4 research outputs found

    An Optimised Shortest Path Algorithm for Network Rotuting & SDN: Improvement on Bellman-Ford Algorithm

    Get PDF
    Network routing algorithms form the backbone of data transmission in modern network architectures, with implications for efficiency, speed, and reliability. This research aims to critically investigate and compare three prominent routing algorithms: Bellman-Ford, Shortest Path Faster Algorithm (SPFA), and our novel improved variant of Bellman-Ford, the Space-efficient Cost-Balancing Bellman-Ford (SCBF). We evaluate the performance of these algorithms in terms of time and space complexity, memory utilization, and routing efficacy, within a simulated network environment. Our results indicate that while Bellman-Ford provides consistent performance, both SPFA and SCBF present improvements in specific scenarios with the SCBF showing notable enhancements in space efficiency. The innovative SCBF algorithm provides competitive performance and greater space efficiency, potentially making it a valuable contribution to the development of network routing protocols. Further research is encouraged to optimize and evaluate these algorithms in real-world network conditions. This study underscores the continuous need for algorithmic innovation in response to evolving network demands

    A Conceptual Design of Spatioā€Temporal Agentā€ Based Model for Volcanic Evacuation

    Get PDF
    The understanding of evacuation processes is important for improving the effectiveness of evacuation plans in the event of volcanic disasters. In terms of social processes, the enactment of evacuations in volcanic crises depends on the variability of individual/household responses. This variability of population response is related to the uncertainty and unpredictability of the hazard characteristics of volcanoesā€”specifically, the exact moment at which the eruption occurs (temporal), the magnitude of the eruption and which locations are impacted (spatial). In order to provide enhanced evacuation planning, it is important to recognise the potential problems that emerge during evacuation processes due to such variability. Evacuation simulations are one approach to understanding these processes. However, experimenting with volcanic evacuations in the real world is risky and challenging, and so an agentā€based model is proposed to simulate volcanic evacuation. This paper highlights the literature gap for this topic and provides the conceptual design for a simulation using an agentā€based model. As an implementation, an initial evacuation model is presented for Mount Merapi in Indonesia, together with potential applications of the model for supporting volcanic evacuation management, discussion of the initial outcomes and suggestions for future work

    A Spatial Agent-based Model for Volcanic Evacuation of Mt. Merapi

    Get PDF
    Natural disasters, especially volcanic eruptions, are hazardous events that frequently happen in Indonesia. As a country within the ā€œRing of Fireā€, Indonesia has hundreds of volcanoes and Mount Merapi is the most active. Historical studies of this volcano have revealed that there is potential for a major eruption in the future. Therefore, long-term disaster management is needed. To support the disaster management, physical and socially-based research has been carried out, but there is still a gap in the development of evacuation models. This modelling is necessary to evaluate the possibility of unexpected problems in the evacuation process since the hazard occurrences and the population behaviour are uncertain. The aim of this research was to develop an agent-based model (ABM) of volcanic evacuation to improve the effectiveness of evacuation management in Merapi. Besides the potential use of the results locally in Merapi, the development process of this evacuation model contributes by advancing the knowledge of ABM development for large-scale evacuation simulation in other contexts. Its novelty lies in (1) integrating a hazard model derived from historical records of the spatial impact of eruptions, (2) formulating and validating an individual evacuation decision model in ABM based on various interrelated factors revealed from literature reviews and surveys that enable the modelling of reluctant people, (3) formulating the integration of multi-criteria evaluation (MCE) in ABM to model a spatio-temporal dynamic model of risk (STDMR) that enables representation of the changing of risk as a consequence of changing hazard level, hazard extent and movement of people, and (4) formulating an evacuation staging method based on MCE using geographic and demographic criteria. The volcanic evacuation model represents the relationships between physical and human agents, consisting of the volcano, stakeholders, the population at risk and the environment. The experimentation of several evacuation scenarios in Merapi using the developed ABM of evacuation shows that simultaneous strategy is superior in reducing the risk, but the staged scenario is the most effective in minimising the potential of road traffic problems during evacuation events in Merapi. Staged evacuation can be a good option when there is enough time to evacuate. However, if the evacuation time is limited, the simultaneous strategy is better to be implemented. Appropriate traffic management should be prepared to avoid traffic problems when the second option is chosen
    corecore