220 research outputs found

    Object Segmentation in Images using EEG Signals

    Get PDF
    This paper explores the potential of brain-computer interfaces in segmenting objects from images. Our approach is centered around designing an effective method for displaying the image parts to the users such that they generate measurable brain reactions. When an image region, specifically a block of pixels, is displayed we estimate the probability of the block containing the object of interest using a score based on EEG activity. After several such blocks are displayed, the resulting probability map is binarized and combined with the GrabCut algorithm to segment the image into object and background regions. This study shows that BCI and simple EEG analysis are useful in locating object boundaries in images.Comment: This is a preprint version prior to submission for peer-review of the paper accepted to the 22nd ACM International Conference on Multimedia (November 3-7, 2014, Orlando, Florida, USA) for the High Risk High Reward session. 10 page

    A review of rapid serial visual presentation-based brain-computer interfaces

    Get PDF
    International audienceRapid serial visual presentation (RSVP) combined with the detection of event related brain responses facilitates the selection of relevant information contained in a stream of images presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with electroencephalography (EEG) can be associated with infrequent targets amongst a stream of images. Human-machine symbiosis may be augmented by enabling human interaction with a computer, without overt movement, and/or enable optimization of image/information sorting processes involving humans. Features of the human visual system impact on the success of the RSVP paradigm, but pre-attentive processing supports the identification of target information post presentation of the information by assessing the co-occurrence or time-locked EEG potentials. This paper presents a comprehensive review and evaluation of the limited but significant literature on research in RSVP-based brain-computer interfaces (BCIs). Applications that use RSVP-based BCIs are categorized based on display mode and protocol design, whilst a range of factors influencing ERP evocation and detection are analyzed. Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further standardizing methods and enhancing the inter-relatability of experimental design to support future research and the use of RSVP-based BCIs in practice

    Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model

    Get PDF
    In the recent years, there has been a significant growth in the area of brain computer interference. The main aim of such area is to read the brain activities, formulate a specific/desired output and power a specific approach using such output. Electroencephalography (EEG) may provide an insight into the analysis procedure of the human behavior and the level of the attention. Using the deep learning based neural network has a great success in different applications recently,such as making a decision, classifying a pattern and predicting an outcome by learning from a set of data and build the right weight matrices to represent the prediction outcome or the learning patterns. This research work proposes a novel model based on long short-term memory network to predict the standard and the deviant cases within EEG data sets. The EEG signals are acquired utilizing all the 128 electrodes that represent the 128 channels from infants aged between 5 and 7 months. Statistical approaches, principal component analysis (PCA) and autoregressive (AR) power spectral density estimate have been employed to extract the features from the EEG data sets. The proposed deep learning based model has shown great robustness dealing with different types of features extracted from the processed data sets. Very promising results have been achieved in predicting the standard and deviant cases. The standard case was presented with frequent, repetitive stimulus and the deviant case was presented with infrequent sounds

    Collaborative Filtering with Preferences Inferred from Brain Signals

    Get PDF
    Collaborative filtering is a common technique in which interaction data from a large number of users are used to recommend items to an individual that the individual may prefer but has not interacted with. Previous approaches have achieved this using a variety of behavioral signals, from dwell time and clickthrough rates to self-reported ratings. However, such signals are mere estimations of the real underlying preferences of the users. Here, we use brain-computer interfacing to infer preferences directly from the human brain. We then utilize these preferences in a collaborative filtering setting and report results from an experiment where brain inferred preferences are used in a neural collaborative filtering framework. Our results demonstrate, for the first time, that brain-computer interfacing can provide a viable alternative for behavioral and self-reported preferences in realistic recommendation scenarios. We also discuss the broader implications of our findings for personalization systems and user privacy.Peer reviewe
    corecore