1,326 research outputs found

    An energy scaled and expanded vector-based forwarding scheme for industrial underwater acoustic sensor networks with sink mobility

    Get PDF
    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay

    Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks

    Full text link
    For improving the efficiency and the reliability of the opportunistic routing algorithm, in this paper, we propose the cross-layer and reliable opportunistic routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the improved efficiency fuzzy logic and humoral regulation inspired topology control into the opportunistic routing algorithm. In CBRT, the inputs of the fuzzy logic system are the relative variance (rv) of the metrics rather than the values of the metrics, which reduces the number of fuzzy rules dramatically. Moreover, the number of fuzzy rules does not increase when the number of inputs increases. For reducing the control cost, in CBRT, the node degree in the candidate relays set is a range rather than a constant number. The nodes are divided into different categories based on their node degree in the candidate relays set. The nodes adjust their transmission range based on which categories that they belong to. Additionally, for investigating the effection of the node mobility on routing performance, we propose a link lifetime prediction algorithm which takes both the moving speed and moving direction into account. In CBRT, the source node determines the relaying priorities of the relaying nodes based on their utilities. The relaying node which the utility is large will have high priority to relay the data packet. By these innovations, the network performance in CBRT is much better than that in ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201

    A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Network is newly emerging wireless technology in which small size sensors with limited energy, limited memory and bandwidth are deployed in deep sea water and various monitoring operation like tactical surveillance, environmental monitoring and data collection are performed through these tiny sensor. Underwater Wireless Sensor Network is used for exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance system and unmanned underwater vehicles. Sensor node consist of small memory, central processing unit and antenna. Underwater network is much different from terrestrial sensor network as radio waves cannot be used in Underwater Wireless Sensor Network. Acoustic channels are used for communication in deep sea water. Acoustic Signals carries with itself many limitation. Such as Limited bandwidth, higher end to end delay, network path loss, higher propagation delay and dynamic topology. Usually these limitation results in higher energy consumption with less number of packets delivered. The main aim now a days is to operate sensor node having smaller battery for a longer time in network. This survey has discussed the state of the art Localization based and Localization free routing protocols. Routing associated issues in the area of Underwater Wireless Sensor Network has also been discussed

    An energy efficient void avoidance opportunistic routing protocol for underwater sensor

    Get PDF
    Underwater sensor network is an emerging technology due to its numerous applications in aqueous environments. However, limitations of these networks include limited bandwidth, high propagation delays and power constraints. Hence, new routing protocols must be designed specifically for USN. Opportunistic routing offers a promising method to overcome these limitations. The proposed protocol is a novel energy-efficient void avoidance opportunistic routing algorithm. The protocol deals with the issue of void holes during transmission while reducing energy consumption and keeping the packet delivery ratio at a satisfactory level. To evaluate the performance, two common metrics have been used for routing protocols in USNs; energy consumption and packet delivery ratio. Simulations were carried out in ns2 with Aqua-Sim. The performance of the proposed routing protocol is compared to VAPR. The performance evaluation of EEVA-OR indicate its benefit as compared to VAPR in terms of void detection, energy consumption and packet delivery ratio

    Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application Perspective

    Get PDF
    Underwater acoustic communications are different from terrestrial radio communications; acoustic channel is asymmetric and has large and variable end‐to‐end propagation delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path fading. Besides, nodes’ mobility and limited battery power also cause problems for networking protocol design. Among them, routing in underwater acoustic networks is a challenging task, and many protocols have been proposed. In this chapter, we first classify the routing protocols according to application scenarios, which are classified according to the number of sinks that an underwater acoustic sensor network (UASN) may use, namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies proposed for these application scenarios, such as cross‐layer and reinforcement learning as well as opportunistic routing. Finally, some remaining key issues are highlighted

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research
    • 

    corecore