38,902 research outputs found

    The slow-flow method of identification in nonlinear structural dynamics

    Full text link
    The Hilbert-Huang transform (HHT) has been shown to be effective for characterizing a wide range of nonstationary signals in terms of elemental components through what has been called the empirical mode decomposition. The HHT has been utilized extensively despite the absence of a serious analytical foundation, as it provides a concise basis for the analysis of strongly nonlinear systems. In this paper, we attempt to provide the missing link, showing the relationship between the EMD and the slow-flow equations of the system. The slow-flow model is established by performing a partition between slow and fast dynamics using the complexification-averaging technique, and a dynamical system described by slowly-varying amplitudes and phases is obtained. These variables can also be extracted directly from the experimental measurements using the Hilbert transform coupled with the EMD. The comparison between the experimental and analytical results forms the basis of a nonlinear system identification method, termed the slow-flowmodel identification method, which is demonstrated using numerical examples

    Comment of Global dynamics of biological systems

    Full text link
    In a recent study, (Grigorov, 2006) analyzed temporal gene expression profiles (Arbeitman et al., 2002) generated in a Drosophila experiment using SSA in conjunction with Monte-Carlo SSA. The author (Grigorov, 2006) makes three important claims in his article, namely: Claim1: A new method based on the theory of nonlinear time series analysis is used to capture the global dynamics of the fruit-fly cycle temporal gene expression profiles. Claim 2: Flattening of a significant part of the eigen-spectrum confirms the hypothesis about an underly-ing high-dimensional chaotic generating process. Claim 3: Monte-Carlo SSA can be used to establish whether a given time series is distinguishable from any well-defined process including deterministic chaos. In this report we present fundamental concerns with respect to the above claims (Grigorov, 2006) in a systematic manner with simple examples. The discussion provided especially discourages the choice of SSA for inferring nonlinear dynamical structure form time series obtained in any biological paradigm.Comment: 6 pages, 2 figure

    Inference of stochastic nonlinear oscillators with applications to physiological problems

    Full text link
    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.Comment: 11 pages, 10 figures, 2 tables Fluctuations and Noise 2004, SPIE Conference, 25-28 May 2004 Gran Hotel Costa Meloneras Maspalomas, Gran Canaria, Spai

    Nonlinear model order reduction via Dynamic Mode Decomposition

    Get PDF
    We propose a new technique for obtaining reduced order models for nonlinear dynamical systems. Specifically, we advocate the use of the recently developed Dynamic Mode Decomposition (DMD), an equation-free method, to approximate the nonlinear term. DMD is a spatio-temporal matrix decomposition of a data matrix that correlates spatial features while simultaneously associating the activity with periodic temporal behavior. With this decomposition, one can obtain a fully reduced dimensional surrogate model and avoid the evaluation of the nonlinear term in the online stage. This allows for an impressive speed up of the computational cost, and, at the same time, accurate approximations of the problem. We present a suite of numerical tests to illustrate our approach and to show the effectiveness of the method in comparison to existing approaches
    corecore