132 research outputs found

    Improving RFC5865 Core Network Scheduling with a Burst Limiting Shaper

    Get PDF
    We define a novel core network router scheduling architecture to carry and isolate time constrained and elastic traffic flows from best-effort traffic. To date, one possible solution has been to implement a core DiffServ network with standard fair queuing and scheduling mechanisms as proposed in the well-known “A Differentiated Services Code Point (DSCP) for Capacity-Admitted Traffic” from RFC5865. This architecture is one of the most selected solutions by internet service provider for access networks (e.g. Customer-Premises Equipment or satellite PEP). In this study, we argue that the proposed standard implementation does not allow to efficiently quantify the reserved capacity for the AF class. By using a novel credit based shaper mechanism called Burst Limiting Shaper, we show that we can provide the same isolation for the time constrained EF class while better quantifying the part allocated to the AF class

    Pre-Congestion Notification Encoding Comparison

    Get PDF
    DiffServ mechanisms have been developed to support Quality of Service (QoS). However, the level of assurance that can be provided with DiffServ without substantial over-provisioning is limited. Pre-Congestion Notification (PCN) investigates the use of per-flow admission control to provide the required service guarantees for the admitted traffic. While admission control will protect the QoS under\ud normal operating conditions, an additional flow termination mechanism is necessary in the times of heavy congestion (e.g. caused by route changes due to link or node failure).\ud Encoding and their transport are required to carry the congestion and pre-congestion information from the congestion and pre-congestion points to the decision points. This document provides a survey of\ud several encoding methods, using comparisons amongst them as a way to explain their strengths and weaknesses.\u

    RMD-QOSM: The NSIS Quality-of-Service Model for Resource Management in Diffserv

    Get PDF
    This document describes a Next Steps in Signaling (NSIS) Quality-of- Service (QoS) Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to Edge nodes in the RMD network. The RMD Ingress Edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress Edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the Edge nodes

    RMD-QOSM - The Resource Management in Diffserv QoS model

    Get PDF
    This document describes an NSIS QoS Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to edge nodes in the RMD network. The RMD Ingress edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the edge nodes

    Pre-Congestion Notification Encoding Comparison

    Get PDF

    A Survey of PCN-Based Admission Control and Flow Termination

    Get PDF
    Pre-congestion notification (PCN) provides feedback\ud about load conditions in a network to its boundary nodes. The PCN working group of the IETF discusses the use of PCN to implement admission control (AC) and flow termination (FT) for prioritized realtime traffic in a DiffServ domain. Admission control (AC) is a well-known flow control function that blocks admission requests of new flows when they need to be carried over a link whose admitted PCN rate already exceeds an admissible rate. Flow termination (FT) is a new flow control function that terminates some already admitted flows when they are carried over a link whose admitted PCN rate exceeds a supportable rate. The latter condition can occur in spite of AC, e.g., when traffic is rerouted due to network failures.\ud This survey gives an introduction to PCN and is a primer for\ud this new technology. It presents and discusses the multitude of architectural design options in an early stage of the standardization process in a comprehensive and streamlined way before only a subset of them is standardized by the IETF. It brings PCN from the IETF to the research community and serves as historical record

    Resource Management in Diffserv (RMD) Framework

    Get PDF
    This draft presents the work on the framework for the Resource Management in Diffserv (RMD) designed for edge-to-edge resource reservation in a Differentiated Services (Diffserv) domain. The RMD extends the Diffserv architecture with new resource reservation concepts and features. Moreover, this framework enhances the Load Control protocol described in [WeTu00].\ud \ud The RMD framework defines two architectural concepts:\ud - the Per Hop Reservation (PHR)\ud - the Per Domain Reservation (PDR)\ud \ud The PHR protocol is used within a Diffserv domain on a per-hop basis to augment the Diffserv Per Hop Behavior (PHB) with resource reservation. It is implemented in all nodes in a Diffserv domain. On the other hand, the PDR protocol manages the resource reservation per Diffserv domain, relying on the PHR resource reservation status in all nodes. The PDR is only implemented at the boundary of the domain (at the edge nodes).\ud \ud The RMD framework presented in this draft describes the new reservation concepts and features. Furthermore it describes the:\ud - relationship between the PHR and PHB\ud - interaction between the PDR and PHR\ud - interoperability between the PDR and external resource reservation schemes\ud \ud This framework is an open framework in the sense that it provides the basis for interoperability with other resource reservation schemes and can be applied in different types of networks as long as they are Diffserv domains. It aims at extreme simplicity and low cost of implementation along with good scaling properties

    END-TO-END QUALITY OF SERVICE SUPPORT OVER UMTS

    Get PDF
    End-to-end quality of service are very crucial in determine the quality of a certain network and can be seeing as a successful factor for every mobile network. This paper will discuss the end-to-end quality of service support over UMTS via DiffServ paradigm in achieving the end satisfactory for the customer. Telecommunications industries nowadays are rapidly growing from generation to generation advancement being making by the service provider. In order to tackle every customer, service provider will find a way to enhance their end-to-end quality of service over UMTS to satisfy their customer. In this paper, research for characteristic for UMTS network and DiffServ paradigm have been made in order to understand every criteria for achieving the best end-to-end quality of services for this UMTS network via DiffServ method. Mapping between DiffServ and UMTS network will be simulated and evaluated in OPNET software. Many scenarios will be simulated and will be compared in order to find the best result when using this DiffServ paradigm. Every result from each scenario will be shown in a graph which will be easier to see the differences between the variations of the end delay times for each scenarios mapping. As a solution, from the variations of the end delay time, it shows that DiffServ paradigm give a lower delay time and this means that end-to-end quality of services support over UMTS network via DiffServ paradigm can give the satisfactory services for the end user. In the future, as the advancement keep growing for UMTS network, others research can be done to find another paradigm that can give more end-to-end quality of services satisfactory for end users
    corecore