9,887 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Building the System: Follow-up, monitoring & adaptive management

    Get PDF
    Does impact assessment (IA) end when the license has been granted? While societal resources tend to focus on rigorous project approvals, what happens to the project, to the public and to the environment once approval is granted? Follow up and monitoring are often an afterthought for legislators, public servants and proponents. But they are critical to public confidence and to ensuring that proponents live up to their commitments in a rapidly changing world."This report draws from research funded by the Impact Assessment Agency as part of the Social Sciences and Humanities Research Council of Canada Knowledge Mobilization Grant on Informing Best Practice in Environmental and Impact Assessment.

    P4TC - Provably-Secure yet Practical Privacy-Preserving Toll Collection

    Get PDF
    Electronic toll collection (ETC) is widely used all over the world not only to finance our road infrastructures, but also to realize advanced features like congestion management and pollution reduction by means of dynamic pricing. Unfortunately, existing systems rely on user identification and allow tracing a user’s movements. Several abuses of this personalized location data have already become public. In view of the planned Europeanwide interoperable tolling system EETS and the new EU General Data Protection Regulation, location privacy becomes of particular importance. In this paper, we propose a flexible security model and crypto protocol framework designed for privacy-preserving toll collection in the most dominant setting, i.e., Dedicated Short Range Communication (DSRC) ETC. A major challenge in designing the framework at hand was to combine provable security and practicality, where the latter includes practical performance figures and a suitable treatment of real-world issues, like broken onboard units etc. To the best of our knowledge, our work is the first in the DSRC setting with a rigorous security model and proof and arguably the most comprehensive formal treatment of ETC security and privacy overall. Additionally, we provide a prototypical implementation on realistic hardware which already features fairly practical performance figures. An interaction between an onboard unit and a road-side unit is estimated to take less than a second allowing for toll collection at full speed assuming one road-side unit per lane

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Secure and Privacy-Preserving Vehicular Communications

    Get PDF
    Road safety has been drawing increasing attention in the public, and has been subject to extensive efforts from both industry and academia in mitigating the impact of traffic accidents. Recent advances in wireless technology promise new approaches to facilitating road safety and traffic management, where each vehicle (or referred to as On-board unit (OBU)) is allowed to communicate with each other as well as with Roadside units (RSUs), which are located in some critical sections of the road, such as a traffic light, an intersection, and a stop sign. With the OBUs and RSUs, a self-organized network, called Vehicular Ad Hoc Network (VANET), can thus be formed. Unfortunately, VANETs have faced various security threats and privacy concerns, which would jeopardize the public safety and become the main barrier to the acceptance of such a new technology. Hence, addressing security and privacy issues is a prerequisite for a market-ready VANET. Although many studies have recently addressed a significant amount of efforts in solving the related problems, few of the studies has taken the scalability issues into consideration. When the traffic density is getting large, a vehicle may become unable to verify the authenticity of the messages sent by its neighbors in a timely manner, which may result in message loss so that public safety may be at risk. Communication overhead is another issue that has not been well addressed in previously reported studies. Many efforts have been made in recent years in achieving efficient broadcast source authentication and data integrity by using fast symmetric cryptography. However, the dynamic nature of VANETs makes it very challenging in the applicability of these symmetric cryptography-based protocols. In this research, we propose a novel Secure and Efficient RSU-aided Privacy Preservation Protocol, called SERP^3, in order to achieve efficient secure and privacy-preserving Inter-Vehicle Communications (IVCs). With the commitments of one-way key chains distributed to vehicles by RSUs, a vehicle can effectively authenticate any received message from vehicles nearby even in the presence of frequent change of its neighborship. Compared with previously reported public key infrastructure (PKI)-based packet authentication protocols for security and privacy, the proposed protocol not only retains the security and privacy preservation properties, but also has less packet loss ratio and lower communication overhead, especially when the road traffic is heavy. Therefore, the protocol solves the scalability and communication overhead issues, while maintaining acceptable packet latency. However, RSU may not exist in some situations, for example, in the early stage deployment phase of VANET, where unfortunately, SERP^3 is not suitable. Thus, we propose a complementary Efficient and Cooperative Message Validation Protocol, called ECMVP, where each vehicle probabilistically validates a certain percentage of its received messages based on its own computing capacity and then reports any invalid messages detected by it. Since the ultimate goal of designing VANET is to develop vehicle safety/non-safety related applications to improve road safety and facilitate traffic management, two vehicle applications are further proposed in the research to exploit the advantages of vehicular communications. First, a novel vehicle safety application for achieving a secure road traffic control system in VANETs is developed. The proposed application helps circumvent vehicles safely and securely through the areas in any abnormal situation, such as a car crash scene, while ensuring the security and privacy of the drivers from various threats. It not only enhances traveler safety but also minimizes capacity restrictions due to any unusual situation. Second, the dissertation investigates a novel mobile payment system for highway toll collection by way of vehicular communications, which addresses all the issues in the currently existing toll collection technologies

    5G-based V2V broadcast communications: A security perspective

    Get PDF
    The V2V services have been specified by the 3GPP standards body to support road safety and non-safety applications in the 5G cellular networks. It is expected to use the direct link (known as the PC5 interface), as well as the new radio interface in 5G, to provide a connectivity platform among vehicles. Particularly, vehicles will use the PC5 interface to broadcast safety messages to inform each other about potential hazards on the road. In order to function safely, robust security mechanisms are needed to ensure the authenticity of received messages and trustworthiness of message senders. These mechanisms must neither add significantly to message latency nor affect the performance of safety applications. The existing 5G-V2V standard allow protection of V2V messages to be handled by higher layer security solutions defined by other standards in the ITS domain. However having a security solution at the 5G access layer is conceivably preferable in order to ensure system compatibility and reduce deployment cost. Accordingly, the main aim of this paper is to review options for 3GPP access layer security in future 5G-V2V releases. Initially, a summary of 5G-V2V communications and corresponding service requirements is presented. An overview of the application level security standards is also given, followed by a review of the impending options to secure V2V broadcast messages at the 5G access layer. Finally, paper presents the relevant open issues and challenges on providing 3GPP access layer security solution for direct V2V communication

    London Metropolitan University

    Get PDF
    • …
    corecore