54,191 research outputs found

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Genetic Algorithm for Program Synthesis

    Full text link
    A deductive program synthesis tool takes a specification as input and derives a program that satisfies the specification. The drawback of this approach is that search spaces for such correct programs tend to be enormous, making it difficult to derive correct programs within a realistic timeout. To speed up such program derivation, we improve the search strategy of a deductive program synthesis tool, SuSLik, using evolutionary computation. Our cross-validation shows that the improvement brought by evolutionary computation generalises to unforeseen problems

    Plan generation using a method of deductive program synthesis

    Get PDF
    In this paper we introduce a planning approach based on a method of deductive program synthesis. The program synthesis system we rely upon takes first-order specifications and from these derives recursive programs automatically. It uses a set of transformation rules whose applications are guided by an overall strategy. Additionally several heuristics are involved which considerably reduce the search space. We show by means of an example taken from the blocks world how even recursive plans can be obtained with this method. Some modifications of the synthesis strategy and heuristics are discussed, which are necessary to obtain a powerful and automatic planning system. Finally it is shown how subplans can be introduced and generated separately

    Deductive Program Repair, Computer Aided Verification

    Get PDF
    We present an approach to program repair and its application to programs with recursive functions over unbounded data types. Our approach formulates program repair in the framework of deductive synthesis that uses existing program structure as a hint to guide synthesis. We introduce a new specification construct for symbolic tests. We rely on such user-specified tests as well as automatically generated ones to localize the fault and speed up synthesis. Our implementation is able to eliminate errors within seconds from a variety of functional programs, including symbolic computation code and implementations of functional data structures. The resulting programs are formally verified by the Leon system

    Deductive Optimization of Relational Data Storage

    Full text link
    Optimizing the physical data storage and retrieval of data are two key database management problems. In this paper, we propose a language that can express a wide range of physical database layouts, going well beyond the row- and column-based methods that are widely used in database management systems. We use deductive synthesis to turn a high-level relational representation of a database query into a highly optimized low-level implementation which operates on a specialized layout of the dataset. We build a compiler for this language and conduct experiments using a popular database benchmark, which shows that the performance of these specialized queries is competitive with a state-of-the-art in memory compiled database system

    A Framework for Program Development Based on Schematic Proof

    Get PDF
    Often, calculi for manipulating and reasoning about programs can be recast as calculi for synthesizing programs. The difference involves often only a slight shift of perspective: admitting metavariables into proofs. We propose that such calculi should be implemented in logical frameworks that support this kind of proof construction and that such an implementation can unify program verification and synthesis. Our proposal is illustrated with a worked example developed in Paulson's Isabelle system. We also give examples of existent calculi that are closely related to the methodology we are proposing and others that can be profitably recast using our approach
    • …
    corecore