10 research outputs found

    The software project scheduling problem: A scalability analysis of multi-objective metaheuristics

    Get PDF
    Applied Soft Computing 15, 136-148Computer aided techniques for scheduling software projects are a crucial step in the software development process within the highly competitive software industry. The Software Project Scheduling (SPS) problem relates to the decision of who does what during a software project lifetime, thus involving mainly both people-intensive activities and human resources. Two major conflicting goals arise when scheduling a software project: reducing both its cost and duration. A multi-objective approach is therefore the natural way of facing the SPS problem. As companies are getting involved in larger and larger software projects, there is an actual need of algorithms that are able to deal with the tremendous search spaces imposed. In this paper, we analyze the scalability of eight multi-objective algorithms when they are applied to the SPS problem using instances of increasing size. The algorithms are classical algorithms from the literature (NSGA-II, PAES, and SPEA2) and recent proposals (DEPT, MOCell, MOABC, MO-FA, and GDE3). From the experimentation conducted, the results suggest that PAES is the algorithm with the best scalability features.Spanish Ministry of Science and Innovation and ERDF (European Regional Development Fund) under contract TIN2008-06491-C04 (M* project). Spanish Ministry of Economy and Competitiveness and the ERDF under contracts TIN2012-30685 (BIO project) and TIN2011-28194 (roadME project). Fundación Valhondo, for the economic support offered to David L. González-Álvarez

    Designing periodic and aperiodic structures for nanophotinic devices.

    Get PDF
    330 p.Future all--optical networks will require to substitute the present electronic integrated circuitry by optical analogous devices that satisfy the compactness, throughput, latency and high transmission efficiency requirements in nanometer scale dimensions, outperforming the functionality of current networks. Thereby, existing dielectric materials do not confine light in a sufficiently small scale and so the physical size of these links and devices becomes unacceptable. In fact, if the optical chip does not exist in the liking of the electronic chip, photonic crystals have recently led to great hopes for a large-scale integration of optoelectronic components. Two-dimensional photonic crystals slabs obtained through periodic structuring of a planar optical waveguide, feature many characteristics which bring them closer to electronic micro-and nanostructures. This thesis explores non-trivial periodic and aperiodic dielectric nano-structures and to do so, we pose a photonic crystal design process guided by non-convex combinatory optimization techniques. In addition, this thesis proposes some novel coupling devices optimized to minimize insertion losses between silicon-on-insulator integrated waveguides and single mode optical fibers. Last but not least, this thesis explores periodic arrangements from a new perspective and reports on the first experimental evidence of topologically protected waveguiding in silicon. Furthermore, we propose and demonstrate that, in a system where topological and trivial defect modes coexist, we can probe them independently. Tuning the configuration of the interface, we observe the transition between a single topological defect and a compound trivial defect state
    corecore