86 research outputs found

    Audibility of the timbral effects of inharmonicity in stringed instrument tones

    Get PDF
    Abstract: Listening tests were conducted to find the audibility of inharmonicity in musical sounds produced by stringed instruments, such as the piano or the guitar. The audibility threshold of inharmonicity was measured at five fundamental frequencies. Results show that the detection of inharmonicity is strongly dependent on the fundamental frequency f 0 . A simple model is presented for estimating the threshold as a function of f 0 . The need to implement inharmonicity in digital sound synthesis is discussed

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    NASA Tech Briefs, September 2008

    Get PDF
    Topics covered include: Nanotip Carpets as Antireflection Surfaces; Nano-Engineered Catalysts for Direct Methanol Fuel Cells; Capillography of Mats of Nanofibers; Directed Growth of Carbon Nanotubes Across Gaps; High-Voltage, Asymmetric-Waveform Generator; Magic-T Junction Using Microstrip/Slotline Transitions; On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz; Group-III Nitride Field Emitters; HEMT Amplifiers and Equipment for their On-Wafer Testing; Thermal Spray Formation of Polymer Coatings; Improved Gas Filling and Sealing of an HC-PCF; Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions; Nematic Cells for Digital Light Deflection; Improved Silica Aerogel Composite Materials; Microgravity, Mesh-Crawling Legged Robots; Advanced Active-Magnetic-Bearing Thrust- Measurement System; Thermally Actuated Hydraulic Pumps; A New, Highly Improved Two-Cycle Engine; Flexible Structural-Health-Monitoring Sheets; Alignment Pins for Assembling and Disassembling Structures; Purifying Nucleic Acids from Samples of Extremely Low Biomass; Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery; UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities; Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy; Simplified Modeling of Oxidation of Hydrocarbons; Near-Field Spectroscopy with Nanoparticles Deposited by AFM; Light Collimator and Monitor for a Spectroradiometer; Hyperspectral Fluorescence and Reflectance Imaging Instrument; Improving the Optical Quality Factor of the WGM Resonator; Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking; Transmissive Diffractive Optical Element Solar Concentrators; Delaying Trains of Short Light Pulses in WGM Resonators; Toward Better Modeling of Supercritical Turbulent Mixing; JPEG 2000 Encoding with Perceptual Distortion Control; Intelligent Integrated Health Management for a System of Systems; Delay Banking for Managing Air Traffic; and Spline-Based Smoothing of Airfoil Curvatures

    Computational Modeling of Stiff Piano Strings Using Digital Waveguides an d Finite Differences

    Get PDF
    As is well-known, digital waveguides offer a computationally efficient, and physically motivated means of simulating wave propagation in strings. The method is based on sampling the traveling wave solution to the ideal wave equation and linearly filtering this solution to simulate dispersive effects due to stiffness and frequency-dependent loss; such digital filters may terminate the waveguide or be embedded along its length. For strings of high stiffness, however, dispersion filters can be difficult to design and expensive to implement. In this article, we show how high-quality time-domain terminating filters may be derived from given frequency-domain specifications which depend on the model parameters. Particular attention is paid to the problem of phase approximation, which, in the case of high stiffness, is strongly nonlinear. Finally, in the interest of determining the limits of applicability of digital waveguide techniques, we make a comparison with more conventional finite difference schemes, in terms of computational cost and numerical dispersion, for a set of string stiffness parameters

    Eighth International Workshop on Laser Ranging Instrumentation

    Get PDF
    The Eighth International Workshop for Laser Ranging Instrumentation was held in Annapolis, Maryland in May 1992, and was sponsored by the NASA Goddard Space Flight Center in Greenbelt, Maryland. The workshop is held once every 2 to 3 years under differing institutional sponsorship and provides a forum for participants to exchange information on the latest developments in satellite and lunar laser ranging hardware, software, science applications, and data analysis techniques. The satellite laser ranging (SLR) technique provides sub-centimeter precision range measurements to artificial satellites and the Moon. The data has application to a wide range of Earth and lunar science issues including precise orbit determination, terrestrial reference frames, geodesy, geodynamics, oceanography, time transfer, lunar dynamics, gravity and relativity

    Research & Technology Report Goddard Space Flight Center

    Get PDF
    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed

    Research and Technology Report. Goddard Space Flight Center

    Get PDF
    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials

    NASA Tech Briefs, May 2001

    Get PDF
    Topics covered include: Composites and Plastics; Test and Measurement; Electronic Components and Systems; Software Engineering; Mechanics

    NASA Tech Briefs, December 1992

    Get PDF
    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 2

    Get PDF
    These 92 papers comprise a peer-reviewed selection of presentations by authors from NASA, the Lunar and Planetary Institute (LPI), industry, and academia at the Second Conference on Lunar Bases and Space Activities of the 21st Century. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics included the following: (1) design and operation of transportation systems to, in orbit around, and on the Moon; (2) lunar base site selection; (3) design, architecture, construction, and operation of lunar bases and human habitats; (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology; (5) recovery and use of lunar resources; (6) environmental and human factors of and life support technology for human presence on the Moon; and (7) program management of human exploration of the Moon and space
    corecore