2,576 research outputs found

    Indoor localisation by using wireless sensor nodes

    Get PDF
    This study is devoted to investigating and developing WSN based localisation approaches with high position accuracies indoors. The study initially summarises the design and implementation of localisation systems and WSN architecture together with the characteristics of LQI and RSSI values. A fingerprint localisation approach is utilised for indoor positioning applications. A k-nearest neighbourhood algorithm (k-NN) is deployed, using Euclidean distances between the fingerprint database and the object fingerprints, to estimate unknown object positions. Weighted LQI and RSSI values are calculated and the k-NN algorithm with different weights is utilised to improve the position detection accuracy. Different weight functions are investigated with the fingerprint localisation technique. A novel weight function which produced the maximum position accuracy is determined and employed in calculations. The study covered designing and developing the centroid localisation (CL) and weighted centroid localisation (WCL) approaches by using LQI values. A reference node localisation approach is proposed. A star topology of reference nodes are to be utilized and a 3-NN algorithm is employed to determine the nearest reference nodes to the object location. The closest reference nodes are employed to each nearest reference nodes and the object locations are calculated by using the differences between the closest and nearest reference nodes. A neighbourhood weighted localisation approach is proposed between the nearest reference nodes in star topology. Weights between nearest reference nodes are calculated by using Euclidean and physical distances. The physical distances between the object and the nearest reference nodes are calculated and the trigonometric techniques are employed to derive the object coordinates. An environmentally adaptive centroid localisation approach is proposed.Weighted standard deviation (STD) techniques are employed adaptively to estimate the unknown object positions. WSNs with minimum RSSI mean values are considered as reference nodes across the sensing area. The object localisation is carried out in two phases with respect to these reference nodes. Calculated object coordinates are later translated into the universal coordinate system to determine the actual object coordinates. Virtual fingerprint localisation technique is introduced to determine the object locations by using virtual fingerprint database. A physical fingerprint database is organised in the form of virtual database by using LQI distribution functions. Virtual database elements are generated among the physical database elements with linear and exponential distribution functions between the fingerprint points. Localisation procedures are repeated with virtual database and localisation accuracies are improved compared to the basic fingerprint approach. In order to reduce the computation time and effort, segmentation of the sensing area is introduced. Static and dynamic segmentation techniques are deployed. Segments are defined by RSS ranges and the unknown object is localised in one of these segments. Fingerprint techniques are applied only in the relevant segment to find the object location. Finally, graphical user interfaces (GUI) are utilised with application program interfaces (API), in all calculations to visualise unknown object locations indoors

    3D Localization Algorithm Based on Voronoi Diagram and Rank Sequence in Wireless Sensor Network

    Get PDF

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    Node Degree based Improved Hop Count Weighted Centroid Localization Algorithm

    Get PDF
    Hop-count based weighted centroid localization is a simple and straightforward localization algorithm, which uses anchors with known positions and the hop count to these anchors to estimate the real position of nodes. Especially in sensor networks, where energy restrictions prevent more complex algorithms, this fast and simple algorithm can be used. Unfortunately the localization error of the algorithm can hinder the practical usage. In this paper we will improve the weighted centroid algorithm for hop count based localization by adding the node degree on the paths to the referenced anchors into the weights. After an analysis to obtain theoretically optimal coefficients we will show by means of simulation that for longer hop counts to the anchors and areas with different node degrees the proposed ND-WCL algorithm outperforms the known hop count based weighted centroid localization algorithm

    A hybrid localization approach in 3D wireless sensor network

    Full text link
    Location information acquisition is crucial for many wireless sensor network (WSN) applications. While existing localization approaches mainly focus on 2D plane, the emerging 3D localization brings WSNs closer to reality with much enhanced accuracy. Two types of 3D localization algorithms are mainly used in localization application: the range-based localization and the range-free localization. The range-based localization algorithm has strict requirements on hardware and therefore is costly to implement in practice. The range-free localization algorithm reduces the hardware cost but at the expense of low localization accuracy. On addressing the shortage of both algorithms, in this paper, we develop a novel hybrid localization scheme, which utilizes the range-based attribute RSSI and the range-free attribute hopsize, to achieve accurate yet low-cost 3D localization. As anchor node deployment strategy plays an important role in improving the localization accuracy, an anchor node configuration scheme is also developed in this work by utilizing the MIS (maximal independent set) of a network. With proper anchor node configuration and propagation model selection, using simulations, we show that our proposed algorithm improves the localization accuracy by 38.9% compared with 3D DV-HOP and 52.7% compared with 3D centroid

    Movement-efficient Sensor Deployment in Wireless Sensor Networks

    Full text link
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Two key issues in MWSNs - energy consumption, which is dominated by sensor movement, and sensing coverage - have attracted plenty of attention, but the interaction of these issues is not well studied. To take both sensing coverage and movement energy consumption into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment to maximize the sensing coverage with specific energy constraints. We derive necessary conditions to the optimal sensor deployment with (i) total energy constraint and (ii) network lifetime constraint. Using these necessary conditions, we design Lloyd-like algorithms to provide a trade-off between sensing coverage and energy consumption. Simulation results show that our algorithms outperform the existing relocation algorithms.Comment: 18 pages, 10 figure

    A survey on gas leakage source detection and boundary tracking with wireless sensor networks

    Get PDF
    Gas leakage source detection and boundary tracking of continuous objects have received a significant research attention in the academic as well as the industries due to the loss and damage caused by toxic gas leakage in large-scale petrochemical plants. With the advance and rapid adoption of wireless sensor networks (WSNs) in the last decades, source localization and boundary estimation have became the priority of research works. In addition, an accurate boundary estimation is a critical issue due to the fast movement, changing shape, and invisibility of the gas leakage compared with the other single object detections. We present various gas diffusion models used in the literature that offer the effective computational approaches to measure the gas concentrations in the large area. In this paper, we compare the continuous object localization and boundary detection schemes with respect to complexity, energy consumption, and estimation accuracy. Moreover, this paper presents the research directions for existing and future gas leakage source localization and boundary estimation schemes with WSNs

    Robust point correspondence applied to two and three-dimensional image registration

    Get PDF
    Accurate and robust correspondence calculations are very important in many medical and biological applications. Often, the correspondence calculation forms part of a rigid registration algorithm, but accurate correspondences are especially important for elastic registration algorithms and for quantifying changes over time. In this paper, a new correspondence calculation algorithm, CSM (correspondence by sensitivity to movement), is described. A robust corresponding point is calculated by determining the sensitivity of a correspondence to movement of the point being matched. If the correspondence is reliable, a perturbation in the position of this point should not result in a large movement of the correspondence. A measure of reliability is also calculated. This correspondence calculation method is independent of the registration transformation and has been incorporated into both a 2D elastic registration algorithm for warping serial sections and a 3D rigid registration algorithm for registering pre and postoperative facial range scans. These applications use different methods for calculating the registration transformation and accurate rigid and elastic alignment of images has been achieved with the CSM method. It is expected that this method will be applicable to many different applications and that good results would be achieved if it were to be inserted into other methods for calculating a registration transformation from correspondence
    corecore