
Deductive Program Repair

Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak?

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. We present an approach to program repair and its applica-
tion to programs with recursive functions over unbounded data types.
Our approach formulates program repair in the framework of deductive
synthesis that uses existing program structure as a hint to guide synthe-
sis. We introduce a new specification construct for symbolic tests. We
rely on such user-specified tests as well as automatically generated ones
to localize the fault and speed up synthesis. Our implementation is able
to eliminate errors within seconds from a variety of functional programs,
including symbolic computation code and implementations of functional
data structures. The resulting programs are formally verified by the Leon
system.

1 Introduction

This paper explores the problem of automatically repairing programs written as
a set of mutually recursive functions in a purely functional subset of Scala. We
consider a function to be subject to repair if it does not satisfy its specification,
expressed in the form of pre- and postcondition. The task of repair consists of
automatically generating an alternative implementation that meets the specifi-
cation. The repair problem has been studied in the past for reactive and push-
down systems [8, 10, 11, 19, 20, 26]. We view repair as generalizing, for example,
the choose construct of complete functional synthesis [15], sketching [21,22], and
program templates [23], because the exact location and nature of expressions to
be synthesized is left to the algorithm. Repair is thus related to localization of er-
ror causes [12,14,27]. To speed up our repair approach, we do use coarse-grained
error localization based on derived test inputs. However, a more precise nature
of the fault is in fact the outcome of our tool, because the repair identifies a
particular change that makes the program correct. Using tests alone as a crite-
rion for correctness is appealing for performance reasons [7,17,18], but this can
lead to erroneous repairs. We therefore leverage prior work [13] on verifying and
synthesizing recursive functional programs with unbounded data-types (trees,
lists, integers) to provide strong correctness guarantees, while at the same time
optimizing our technique to use automatically derived tests. By phrasing the
problem of repair as one of synthesis and introducing tailored deduction rules

? This work is supported in part by the European Research Council (ERC) Project Im-
plicit Programming and Swiss National Science Foundation Grant Constraint Solving
Infrastructure for Program Analysis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211983784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

that use the original implementation as guide, we allow the repair-oriented syn-
thesis procedure to automatically find correct fixes, in the worst case resorting to
re-synthesizing the desired function from scratch. To make the repair approach
practical, we found it beneficial to extend the power and generality of the syn-
thesis engine itself, as well as to introduce explicit support for symbolic tests in
the specification language and the repair algorithm.
Contributions. The overall contribution of this paper is a new repair algorithm
and its implementation inside a deductive synthesis framework for recursive func-
tional programs. The specific new techniques we contribute are the following.

– Exploration of similar expressions. We present an algorithm for ex-
pression repair based on a grammar for generating expressions similar to
a given expression (according to an error model we propose). We use such
grammars within our new generic symbolic term exploration routine, which
leverages test inputs as well as an SMT solver, and efficiently explores the
space of expressions that contain recursive calls whose evaluation depends
on the expression being synthesized.

– Fault localization. To narrow down repair to a program fragment, we
localize the error by doing dynamic analysis using test inputs generated
automatically from specifications. We combine two automatic sources of in-
puts: enumeration techniques and SMT-based techniques. We collect traces
leading to erroneous executions and compute common prefixes of branching
decisions. We show that this localization is in practice sufficiently precise to
repair sizeable functions efficiently.

– Symbolic examples. We propose an intuitive way of specifying possibly
symbolic input-output examples using pattern matching of Scala. This al-
lows the user to partially specify a function without necessarily having to
provide full inputs and outputs. Additionally, it enables the developer to
easily describe properties of generic (polymorphic) functions. We present an
algorithm for deriving new examples from existing ones, which improves the
usefulness of example sets for fault localization and repair.
In our experience, the combination of formal specification and symbolic ex-
amples gives the user significant flexibility when specifying functions, and
increases success rates when discovering and repairing program faults.

– Integration into a deductive synthesis and verification framework.
Our repair system is part of a deductive verification system, so it can auto-
matically produce new inputs from specification, prove correctness of code
for all inputs ranging over an unbounded domain, and synthesize program
fragments using deductive synthesis rules that include common recursion
schemas.

The repair approach offers significant improvements compared with synthesis
from scratch. Synthesis alone scales poorly when the expression to synthesize is
large. Fault localization focuses synthesis on the smaller, invalid portions of the
program and thus results in big performance gains. The source code of our tool
and additional details are available from http://leon.epfl.ch as well as
http://lara.epfl.ch/w/leon-repair.

http://leon.epfl.ch
http://lara.epfl.ch/w/leon-repair

Deductive Program Repair 3

abstract class Expr
case class Plus(lhs: Expr, rhs: Expr)
extends Expr

... // 9 more subclasses

abstract class SExpr
case class SPlus(lhs: SExpr,
rhs: SExpr) extends SExpr

... // 5 more subclasses

abstract class Type
case object IntType extends Type
case object BoolType extends Type

def typeOf(e: Expr): Option[Type] =
...

def semI(t: Expr): Int = {
require(typeOf(t)==Some(IntType))
...
}
def semB(t : Expr) : Boolean = {
require(typeOf(t)==Some(BoolType))
...
}
def simSem(e : SExpr) : Int = ...

def desugar(e: Expr) : SExpr = {
e match {
case Plus (lhs, rhs) ⇒
SPlus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
SPlus(desugar(lhs), Neg(desugar(rhs)))

case And(lhs, rhs) ⇒
SIte(desugar(lhs), desugar(rhs), SLiteral(0))

case Or(lhs, rhs) ⇒
SIte(desugar(lhs), SLiteral(1), desugar(rhs))

case Not(e) ⇒
SIte(desugar(e), SLiteral(0), SLiteral(1))

case Ite(cond, thn, els) ⇒
SIte(desugar(cond), desugar(els), desugar(thn))

case IntLiteral(v) ⇒
SLiteral(v)

case BoolLiteral(b) ⇒
SLiteral(if (b) 1 else 0)}

...
} ensuring { res ⇒ typeOf(e) match {
case Some(IntType) ⇒
simSem(res) == semI(e)

case Some(BoolType) ⇒
simSem(res) == if (semB(e)) 1 else 0

case None() ⇒ true }
}

Fig. 1. The syntax tree translation in function desugar has a strong ensuring clause,
requiring semantic equivalence of transformed and the original tree, as defined by
several recursive evaluation functions. desugar contains an error. Our system finds it,
repairs the function, and proves the resulting program correct.

Example. Consider the following functionality inspired by a part of a compiler.
We wish to transform (desugar) an abstract syntax-tree of a typed expression
language into a simpler untyped language, simplifying some of the constructs
and changing the representation of some of the types, while preserving the se-
mantics of the transformed expression. In Figure 1, the original syntax trees are
represented by the class Expr and its subclasses, whereas the resulting untyped
language trees are given by SExpr. A syntax tree of Expr either evaluates to an
integer, to a boolean, or to no value if it is not well typed. We capture this
by defining a type-checking function typeOf, along with two separate semantic
functions, semI and semB. SExpr, on the other hand, always evaluates to an inte-
ger, as defined by the simSem function. For brevity, most subclass definitions are
omitted.

The desugar function translates a syntax tree of Expr into one of SExpr. We
expect the function to ensure that the transformation preserves the semantics
of the tree: originally integer-valued trees evaluate to the same value, boolean-
valued trees now evaluate to 0 and 1, representing false and true, respectively,

4 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

and mistyped trees are left unconstrained. This is expressed in the postcondition
of desugar.

The implementation in Figure 1 contains a bug: the thn and els branches of
the Ite case have been accidentally switched. Using tests automatically generated
using generic enumeration of small values, as well as from a verification attempt
of desugar, our tool is able to find a coarse-grained location of the bug, as the
body of the relevant case of the match statement. During repair, one of the
rules performs a semantic exploration of expressions similar to the invalid one.
It discovers that using the expression SIte(desugar(cond), desugar(thn), desugar(els))

instead of the invalid one makes the discovered tests pass. The system can then
formally verify that the repaired program meets the specification for all inputs. If
we try to introduce similar bugs in the correct desugar function, or to replace the
entire body of a case with a dummy value, the system successfully recovers the
intended case of the transformation. In some cases our system can repair multiple
simultaneous errors; the mechanism behind that is explained in Section 2.2. Note
that the developer communicates with our system only by writing code and
specifications, both of which are functions in an existing functional programming
language. This illustrates the potential of repair as a scalable and developer-
friendly deployment of synthesis in software development.

2 Deductive Guided Repair

We next describe our deductive repair framework. The framework currently
works under several assumptions, which we consider reasonable given the state
of the art in repair of infinite-state programs. We consider the specifications of
functions as correct; the code is assumed wrong if it cannot be proven correct
with respect to this specification for all of the infinitely many inputs. If the
specification includes input-output tests, it follows that the repaired function
must have the same behavior on these tests. We do not guarantee that the out-
put of the function is the same as the original one on tests not covered by the
specification, though the repair algorithm tends to preserve some of the existing
behaviors due to the local nature of repair. It is the responsibility of the devel-
oper to sufficiently specify the function being repaired. Although under-specified
benchmarks may produce unexpected expressions as repair solutions, we found
that even partial specifications often yield the desired repairs. A particularly ef-
fective specification style in our experience is to give a partial specification that
depends on all components of the structure (for example, describes property of
the set of stored elements), and then additionally provide a finite number of
symbolic input-output tests. We assume that only one function of the program
is invalid; the implementation of all other functions is considered valid as far as
the repair of interest is concerned. Finally, we assume that all functions of the
program, even the invalid one, terminate.

Stages of the Repair Algorithm. The function being repaired passes through
the following stages, which we describe in the rest of the paper:

Deductive Program Repair 5

– Test generation and verification. We combine enumeration- and SMT-
based techniques to either verify the validity of the function, or, if it is not
valid, discover counterexamples (examples of misbehaviors).

– Fault localization. Our localization algorithm then selects the smallest
expression executed in all failing tests, modulo recursion.

– Synthesis of similar expressions. This erroneous expression is replaced
by a “program hole”. The now-incomplete function is sent to synthesis, with
the previous expression used as a synthesis hint. (Neither the notion of holes
nor the notion of synthesis hints has been introduced in prior work on de-
ductive synthesis [13].)

– Verification of the solution. Lastly, the system attempts to prove the
validity of the discovered solution. Our results in Section 5, Figure 4 indicate
in which cases the synthesized function passed the verification.

Repair Framework. Our starting point is the deductive synthesis framework
first introduced in [13]. We show how this framework can be applied to program
repair by introducing dedicated rules, as well as special predicates. We reuse the
notation for synthesis tasks Jā 〈Π � φ〉 x̄K: ā denotes the set of input variables,
x̄ denotes the set of output variables, φ is the synthesis predicate, and Π is the
path condition to the synthesis problem. The framework relies on deduction rules
that take such an input synthesis problem and either (1) solve it immediately by
returning the tuple 〈P | T 〉 where P corresponds to the precondition under which
the term T is a solution, or (2) decompose it into sub-problems, and define a way
to compute the overall solution from sub-solutions. We illustrate these rules as
well as their notation with a rule for splitting a problem containing a top-level
or:

Jā 〈Π � φ1〉 x̄K ` 〈P1 | T1〉 Jā 〈Π � φ2〉 x̄K ` 〈P2 | T2〉
Jā 〈Π � φ1 ∨ φ2〉 x̄K ` 〈P1 ∨ P2 | if(P1) {T1} else {T2}〉

This rule should be interpreted as follows: from an input synthesis problem
Jā 〈Π � φ1 ∨ φ2〉 x̄K, the rule decomposes it in two subproblems: Jā 〈Π � φ1〉 x̄K
and Jā 〈Π � φ2〉 x̄K. Given corresponding solutions 〈P1 | T1〉 and 〈P2 | T2〉, the
rule solves the input problem with 〈P1 ∨ P2 | if(P1) {T1} else {T2}〉.

To track the original (incorrect) implementation along instantiations of our
deductive synthesis rules, we introduce a guiding predicate into the path con-
dition of the synthesis problem. We refer to this guiding predicate as �[expr],
where expr represents the original expression. This predicate does not have any
logical meaning in the path-condition (it is equivalent to true), but it provides
syntactic information that can be used by repair-dedicated rules. These rules are
covered in detail in Sections 2.1, 2.2 and 3.

2.1 Fault Localization

A contribution of our system is the ability to focus the repair problem to a small
sub-part of the function’s body that is responsible for its erroneous behavior. The
underlying hypothesis is that most of the original implementation is correct. This

6 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

technique allows us to reuse as much of the original implementation as possible
and minimizes the size of the expression given to subsequent more expensive
techniques. Focusing also has the profitable side-effect of making repair more
predictable, even in the presence of weak specifications: repaired implementation
tends to produce programs that preserve some of the existing branches, and thus
have the same behavior on the executions that use only these preserved branches.
We rely on the list of examples that fail the function specification to lead us to
the source of the problem: if all failing examples only use one branch of some
branching expression in the program, then we assume that the error is contained
in that branch. We define F as the set of all inputs of collected failing tests (see
Section 4). We describe focusing using the following rules.
If-Focus. Given the input problem Jā 〈�[if(c) {t} else {e}] � φ〉 x̄K we first check
if there is an alternative condition expression such that all failing tests succeed:

If-Focus-Condition:
∃C.∀ī ∈ F . φ[x̄ 7→ if(C(ā)) {t} else {e}, ā 7→ ī]

Jā 〈�[c] ∧Π � φ[x̄ 7→ if(x′) {t} else {e}]〉 x′K ` 〈P | T 〉
Jā 〈�[if(c) {t} else {e}] ∧Π � φ〉 x̄K ` 〈P | if(T) {t} else {e}〉

Instead of solving this higher-order hypothesis, we execute the function and non-
deterministically consider both branches of the if (and do so within recursive
invocations as well). If a valid execution exists for each failing test, the formula
is considered satisfiable enabling us to focus on the condition. Otherwise, we
check whether c evaluates to either true or false for all failing inputs, allowing us
to focus on the corresponding branch:

If-Focus-Then:
Jā 〈�[t] ∧ c ∧Π � φ〉 x̄K ` 〈P | T 〉 ∀ī ∈ F .c[ā 7→ ī]

Jā 〈�[if(c) {t} else {e}] ∧Π � φ〉 x̄K ` 〈P | if(c) {T} else {e}〉

If-Focus-Else:
Jā 〈�[e] ∧ ¬c ∧Π � φ〉 x̄K ` 〈P | T 〉 ∀ī ∈ F .¬c[ā 7→ ī]

Jā 〈�[if(c) {t} else {e}] ∧Π � φ〉 x̄K ` 〈P | if(c) {t} else {T}〉

We use analogous rules to repair match expressions, which are ubiquitous in our
programs. Here, if all failing tests lead to one particular branch of the match, we
focus on that particular branch.

The above rules use tests to locally approximate the validity of branches.
They are sound only if F is sufficiently large. Our system therefore performs an
end-to-end verification for the complete solution, ensuring the overall soundness.

2.2 Guided Decompositions

In case focusing rules fail to identify a single branch of an if- or match-expression
as responsible, we might still benefit from reusing most of the expression. In the
case of if, reuse is limited to the if-condition, but for a match-expression, this
may extend to multiple valid cases. To this end, we introduce rules analogous to
focus, that do decompositions based on the guide.

Deductive Program Repair 7

If-Split:
Jā 〈�[t] ∧ c ∧Π � φ〉 x̄K ` 〈P1 | T1〉 Jā 〈�[e] ∧ ¬c ∧Π � φ〉 x̄K ` 〈P2 | T2〉
Jā 〈�[if(c) {t} else {e}] ∧Π � φ〉 x̄K ` 〈(c∧P1) ∨ (¬c∧P2) | if(c) {T1} else {T2}〉

To reuse the valid branches of an if or a match-expression on which focus
failed, we introduce a rule that solves the problem if the guiding expression
satisfies the specification.

Guided-Verify:
Π |= φ[x̄ 7→ term]

Jā 〈�[term] ∧Π � φ〉 x̄K ` 〈true | term〉

2.3 Generating Recursive Calls

Our purely functional language often requires us to synthesize recursive imple-
mentations. Consequently, the synthesizer must be able to generate calls to the
function currently getting synthesized. However, we must take special care to
avoid introducing calls resulting in a non-terminating implementation. (Such an
erroneous implementation would be conceived as valid if it trivially satisfies the
specification due to inductive hypothesis over a non-well-founded relation.)

Our technique consists of recording the arguments a at the entry point of the
function, f, and keeping track of these arguments through the decompositions.
We represent this information with a syntactic predicate ⇓ [f(a)], similar to the
guiding predicate from the previous sections. We then heuristically assume that
reducing the arguments a will not introduce non-terminating calls.

We illustrate this mechanism by considering the desugar function shown in
Figure 1. We start by injecting the entry call information as

Je 〈⇓[desugar(e)] ∧ ...� φ〉 xK

This synthesis problem will then be decomposed by the various deduction
rules available in the framework. An interesting case to consider is a decomposi-
tion by pattern-matching on e which specializes the problem to known variants
of Expr. The specialized problem for the Plus variant will look as follows:

Je1 , e2 〈⇓[desugar(Plus(e1, e2))] ∧ ...� φ〉 xK

As a result, we assume that the calls desugar(e1) and desugar(e2) are likely to
terminate, so they are considered as candidate expressions when symbolically
exploring terms, as explained in Section 3.

This relatively simple technique allows us to introduce recursive calls while
filtering trivially non-terminating calls. In the case where it still introduces infi-
nite recursion, we can discard the solution using a more expensive termination
checker, though we found that this is seldom needed in practice.

8 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

2.4 Synthesis within Repair

The repair-specific rules described earlier aim at solving repair problems accord-
ing to the error model. Thanks to integration into the Leon synthesis framework,
general synthesis rules also apply, which enables the repair of more intricate er-
rors. This achieves an appealing combination between fast repairs for predictable
errors and expressive, albeit slower, repairs for more complicated errors.

3 Counterexample-Guided Similar-Term Exploration

After following the overall structure of the original problem, it is often the case
that the remaining erroneous branches can be fixed by applying small changes
to their implementations. For instance, an expression calling a function might
be wrong only in one of its arguments or have two of its arguments swapped.
We exploit this assumption by considering different variations to the original
expression. Due to the lack of a large code base in pure Scala subset that Leon
handles, we cannot use statistically informed techniques such as [9], so we define
an error model following our intuition and experience from previous work.

We use the notation G(expr) to denote the space of variations of expr and
define it in the form of a grammar as

G(expr) ::= Gswap(expr) | Garg(expr) | G∗2(expr)

with the following forms of variations.
Swapping arguments. We consider here all the variants of swapping two argu-
ments that are compatible type-wise. For instance, for an operation with three
operands of the same type:

Gswap(op(a,b,c)) ::= op(b,a,c) | op(a,c,b) | op(c,b,a)

Generalizing one argument. This variation corresponds to making a mistake
in only one argument of the operation we generalize:

Garg(op(a,b,c)) ::= op(G(a),b,c) | op(a,G(b),c) | op(a,b,G(c))

Bounded arbitrary expression. We consider a grammar of interesting ex-
pressions of the given type and of limited depth. This grammar considers all
operations in scope as well as all input variables. It also considers safe recur-
sive calls discovered in Section 2.3. Finally, it includes the guiding expression
as a terminal, which corresponds to possibly wrapping the source expression in
an operation. For example, given a predicate ⇓ [listSum(Cons(h,t))] and a mod
function Int× Int→ Int in scope, an integer operation op(a,b,c) is generalized as:

G∗2(op(a,b,c)) ::= GInt2 | GInt1 | GInt0

GInt2 ::= GInt1 +GInt1

| GInt1 −GInt1

| mod(GInt1, GInt1)
| listSum(t)

GInt1 ::= GInt0 +GInt0

| GInt0 −GInt0

| mod(GInt0, GInt0)
| listSum(t)

GInt0 ::= 0 | 1 | h | op(a,b,c)

Deductive Program Repair 9

Our grammars cover a range of variations corresponding to common errors.
During synthesis, the system generates a specific grammar for each invocation
of this repair rule, and explores symbolically the space of all expressions in the
grammar. We rely on a CEGIS-loop bootstrapped with our test inputs to explore
these expressions. This can be abstractly represented by the following rule:

CEGIS-Gen:
∃T ∈ L(G(term)) ∀ā.Π =⇒ φ[x̄ 7→ T]

Jā 〈�[term] ∧Π � φ〉 x̄K ` 〈true | T〉

Even though this rule is inherently incomplete, it is able to fix common
errors efficiently. Our deductive approach allows us to introduce such tailored
rules without loss of generality: errors that go beyond this model may be repaired
using more general, albeit slower synthesis rules.

Precise handling of recursive calls in CEGIS. Our system uses a symbolic
approach to avoid enumerating expressions explicitly [13]. When considering
recursive calls among possible expressions within CEGIS, the interpretation of
such calls needs to refer back to this same expression. Our previous approach [13]
treats recursive invocations of the function under synthesis as satisfying only
the postcondition, leading to spurious counter-examples. Our new solution first
constructs a parametrized program explicitly representing the search space: given
a grammar G at a certain unfolding level, we construct a function cTree(ā, B) in
which we describe non-terminals as values with each production guarded by a
distinct entry of the B array, as in the following repair a case of the size function.

def cTree[T](h: T, t: List[T],
B: Array[Boolean]) = {

val c1 = if (B(0)) 0
else if (B(1)) 1
else if (B(2)) size(t, B)
else

val c2 = if (B(3)) 0
else if (B(4)) 1
else if (B(5)) size(t, B)
else

val c3 = if (B(6)) c1 + c2
else if (B(7)) c1 − c2
else

c3 }

def size[T](l: List[T],
B: Array[Boolean]): Int = {

l match {
case Cons(h, t) ⇒ cTree(h, t, B)
case Nil() ⇒ 0
}
}

def nonEmpty(l: List[T],
B: Array[Boolean]) = {

size(l, B) > 0
}

In this new program, the function under repair is defined using the partial solu-
tion corresponding to the current deduction tree, in which we call cTree at the
point of the CEGIS invocation. Other unsolved branches of the deduction tree
become synthesis holes. We augment transitive callers with this additional B

argument, passing it accordingly. This ensures that a specific valuation of B cor-
responds exactly to a program where the point of CEGIS invocation is replaced
by the corresponding expression. We rely on tests collected in Section 4 to test
individual valuations of B, removing failing expression from the search space. Fi-

10 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

nally, we perform CEGIS using symbolic term exploration with the SMT solver
to find candidate expressions [13].

4 Generating and Using Tests for Repair

Tests play an essential role in our framework, allowing us to gather information
about the valid and invalid parts of the function. In this section we elaborate
on how we select, generate, and filter examples of inputs and possibly outputs.
Several components of our system then make use of these examples. We dis-
tinguish two kinds of tests: input tests and input-output tests. Namely, input
tests provide valid inputs for the function according to its precondition, while
input-output tests also specify the exact output corresponding to each input.
Extraction and Generation of Tests. Our system relies on three main sources
for tests that are used to make the repair process more efficient.

1) User-provided symbolic input-output tests. It is often interesting for the
user to specify how a function behaves by listing a few examples providing inputs
and corresponding outputs. However, having to provide full inputs and outputs
can be tedious and impractical. To make specifying families of tests convenient,
we define a passes construct to express input-output examples, relying on pat-
tern matching in our language to symbolically describe sets of inputs and their
corresponding outputs. This gives us an expressive way of specifying classes of
input-output examples. Not only may the pattern match more than one input,
but the corresponding outputs are given by an expression which may depend
on the pattern’s variables. Wildcard patterns are particularly useful when the
function does not depend on all aspects of its inputs. For instance, a function
computing the size of a generic list does not inspect the values of individual list
elements. Similarly, the sum of a list of integers could be specified concisely for
all lists of sizes up to 2. Both examples are illustrated by Figure 2.

def size[T](list: List[T]): Int = {
list match {
case Nil() ⇒ 0
case Cons(h, t) ⇒ 1 + size(t)
}
} ensuring { res ⇒
(res ≥ 0) &&
(list, res) passes {
case Cons(, Cons(, Nil())) ⇒ 2
case Cons(, Nil()) ⇒ 1
case Nil() ⇒ 0 } }

def sum(list: List[Int]): Int = {
list match {
case Nil() ⇒ 0
case Cons(h, t) ⇒ h + sum(t)
}
} ensuring { res ⇒
(list, res) passes {
case Cons(a, Cons(b, Nil())) ⇒ a + b
case Cons(a, Nil()) ⇒ a
case Nil() ⇒ 0 } }

Fig. 2. Partial specifications using the passes construct, allowing to match more than
one inputs and providing the expected output as an expression.

Having partially symbolic input-output examples strikes a good balance between
literal examples and full-functional specifications. From the symbolic tests, we
generate concrete input-output examples by instantiating each pattern several

Deductive Program Repair 11

times using enumeration techniques, and executing the output expression to
yield an output value. For instance, from case Cons(a, Cons(b, Nil())) ⇒ a + b
we will generate the following tests resulting from replacing a, b with all com-
binations of values from a finite set, including, for example, test with input
Cons(1, Cons(2, Nil())) and output 3. We generate up to 5 distinct tests per pat-
tern, when possible. These symbolic specifications are the only forms of tests
provided by the developer; any other tests that our system uses are derived
automatically.

2) Generated Input Tests. We rely on the same enumeration technique to
generate inputs satisfying the precondition of the function. Using a generate and
test approach, we gather up to 400 valid input tests in the first 1000 enumerated.

3) Solver-generated Tests. Lastly, we rely on the underlying solvers for recur-
sive functions of Leon [25] to generate counter-examples. Given that the func-
tion is invalid and that it terminates, the solver (which is complete for counter-
examples) is guaranteed to eventually provide us with at least one failing test.
Classifying and Minimizing Traces. We partition the set of collected tests
into passing and failing sets. A test is considered as failing if it violates a pre-
condition, a postcondition, or emits one of various other kinds of runtime errors
when the function to repair is executed on it. In the presence of recursive func-
tions, a given test may fail within one of its recursive invocations. It is interesting
in such scenarios to consider the arguments of this specific sub-invocation: they
are typically smaller than the original and are better representatives of the fail-
ure. To clarify this, consider the example in Figure 3 (based on the program in
Figure 1):

def desugar(e : Expr) : SExpr = e match { ...
case And(lhs, rhs) ⇒ // correct
SIte(desugar(lhs), desugar(rhs), SLiteral(0))

case Ite(cond, thn, els) ⇒ // correct
SIte(desugar(cond), desugar(thn), desugar(els))

case BooleanLiteral(b) ⇒ // buggy
if (b) SLiteral(0) else SLiteral(1)

}

And(true, true)

true 0 1

Ite(true, 0, 1)

Fig. 3. Code and invocation graph for desugar. Solid borderlines stand for passing tests,
dashed ones for failing ones. Type constructors for literals have been omitted.

Assume the tests collected are And(BooleanLiteral(true), BooleanLiteral(true)),
Ite(BooleanLiteral(true), IntLiteral(0), IntLiteral(1)) and BooleanLiteral(true). When ex-
ecuted with these tests, the function produces the graph of eval invocations shown
on the right of Figure 3. A trivial classification tactic would label all three tests
as faulty, even though it is obvious that all errors can be explained by the bug
in BooleanLiteral, due to the dependencies between tests. More generally, a failing
test should also be blamed for the failure of all other tests that invoke it transi-
tively. Our framework deploys this smarter classification. Thus, in our example,
it would only label BooleanLiteral(true) as a failing example, which would lead to
correct localization of the problem on the faulty branch. Note that this process

12 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

will discover new failing tests not present in the original test set, if they occur
as recursive sub-invocations.

Our experience with incorporating tests into the Leon system indicate that
they are proving time and again to be extremely important for the tool’s effi-
ciency, even though our system is in its spirit based on verification as opposed
to testing alone. In addition to allowing us to detect errors sooner and filter out
wrong synthesis candidates, tests also allow us to quickly find the approximate
error location.

5 Evaluation

We evaluate our implementation on a set of benchmarks in which we manu-
ally injected errors (Figure 4). The programs mainly focus on data structure
implementations and syntax tree operations. Each benchmark is comprised of
algebraic data-type definitions and recursive functions that manipulate them,
specified using strong yet still partial preconditions and postconditions. We man-
ually introduced errors of different types in each copy of the benchmarks. We ran
our tool unassisted until completion to obtain a repair, providing it only with
the name of the file and the name of the function to repair (typically the choice
of the function could also have been localized automatically by running the ver-
ification on the entire file). The experiments were run on an Intel(R) Core(TM)
i7-2600K CPU @ 3.40GHz with 16GB RAM, with 2GB given to the Java Virtual
Machine. While the deductive reasoning supports parallelism in principle, our
implementation is currently single-threaded.

For each benchmark of Figure 4 we provide: (1) the name of the bench-
mark and the broken operation; (2) a short classification of the kind of error
introduced. The error kinds include: a small variation of the original program, a
completely faulty match-case, a missing match-case, a missing necessary if-split,
a missing function call, and finally, two separate variations in the same function.
We describe the relevant sizes (counted in abstract syntax tree nodes) of: (3)
the overall benchmark, (4) the erroneous function, (5) the localized error, and
(6) the repaired expression. The full size of the program is relevant because our
repair algorithm may introduce calls to any function defined in the benchmark,
and also because the verification of a function depends on other functions in
the file (recall Figure 1). We also include the time, in seconds, our tool took to:
(7) collect and classify tests and (8) repair the broken expression. Finally, we
report (9) if the system could formally (and automatically) prove the validity of
the repaired implementation. Our examples are challenging to verify, let alone
repair. They contain both functional and test-based specifications to capture
the intended behavior. Many rely on unfolding procedure of [24, 25] to handle
contracts that contain other auxiliary recursive functions. The fast exponentia-
tion algorithm of Numerical.power relies on non-linear reasoning of the Z3 SMT
solver [4].

An immediate observation is that fault localization is often able to focus the
repair to a small subset of the body. Combined with the symbolic term explo-

Deductive Program Repair 13

Operation Error Size Time (sec) Proof
Prg Fun Err Fix Test Repair Success

Compiler.desugar1 full case 1335 81 3 5 1.2 2.2 3

Compiler.desugar2 full case 1330 79 2 8 1.0 10.2 3

Compiler.desugar3 variation 1324 83 7 7 0.9 1.6 3

Compiler.desugar4 variation 1324 83 7 7 1.4 1.7 3

Compiler.desugar5 2 variations 1458 83 83 83 1.4 14.0 3

Compiler.simplify1 variation 1458 30 4 4 0.8 1.7 3

Compiler.simplify2 variation 1464 30 2 2 0.8 1.7 3

Heap.merge1 if cond 1084 36 3 3 1.9 3.0 3

Heap.merge2 variation 1084 36 1 1 1.1 1.4 3

Heap.merge3 if cond 1084 36 3 3 1.9 3.1 3

Heap.merge4 variation 1084 36 6 6 1.2 2.4 3

Heap.merge5 if cond 1086 38 5 7 1.2 3.0 3

Heap.merge6 2 variations 1084 36 36 36 1.5 12.7
Heap.insert variation 1086 8 8 6 5.2 1.4 3

Heap.makeNode variation 1086 16 7 5 2.2 1.3 3

List.pad variation 1157 34 8 6 1.0 1.4 3

List.++ variation 1153 9 3 5 2.5 1.1 3

List.:+ full case 1161 11 1 3 1.8 1.2 3

List.replace full case 1172 14 3 13 1.8 11.2 3

List.count variation 1185 16 3 5 0.9 1.5 3

List.find1 variation 1175 21 2 4 3.0 3.8
List.find2 variation 1177 23 4 6 3.0 3.7
List.find3 if cond 1178 24 18 17 4.8 5.9
List.size variation 1157 10 4 4 1.7 1.2 3

List.sum variation 1175 10 4 4 1.3 1.2 3

List.delete missing call 1162 16 1 3 1.5 1.1 3

List.drop 2 variations 1166 21 21 27 1.5 16.6 3

PropLogic.nnf1 missing call 915 51 1 3 0.7 1.3 3

PropLogic.nnf2 missing case 911 47 1 13 0.9 3.4 3

PropLogic.nnf3 variation 916 51 2 4 0.9 1.2 3

PropLogic.nnf4 variation 920 52 5 5 0.8 1.3 3

PropLogic.nnf5 full case 916 48 1 5 0.9 1.7 3

Numerical.power variation 133 23 5 7 0.3 1.2 3

Numerical.moddiv variation 186 30 3 3 0.3 1.1 3

MergeSort.split full case 221 28 3 7 2.0 3.3 3

MergeSort.merge1 variation 951 32 5 5 1.7 1.3 3

MergeSort.merge2 variation 951 32 3 3 1.8 1.9 3

MergeSort.merge3 variation 949 30 3 5 1.5 1.5 3

MergeSort.merge4 2 variations 951 32 32 32 1.8 21.1

Fig. 4. Automatically repaired functions using our system. We provide for each op-
eration: a small description of the kind of error introduced, the overall program
size, the size of the invalid function, the size of the erroneous expression we locate
and the size of the repaired version. We then provide the times our tool took to:
gather and classify tests, and repair the erroneous expression. Finally, we mention
if the resulting expression verifies. The source of all benchmarks can be found on
http://lara.epfl.ch/w/leon-repair (see also http://leon.epfl.ch)

http://lara.epfl.ch/w/leon-repair
http://leon.epfl.ch

14 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

ration, this translates to a fast repair if the error fell within the error model.
Among the hardest benchmarks are the ones labeled as having “2 variations”.
For example, Compiler.desugar5 is similar to one in Figure 1 but contains two
errors. In those cases, localization returns the entire match as the invalid expres-
sion. Our guided repair uses the existing match as the guide and successfully
resynthesizes code that repairs both erroneous branches. Another challenging
example is Heap.merge3, for which the more elaborate If-Focus-Condition rule of
Section 2.1 kicks in to resynthesize the condition of the if expression.

The repairs listed in evaluation are not only valid according to their specifi-
cation, but were also manually validated by us to match the intended behavior.
A failing proof thus does not indicate a wrong repair, but rather that our sys-
tem was not able to automatically derive a proof of its correctness, often due to
insufficient inductive invariants. We identify three scenarios under which repair
itself may not succeed: if the assumptions mentioned in Section 2 are violated,
when the necessary repair is either too big or outside of the scope of general
synthesis, or if test collection does not yield sufficiently many interesting failing
tests to locate the error.

6 Further Related Work

Much of the prior work focused on imperative programming, without native
support for algebraic data types, making it typically infeasible to even automat-
ically verify data structure properties of the kind that our benchmarks contain.
Syntax-guided synthesis format [1, 2] does not support algebraic data types, or
specific notion of repair (it could be used to specify some of the sub-problems
that our system generates, such those of Section 3).

GenProg [7] and SemFix [17] accept as input a C program along with user-
provided sets of passing and failing test cases, but no formal specification. Our
technique for fault localization is not applicable to a sequential program with
side-effects, and these tools employ statistical fault localization techniques, based
on program executions. GenProg applies no code synthesis, but tries to repair
the program by iteratively deleting, swapping, or duplicating program state-
ments, according to a genetic algorithm. SemFix, on the other hand, uses syn-
thesis, but does not take into account the faulty expression while synthesizing.
AutoFix-E/E2 [18] operates on Eiffel programs equipped with formal contracts.
Formal contracts are used to automatically generate a set of passing and failing
test cases, but not to verify candidate solutions. AutoFix-E uses an elaborate
mechanism for fault localization, which combines syntactic, control flow and sta-
tistical dynamic analysis. It follows a synthesis approach with repair schemas,
which reuse the faulty statement (e.g. as a branch of a conditional). Samanta
et al. [20] propose abstracting a C program with a boolean constraint, repairing
this constraint so that all assertions in the program are satisfied by repeatedly
applying to it update schemas according to a cost model, then concretize the
boolean constraint back to a repaired C program. Their approach needs devel-
oper intervention to define the cost model for each program, as well as at the

Deductive Program Repair 15

concretization step. Logozzo et al. [16] present a repair suggestion framework
based on static analysis provided by the CodeContracts static checker [5]; the
properties checked are typically simpler than those in our case. In [6], Gopinath
et al. repair data structure operations by picking an input which exposes a sus-
picious statement, then using a SAT-solver to discover a corresponding concrete
output that satisfies the specification. This concrete output is then abstracted
to various possible expressions to yield candidate repairs, which are filtered with
bounded verification. In their approach, Chandra et al. [3] consider an expres-
sion as a candidate for repair if substituting it with some concrete value fixes a
failing test.

Repair has also been studied in the context of reactive and pushdown systems
with otherwise finite control [8, 10, 11, 19, 20, 26]. In [26], the authors generate
repairs that preserve explicitly subsets of traces of the original program, in a way
strengthening the specification automatically. We deal with the case of functions
from inputs to outputs equipped with contracts. In case of a weak contract
we provide only heuristic guarantees that the existing behaviors are preserved,
arising from the tendency of our algorithm to reuse existing parts of the program.

7 Conclusions

We have presented an approach to program repair of mutually recursive func-
tional programs, building on top of a deductive synthesis framework. The starting
point gives it the ability to verify functions, find counterexamples, and synthe-
size small fragments of code. When doing repair, it has proven fruitful to first
localize the error and then perform synthesis on a small fragment. Tests proved
very useful in performing such localization, as well as for generally speeding up
synthesis and repair. In addition to deriving tests by enumeration and verifica-
tion, we have introduced a specification construct that uses pattern matching to
describe symbolic tests, from which we efficiently derive concrete tests without
invoking full-fledged verification. In case of tests for recursive functions, we per-
form dependency analysis and introduce new ones to better localize the cause
of the error. While localization of errors within conditional control flow can be
done by analyzing test runs, the challenge remains to localize change inside large
expressions with nested function calls. We have introduced the notion of guided
synthesis that uses the previous version of the code as a guide when searching
for a small change to an existing large expression. The use of a guide is very
flexible, and also allows us to repair multiple errors in some cases.

Our experiments with benchmarks of thousands of syntax tree nodes in size,
including tree transformations and data structure operations confirm that repair
is more tractable than synthesis for functional programs. The existing (incorrect)
expression provides a hint on useful code fragments from which to build a correct
solution. Compared to unguided synthesis, the common case of repair remains
more predictable and scalable. At the same time, the developer need not learn
a notation for specifying holes or templates. We thus believe that repair is a
practical way to deploy synthesis in software development.

16 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

References

1. R. Alur, R. Bodik, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit,
P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
To Appear in Marktoberdrof NATO proceedings, 2014. http://sygus.seas.
upenn.edu/files/sygus_extended.pdf, retrieved 2015-02-06.

2. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–17. IEEE, 2013.

3. S. Chandra, E. Torlak, S. Barman, and R. Bod́ık. Angelic debugging. In R. N.
Taylor, H. C. Gall, and N. Medvidovic, editors, ICSE, pages 121–130. ACM, 2011.

4. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

5. M. Fähndrich and F. Logozzo. Static contract checking with abstract interpreta-
tion. In Formal Verification of Object-Oriented Software, pages 10–30. Springer,
2011.

6. D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program repair
using SAT. In P. A. Abdulla and K. R. M. Leino, editors, TACAS, volume 6605
of LNCS, pages 173–188. Springer, 2011.

7. C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method
for automatic software repair. TSE, 38(1):54–72, 2012.

8. A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs with an
application to C. In T. Ball and R. B. Jones, editors, CAV, volume 4144 of LNCS,
pages 358–371. Springer, 2006.

9. T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using types
and weights. In PLDI, pages 27–38, 2013.

10. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In
K. Etessami and S. K. Rajamani, editors, CAV, volume 3576 of LNCS, pages 226–
238. Springer, 2005.

11. B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing faults.
JCSS, 78(2):441–460, 2012.

12. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In M. W. Hall and D. A. Padua, editors, PLDI, pages 437–446. ACM,
2011.

13. E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo recursive func-
tions. In A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors, OOPSLA, pages
407–426. ACM, 2013.

14. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In P. Bjesse and A. Slobodová, editors, FMCAD, pages
91–100. FMCAD Inc., 2011.

15. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Functional synthesis for linear
arithmetic and sets. STTT, 15(5-6):455–474, 2013.

16. F. Logozzo and T. Ball. Modular and verified automatic program repair. In G. T.
Leavens and M. B. Dwyer, editors, OOPSLA, pages 133–146. ACM, 2012.

17. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: program
repair via semantic analysis. In D. Notkin, B. H. C. Cheng, and K. Pohl, editors,
ICSE, pages 772–781. IEEE / ACM, 2013.

18. Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. Code-based automated
program fixing. ArXiv e-prints, 2011. arXiv:1102.1059.

http://sygus.seas.upenn.edu/files/sygus_extended.pdf
http://sygus.seas.upenn.edu/files/sygus_extended.pdf

Deductive Program Repair 17

19. R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic generation of local
repairs for boolean programs. In A. Cimatti and R. B. Jones, editors, FMCAD,
pages 1–10. IEEE, 2008.

20. R. Samanta, O. Olivo, and E. A. Emerson. Cost-aware automatic program repair.
In M. Müller-Olm and H. Seidl, editors, SAS, volume 8723 of LNCS, pages 268–284.
Springer, 2014.

21. A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.
22. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-

natorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.
23. S. Srivastava, S. Gulwani, and J. S. Foster. Template-based program verification

and program synthesis. STTT, 15(5-6):497–518, 2013.
24. P. Suter. Programming with Specifications. PhD thesis, EPFL, December 2012.
25. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.

In SAS, pages 298–315, 2011.
26. C. von Essen and B. Jobstmann. Program repair without regret. In CAV, pages

896–911, 2013.
27. A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.

TSE, 28(2):183–200, 2002.

	Deductive Program Repair

