Ii, e, a, q+q', q.q', qll'q', qitq', 
qJI'q', ql'q', -.Jq, new(q) or aH(q). Then there exists a basic tenn r such that APC I- p=r. 
To prove this claim, we use induction on the size of tenn p. We defIne size inductively by: 

• size(li) = size(e) = 1 

• size(a) = 2 
• size(t+t') = size(t-t') = size(titt') = size(tJI't') = size(tl't') = size(t) + size(t') 
• size(t lit') = size(t) + size(t') + 1 
• size(-.Jt) = size(t) + 2 
• size(new(t)) = size(t) + 5 
• size(aH(t)) = size(t) + 1. 
In the cases p '" 0, p '" q+q', we already have the required fonn. 
• p",£:usePCl; 

• p '" a: use A9 and PCI; 
• p '" q.q': here we use a case distinction for the fonn of q. If q '" Ii, use A7; if q '" a·q", 
use A5 and the induction hypothesis; if q '" -.Jq", with q" a bottom tenn, use PC4 and the 

induction hypothesis; if q '" q" + q*, use A4 and the induction hypothesis; 

• p '" qll'q': use PCM and the induction hypothesis; 

• p ;: qitq': here we use a case distinction for the fonn of q. If q '" Ii, use PCLl; if q ;: 

a·q", use PCL2 and the induction hypothesis; if q '" -.Jq", use PCL3; if q '" q" + q*, use 

PCL4 and the induction hypothesis; 

• p '" qJI'q': here we use a case distinction for the fonn of q'. If q' '" Ii, use PCRI; if q' '" 
a·q", use PCR2 and the induction hypothesis; if q' '" -.Jq", use PCR3 to write p = -.J(qll'q"), 
by induction p = -.Jq* for some basic q*, by PC3 P = -.J(q*·Ii), and then by lemma 4.8 p = 

-.Jq' for some bottom q'; if q '" q" + q*, use PCR4 and the induction hypothesis; 

• p '" ql'q': a case distinction involving the fonns of q and q'; left to the reader; 

• p '" -.Jq: use PC3 and lemma 4.8; 

• p '" new(q): write new(q) = new(q)·e = qll'e = qll'-.J1i and apply induction; 

• p '" aH(q): similar to p '" qJI'q'; left to the reader. 

5.10 THEOREM. (Soundness Theorem) 

The structure T(LAPC)!'" is a model of APC. 
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PROOF: To prove the theorem, we need to check that each axiom of APC holds in 
T(l:APd/H. As an example, consider axiom A5 (by far the most difficult one!). 

Consider the relation R on T(l:APc), that relates all terms with themselves, and 
moreover relates each term of the form (x·y)·z with x·(y·z) (and vice versa), every term 
(xl~Y)'z with 4(y'z) (and v.v.), and every term (xh)l~z with xl~(yl~z) (and v.v.). We 
claim that R is a bisimulation on T(APC). To prove this, we need to check that the transfer 
property holds. This proof has a large number of cases. We will give some of these cases. 

In principle, this part of the proof could have been done mechanically also. In fact, the 
tool ECRINS (see MADELAINE & DE SIMONE [MDS]) has been designed for doing this type 

of proofs. Unfonunately, ECRINS is not able to deal with TSS rules with a lookahead of 
more than one, such as the third rule for the . operator. 

Suppose from (x'Y)'z, we can perform a step. This fact is proved by a proof following 
the rules for· in table 11. Now look at the last step in this proof. 
CASE 1. The last step uses the first rule. Thus, x'y can do an a-step. Now look at the last 
step in the proof of this fact. 
SUBCASE 1.1. This last step uses the first rule. Thus x can do an a-step, to a term x', say. 

We have x ~ x', and so the steps in the proof were x'y ~ x"y and (x·y)·z ~ (x'·y)·z. From 

the first rule and x ~ x', we derive immediately that x·(y·z) ~ x"(Y'z), and (x'·y)·z and 
x'·(y·z) are again related. 

SUBCASE 1.2. This last step uses the second rule. Then, we must have x t x' and y ~ y', 

and so x'y ~ x' h' and (x·y)·z '!... (x'h')·z. By the first rule, y '!... y' implies y'z '!... y"z, 

and by the second rule, using x t x', we derive x·(y·z) ~ x'W(y'·z). Now (x'h')'z and 
x'l~ (y" z) are again related. 

SUBCASE 1.3. This last step uses the third rule. Then, we must have x ~ x' '!... x", y ~ y' 

and y(a,b) = c, whence x'y ~ x"l~y' and (x·y)·z ~ (x"h')·z. By the first rule, y ~ y' 

implies y'z ~ y"z, and by the third rule, using x i.. x' ~ x", we derive x·(y·z) ~ 
x"I~(y'·z). Now (x"h')'z and x"W(Y"z) are again related. 

CASE 2. The last step uses the second rule. Thus, x'y can do an -.J-step and z !!.. z' for some 

u,z'. Now the only possibility that x'y can do an -.J-step, is as a result of rule 2, with x t x' 

and y t y', and so, we had x'y t x' h' and (x·y)·z !!.. (x' h') I~ z'. By rule 2, using y t 
y' and z!!.. z', we obtain y·z!!" Y'Wz', and by rule 2 again, using X t x', we obtain x·(y·z) 

!!.. x'lny'Wz'). Now (x'h')h' and x'I~(y'l~z') are again related. 
CASE 3. The last step uses the third rule. Thus, x'y can do a -.J-st:y followed '?l an a-step, z 

~ z' and ,,«a,b) = c (for some a,b,c,z'). Now, as in case 2, x'y --+ implies x --+ x' and y t 
y' and x'y i. x' Wy'. This means that x'l~y' can do an a-step. This must be the result of one 
of the three rules for I~. 

SUBCASE 3.1. The first rule for W was used. Then, x' ~ x" for some x", and so x'Wy' '!... 
x"h' and (x·y)·z ~ (x"l~y')h'. By the second rule for', using y t y' and z ~ z', we 

obtain y'z ~ Y'I~z'. Then apply the third rule for·, using x t x' '!... x", to get x·(y·z) ~ 
x"I~(y'l~z). Now (x"h') I~z and x"I~(y'l~z) are again related. 

SUBCASE 3.2. The second rule for I~ was used. Then, y' ~ y" for some y", and so x'l~y' 
~ x'l~y" and (x·y)·z ~ (x'h")Wz'. Apply the third rule for·, using y t y' ~ y" and z ~ 
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z', to get y'z ~ y"Wz'. Then use the second rule for· with X i.. x' to obtain x'(Y'z} ~ 
x'll'(y"ll'z'}. Now (x'II'Y">ll'z' and x'~(y"ll'z') are again related. 
SUBCASE 3.3. The third rule for II' was used. Then a is the result of a communication, say 

a' an a c 
between a' and a". We find x' -> x", y' -> y", and so x'll'y' ...... x"Wy" and (x·y}·z "-+ 

(x" II' y"} Il'z'. Now use the third rule for II' with y i.. y' ~ y" and Z ~ z', to get y'z ")'(a·.~ 
Y"ll'z'. Now notice that by associativ1 ofywe have that"((a',y(a",b» = c. Applying this in 

the third rule for II' again, with x -> x' ~ x", leads to x·(y·z} ~ x" II' (y" II' z'). Now 
(x" Il'y") Il'z' and x" II'(y" Il'z'} are again related. 

Thus, we see that the transfer property holds from (x·y}·z to x·(y·z). All information, 
needed to prove the converse implication is available above. In a similar fashion, we can 
prove the transfer property between (xll'y}'z and xll'(y'z), and between (xll'y>ll'z and 
x II' (yll'z). We conclude that the relation R is a bisimulation, and thus that law AS holds in 
'f(APC)/ "'. Also, we have shown that the laws (x II' y}·z = x II' (y·z) and (x II' y}ll' z = 
xll'(yWz) hold in 'f(APC)/",. 

Another interesting case in the soundness proof that we would like to mention is axiom 
PC4: (-.Jx)·y = xly + xl'Y. In the soundness proof of this axiom (similar to, but much 
simpler than the proof for AS), we need the soundness ofthe law xl>ll'y = xll'y. 

5.11 LEMMA. Let P be a basic term and let q be an APe-term. 

i. If, for some ae A p ~ q, then there exists a basic term q' with size(q'} < size(p) such 
that APC I- P = a'q' + p and APC I- q = q'; 

ii. If pi. q, then there exists a bottom term q' with size(q'} < size(p) such that 
APe I- P = -.Jq' + p and APC I- q = q'. 

PROOF: Straightforward induction on the structure of p. 

5.12 THEOREM. (Completeness Theorem) 

The axiom system APe is a complete axiomatisation ofT(rAPC)/"" 

PROOF: Let p,q e T(rAPC) with p '" q. We have to prove that APC I- P = q. Since 

T(rAPc)! '" is a model for APC, the elimination theorem 4.9 tells us that we only have to 
prove this for basic terms p,q. A simple argument gives that it is even enough to show that 
for basic terms p,q 

p+q '" q :=} APe I- p+q = q. 
Assume p+q '" q. We prove APC I- p+q = q with induction on size(p) + size(q}. 
• p == 0: use Al and A6. 

• P == a'p': we have p ~ E·P'. Since p+q '" q, there is a q' such that q ~ q' and E'P' '" q'. 
By lemma 4.11 there is a basic term q" with size(q") < size(q), q = a'q" + q and q" = q'. 
Since p' '" q", p'+q" '" q" and q"+p' '" p'. Thus, by induction, p'+q" = q" and q"+p' = p', 
and hence p' = q". But now we derive that p+q = a'p' + q = a'q" + q = q. 
• p == -.Jp': this case is similar to the previous case. 
• p == p'+p": since p+q '" q, we also have p'+q '" q and p"+q '" q. By induction p'+q = 
q and p"+q = q. Hence p+q = p'+p"+q = p'+q+p"+q = q+q = q. 
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5.13 STANDARD CONCURRENCY. 
As a consequence of the completeness theorem, all equations that hold in the model 
T(1:APC)h. can be proven to hold in APC for all closed terms. We list a few of these 

equations in table 12. A name often given to such sets of equations is Standard Con­
currency. 

(xh)l~z = xlnyl~z) 
xh'o = YI~x'o 
xl~o= x·o 
TABLE 12. Standard concurrency. 

As consequences of these axioms, we mention the identities (xh)l~z = (yl~x)h and x\ty 
=x·oh· 

Using these axioms, we can prove a variant of the well-known Expansion Theorem, that 
is very useful to break down the parallel composition of many processes. Since our parallel 
operator is not in the visible signature, we will not bother to state it here. 

6. EXAMPLES. 
In order to give some interesting examples of process definitions in APC, we will say a few 
words about recursive definitions (more can be found in [BK2,3, vO]). 

6.1 DEFINITIONS. A recursive specification over APC is a (countable) set of equations 
{X = tx I X E VI, where V is a set of variables, and tx is a term over APe, possibly using 
variables from V, but no other variables. A solution of the recursive specification E in a 
certain domain is an interpretation of the variables of V as processes such that all equations 
of E are satisfied. 

The Recursive Definition Principle (RDP) says that every recursive specification 
has a solution. In the action relation model of APC, RDP holds, if we add for each recursive 

specification E = {X = tx I X E V} and for each X E Va constant (X I E) to the language, 
together with a rule 

(tx I E) U -. y 
(XIE)u-. y · 

Here (tx I E) denotes the term obtained from tx by replacing each variable Y E V by (Y I E). 

These rules still fit the tyft format, and so bisimulation remains a congruence. Moreover, one 
can see that all axioms of APC remain valid in the extended setting. 

Recursive specifications are used to define (specify) processes. Note that not every 
recursive specification has a unique solution, for {X = X} has every process as a solution. In 
order to get a class of recursive specifications with unique solutions, we formulate the 
condition of guardedness. 

6.2 DEFINITIONS. 

i. Let t be an APC-term, and X a variable in t. We call an occurrence of X in t guarded if 
X is preceded by an atomic action, i.e. t has a subterm of the form a's, with a E A, and the 
X in question occurs in S. Otherwise, we call the occurrence of X unguarded. 
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ii. A recursive specification {X = tx I X e V} is guarded if each occurrence of a variable in 
each tx is guarded. 

iii. The Recursive Specification Principle (RSP) is the assumption that every 
guarded recursive specification has at most one solution. One can prove that the extended 
model of APC satisfies RSP. 

In the remainder of this section, we give a number of examples of recursive 
specifications in APC. 

6.3 EXAMPLE I: SYSTOLIC SORTING. 

Systolic systems are characterised by a regular configuration of simple components or cells. 
Systolic systems have turned out to be useful in VLSI design (see KUNG [K]). 

We describe a sorting machine, that is always ready to input numbers (less than some 
upper bound N), and is always ready to output the smallest number it contains. This 
machine consists of a number of cells that each can contain two numbers, and will 
dynamically create more cells as they become needed. Our description is based on the 
description in KOSSEN & WEIJLAND [KW], where also a correctness proof can be found (in 
the setting of ACPt ). Consider the configuration in fig. 6. 

--Y Cl ~ C2 ~ C3 ~ C4 ~ C5 ~ D __ 

FIGURE 6. 

The squares in fig. 6 represent the cells, the lines interconnecting them communication ports. 
Let 0 = {d I d~N}u{stop, empty} be the set of data that can be communicated at these 
ports. We use the following actions: 
• sj(d) send de 0 along port i>O 
• rj( d) read de 0 along port bO 
• cj(d) communicate de 0 along port i. 
The communication function on these atomic actions is defined by: y(rj(d), sj(d)) = Cj(d), 
and 'Y is undefined on all other pairs. 

Cell number i has three types of states, depending on whether it contains 0,1 or 2 

numbers. The recursive specification of cell i is given in table 13. If X = {Xl, ... , Xk} is a 

fmite set, we use LxeX p(x) as an notation for P(Xl) + ... + P(Xk). 

Now, the sorting machine is given by: SORT = aH(C~), 
where H = {n(d), si(d) I i> 1, de O}. Note that SORT has a guarded recursive specification. 

o ~ 0 1 0 Cj = k n(d)·new(C j+l )·Cj (d) + rj(stop) + sj(empty)·Cj 
d"N 

Cj
l
(d) = L rj(e)·C~(min(d,e),max(d,e» + Sj(d)·Sj+l(Stop)·C~ 

e"N 

C~(d,e) = L rj(f)·si+l (e)·C~(min(d,f),max(d,f» + 
t"N 

+ sj(d)-[L n+l (f)·C~(min(e,f),max(e,f» + J]+l(empty)·Cj\e)] 
t"N 

TABLE 13. Systolic sorting. 

(d~N) 

(d~e~N) 
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6.4 EXAMPLE 2: QUEUE. 

The specification of the unbounded (FIFO) queue is one of the recurring issues in process 
algebra. Examples of recursive specifications can be found in BAETEN & BERGSTRA [BB], 
Y AN GLABBEEK & Y AANDRAGER [vGY]. We will give two recursive specifications in APe 
involving the new construct: the first has an infinite number of equations, the second a 
finite number. To start with, we give the standard infinite specification of the queue in table 

14. We denote the queue with contents (J «(J is a sequence of data elements, (J e D* for some 

given finite data set D) by Ocr. A. is the empty sequence, d (for de D) also stands for a one 

element sequence, and (JP denotes the concatenation of sequences CJ and p. 

OA= Lin(d)'Od 
dED 

Ocrd = L in(e)'Oecrd + out(d)'Ocr 
eED 

TABLE 14. Queue, standard specification. 

((Je D* ,de D) 

6.5 The second specification in APC will use an unlimited number of cells as in 6.3. This 
specification is inspired by a similar specification in DE SIMONE [DS]. Each cell can contain 
one data element; this element can be output when the permission for doing so is received: 

the permission go(i) will communicate with the potential output action pout(d,i) with as 
result the output out(d). Thus, we have a communication function '1 given by: 

-y(go(i), pout(d,i)) = out (d) 
(for i2:1, de D), and '1 is undefined otherwise. The definition of the cells and the queue is 
given in table 15. Note that this is a guarded specification. The encapsulation set is H = 
{go(i), pout(d,i) I de D, i2:1}. 

Ci = L in(d)'new(Ci+1)'Pout(d,i)'go(i+1) (i2:1) 
dED 

0 1 = dH(new(C1 )'go(1 )'B) 

TABLE 15. Queue, first APC specification. 

6.6 THEOREM. Q1 = QA' 

PROOF: In this proof, we use the axioms of Standard Concurrency of 4.13. Defme, for each 
n2:1 and each (Je D*, with (J '" d1 ... dk, the process R~ by 

R~ = dH(Cn+kWpout(d1 Nk-1 )'go(n+k) W ... I~pout(dk,n)·go(n+ 1) l~go(n)·B). 

We will prove that, for each n2:1, R~ = Ocr. We do this by showing that the R~ satisfy the 

specification in table 14. As a consequence, we derive 

0 1 =dH(new(C1)'go(1 )'B) =dH(C11~go(1 )'B) = Ri = Q1..' 

Now the verification: 

R~ = dH(CnWgo(n)'B) = 

= L in(d)'dH(new(Cn+1 )'pout(d,n)'go(n+ 1) Wgo(n)'B) = 
dED 
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= r in(d}·aH(CO+1I~pout(d,n}·go(n+ 1} I~go(n}·o} = 
cleD 

= r in(d}·R~. 
cleD 

Next, if cr '" d1 ... dk-1, 
R~ = aH(Cn-+kWpout(d1.n+k-1 )·go(n+k)l~ ... 
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... I~pout(dk-1 ,n+ 1 )·go(n+2}Wpout(d,n)·go(n+ 1 }Wgo(n)·o} = 
= r in(e}·aH(new(Cn+k+1)·pout(e,n+k)·go(n+k+ 1)1~ ... 

eeD 

... Wpout(d,n)·go(n+ 1 )I~go(n)·o) + 

+ out(d)·aH(Cn+kWpout(d1 ,n+k-1 )·go(n+k) I~ ... I~go(n+ 1 )I~o) = 

= r in(e)·aH(Cn+k+11~pout(e,n+k)·go(n+k+ 1 )I~ ... I~pout(d,n)·go(n+ 1) I~go(n)·o) + 
eED 

+ out(d)·aH(Cn+kWpout(d1.n+k-1 )·go(n+k)/I ... ~go(n+ 1 )·0) = 
~. n n+1 

= ""' In(e)·Read + out(d)·Ra . 
eED 

Using RSP (see 6.2), we can show that the R~ satisfy the specification in table 14. 

6.7 THIRD SPECIFICATION OF QUEUE. 
Next, we will give a finite recursive specification for the queue. In this specification, we will 
use action renaming. For each function f: A ~ A, we introduce a unary operator Pf, that will 
rename atoms a into f(a), and do nothing else. This operator is axiomatised in table 16. 
Action rules are quite easy to formulate. 

Pf(o) = 0 
Pf(ax) = f(a)·Pf(x) 

PfC.Jx) = V(Pf(x)) 

From BAETEN & BERGSTRA [BB] we know that the queue can be finitely specified in ACP 
plus renaming. In table 17, we give a finite specification in APC plus renaming. 

Cell = r in(d)·aH(new(pl(Cell))·pre(d)·go) 
dED 

Q2 = aH(new(Pf(Cell)·go·o) 

TABLE 17. Queue, second specification. 

Here, we use the renaming function f that renames each pre (d) into near(d), and leaves all 
other atoms unchanged. The communication function is specified by y(go,near(d» = 
out(d) (undefined otherwise). The encapsulation set is H = {go} u {near(d) I de D}. 

In order to see that the specification in table 17 indeed describes a FIFO-queue, it might 
be illustrative to consider fig. 7. 
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go 
- - - -

in ........ 
~pre ... go - - - - - - -

in ...... 
~pre >- go - - - - - - -

in 
........ 
~pre .go - - -

in ..... 
I ~ 
I 
I 

FIGURE 7. 

In this diagram, we have abstracted from data d in actions in(d), out(d), etc. With arrows 
the 'causal' links between events are denoted. A black line stands for an encapsulation 
operator aH and a dashed line for a renaming operator PI. 

One may imagine that in an execution, events 'bubble' upwards until they have passed 
through the surface of the topmost encapsulation line. An event cannot move before all its 
causal predecessors have occurred. A pre-event can pass through both types of lines. 
However, when it passes through a dashed line, it is renamed into a near-event. near­
events and go-events are blocked by a black line. The synchronisation of a near-event and a 
go-event, however, gives a out-event. out-events, like in-events, can pass through both 

types of lines. 
Along these same lines, we can give a recursive specification for the stack in APC. 

6.8 THEOREM. Q2 = Qt... 

PROOF (sketch): Similar to 6.6. We define processes Sa, that satisfy the specification in 
table 14. The Sa are defined by using auxiliary processes Ta, that, in tum, are defined 

inductively: 
Tt.. = Cell 
T da = aH(Pf(T al~pre(d)'go)) 
Sa = aH(PI(T al~go·Il)). 

The proof that the Sa satisfy the specification in table 14 makes use of alphabet information. 
For more information on this type of argument, see BAETEN, BERGSlRA & KLop [BBK]. 

6.9 EXAMPLE 3: BAG. 
Along the same lines as for queue, we can give a simple recursive specification for the bag 
(an unordered channel; a state of the bag can be considered as a multiset of objects). We give 
the recursive specification in table 18, without further comment. 

Bag = L in(d)'new(out(d))'Bag 
dED 

TABLE 18. Bag. 
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