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NONLINEAR MODEL ORDER REDUCTION VIA
DYNAMIC MODE DECOMPOSITION∗
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Abstract. We propose a new technique for obtaining reduced order models for nonlinear
dynamical systems. Specifically, we advocate the use of the recently developed dynamic mode
decomposition (DMD), an equation-free method, to approximate the nonlinear term. DMD is a
spatio-temporal matrix decomposition of a data matrix that correlates spatial features while simul-
taneously associating the activity with periodic temporal behavior. With this decomposition, one
can obtain a fully reduced dimensional surrogate model and avoid the evaluation of the nonlinear
term in the online stage. This allows for a reduction in the computational cost and, at the same
time, accurate approximations of the problem. We present a suite of numerical tests to illustrate our
approach and to show the effectiveness of the method in comparison to existing approaches.
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1. Introduction. Reduced order models (ROMs) are of growing importance in
scientific computing as they provide a principled approach to approximating high-
dimensional PDEs with low-dimensional models. Indeed, the dimensionality reduc-
tion provided by ROMs help to reduce the computational complexity and time needed
to solve large-scale engineering systems [31, 4], enabling simulation-based scientific
studies not possible even a decade ago. One of the primary challenges in produc-
ing the low-rank dynamical system is efficiently projecting the nonlinearity of the
governing PDEs (inner products) [3, 9] on to the proper orthogonal decomposition
(POD) [21, 13, 37] basis. This fact was recognized early on in the ROM community,
and methods such as gappy POD [11, 38, 39] were proposed to more efficiently enable
the task. More recently, the empirical interpolation method (EIM) [3] and the sim-
plified discrete empirical interpolation method (DEIM) [9] for POD [21, 13, 37] have
provided a computationally efficient method for discretely (sparsely) sampling and
evaluating the nonlinearity. These broadly used and highly successful methods ensure
that the computational complexity of ROMs scale favorably with the rank of the ap-
proximation, even for complex nonlinearities. Recently, DEIM has been investigated
also in [29, 30]. As an alternative to the EIM/DEIM architecture, we propose using
the recently developed dynamic mode decomposition (DMD) for producing low-rank
approximations of the PDE nonlinearities. DMD provides a decomposition of data
into spatio-temporal modes that correlates the data across spatial features (like POD)
but also associates the correlated data to unique temporal Fourier modes, allowing for
a computationally efficient regression of the nonlinear terms to a least-square fit lin-
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ear dynamics approximation. We demonstrate that the POD-DMD method produces
a viable ROM architecture, scaling favorably in computational efficiency relative to
POD-DEIM.

The POD-Galerkin method has been widely used in the scientific computing com-
munity. The primary challenge in producing the low-rank dynamical system is effi-
ciently projecting the nonlinearity (inner products) to the POD basis, leading to
numerous innovations in the ROM community for interpolating the projection. This
ensures that the computational cost of evaluating the nonlinearity remains propor-
tional to the rank of the reduced POD basis. The DEIM approach combines projection
with interpolation by selecting interpolation indices to specify an interpolation-based
projection for a nearly optimal `2 subspace approximating the nonlinearity. The
EIM/DEIM are not the only methods developed to reduce the complexity of eval-
uating nonlinear terms; see, for instance, the missing point estimation (MPE) [2],
the best points method [27], the gappy POD technique [11, 38, 39], or the so-called
GNAT [7] method. However, they have been successful in a large number of diverse
applications and models [9]. In any case, MPE, gappy POD, and EIM/DEIM all use
a small selected set of spatial grid points to avoid evaluation of the expensive inner
products required to evaluate nonlinear terms.

An alternative to these sparse sampling techniques for evaluating the nonlinear
inner products is the DMD method. Like EIM/DEIM, it requires a singular value de-
composition (SVD) to generate the approximation. We demonstrate that the DMD
provides a highly efficient approximation for ROMs, performing a more rapid evalu-
ation of the nonlinear terms in comparison to the EIM/DEIM methods. At its core,
the DMD method can be thought of as an ideal combination of spatial dimensionality-
reduction techniques, such as POD, with Fourier transforms in time. It also allows for
further innovations that integrate the DMD with key concepts from multiresolution
analysis [18] and sparsity/compression [6], allowing one to potentially generalize the
proposed method to multiscale physics problems at greatly improved speeds. For the
sake of completeness, we also study the DMD as a data-driven method for nonlinear
dynamical systems and compare it with the proposed techniques. We refer to [5] for
a comparison between POD and DMD for the shallow water equation.

The structure of the paper is as follows. In section 2 we recall the POD method
and the DEIM applied to a general dynamical system. Section 3 explains the DMD
and compares the DMD method used as equation-free or as a Galerkin projection
method. The coupling between POD and DMD is explained in section 4. Finally,
numerical tests are presented in section 5. Throughout the paper we use the following
notation: all matrices and vectors are in bold letters. The basis functions are denoted
by the matrix Ψ with different superscripts denoting how we computed the basis, e.g.,
ΨPOD represents the basis functions from the POD method. The rank of the POD
basis functions is `, whereas the rank of the nonlinear term is k.

2. Problem formulation. In what follows, we consider a system of ordinary
differential equations:

(2.1)
{

Mẏ(t) = Ay(t) + f(t,y(t)), t ∈ (0, T ],
y(0) = y0,

where y0 ∈ Rn is a given initial data, M,A ∈ Rn×n given matrices, and f : [0, T ] ×
Rn → Rn a continuous function in both arguments and locally Lipschitz-type with
respect to the second variable. It is well known that under these assumptions there
exists a unique solution for (2.1).

This wide class of problems arises in many applications, especially from the nu-
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merical approximation of partial differential equations. In such cases, the dimension
of the problem n is the number of spatial grid points used from discretization and it
can be very large. The solution of system (2.1) may be very expensive and therefore it
might be useful to simplify the complexity of the problem by means of reduced order
modeling techniques.

2.1. The POD method and reduced order modeling. One popular method
for reducing the complexity of the system is the so-called POD. The idea is detailed
here for completeness. We build a grid in time 0 := t1 < t2 < · · · < tm ≤ T . Let us
assume we know the exact solution of (2.1) on the time grid points tj , j ∈ {1, . . . ,m}.
Our aim is to determine a POD basis of rank ` � n to describe the set of data
collected in time by solving the following minimization problem:

(2.2) min
ψ1,...,ψ`∈Rn

m∑
j=1

∥∥∥∥∥y(tj)−
∑̀
i=1

〈y(tj),ψi〉ψi

∥∥∥∥∥
2

such that 〈ψi,ψj〉 = δij ,

where y(tj) are the so-called snapshots, e.g., the solution of (2.1) at a given time
tj . This idea was introduced by Sirovich [35]. The associated norm is given by
‖ · ‖2 = 〈·, ·〉.

Solving (2.2) we look for an orthonormal basis {ψi}`i=1 which minimizes the
distance between the sequence y(tj) with respect to its projection onto these unknown
basis functions. The matrix Y contains the collection of snapshots y(tj) as columns.
It is useful to look for `� min{m,n} in order to reduce the dimension of the problem
considered. The solution of (2.2) is given by the SVD of the snapshots matrix Y =
ΨΣVT , where we consider the first ` columns {ψi}`i=1, of the orthogonal matrix Ψ.
We refer the interested reader to [37] for more details on the topic.

To concretely apply the POD method, the choice of the truncation parameter
` plays a crucial role. There are no a priori estimates which guarantee the ability
to build a coherent reduced model, but one can focus on heuristic considerations,
introduced by Sirovich [35], so as to have the following ratio close to one:

(2.3) E(`) =
∑`
i=1 σ

2
i∑d

i=1 σ
2
i

,

where σi are the singular values of the matrix Y and d is the rank of the snapshot
matrix Y. This indicator is motivated by the fact that the error in (2.2) is given by
the singular values we neglect:

(2.4)
m∑
j=1

∥∥∥∥∥y(tj)−
∑̀
i=1

〈y(tj),ψi〉ψi

∥∥∥∥∥
2

=
d∑

i=`+1

σ2
i .

We note that the error (2.4) is strictly related to the computation of the snapshots
and it is not related to the reduced dynamical system.

Let us assume that we have computed the POD basis functions ψj . We construct
the n × ` matrix ΨPOD whose columns are composed of the first ` POD modes. We
make the following projection of the dynamics:

(2.5) y(t) ≈ ΨPODy`(t),

where y`(t) are functions from [0, T ] to R`. We note that we are working with a
Galerkin-type projection where we consider only a few basis functions whose support is
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nonlocal, unlike finite element basis functions. The reduced solution y`(t) ∈ V ` ⊂ V ,
where V ` = span{ψ1, . . . ,ψ`}.

Inserting the projection assumption (2.5) into the full model (2.1), and making
use of the orthogonality of the POD basis functions, the reduced model takes the
following form:

(2.6)
{

M`ẏ`(t) = A`y`(t) + (ΨPOD)T f(t,ΨPODy`(t)),
y`(0) = y`0,

where (M`)ij = 〈Mψi,ψj〉, (A`)ij = 〈Aψi,ψj〉 ∈ R`×`, and y`0 = (ΨPOD)Ty0 ∈ R`.
We also note that M`,A` ∈ R`×`. The system (2.6) is achieved following a Galerkin
projection where the basis functions are computed by the POD method given by (2.2).
If the dimension of the system is ` � n, then a significant dimensionality reduction
is accomplished. We note that an error analysis, in the infinite dimensional settings,
for ‖y(t)−ΨPODy`(t)‖ can be found in [17].

2.2. Discrete empirical interpolation method. For the results in this sec-
tion we closely follow the presentation in [37]. The ROM introduced in (2.6) is a
nonlinear system where the significant challenge with the POD-Galerkin approach is
the computational complexity associated with the evaluation of the nonlinearity. To
illustrate this issue, we consider the nonlinearity in (2.6):

F(t,y`(t)) = (ΨPOD)T f(t,ΨPODy`(t)) = 〈f(t,ΨPODy`(t)),ΨPOD〉.

To compute this inner product, the variable y`(t) ∈ R` is first expanded to an
n-dimensional vector ΨPODy`(t) ∈ Rn; then the nonlinearity f(t,ΨPODy`(t)) is evalu-
ated and, at the end, we return back to the ROM. This is computationally expensive
since it implies that the evaluation of the nonlinear term requires computing the full,
high-dimensional model, and therefore the reduced model is not completely indepen-
dent of the full dimension n. In many well-known example PDEs where POD-Galerkin
is applied, this problem can be circumvented by explicitly expanding the nonlinearity
in the POD modes. For example, a two POD mode expansion of a quadratic nonlin-
earity y2 = (y`1)2ψ2

1 + 2y`1y
`
2ψ1ψ2 + (y`2)2ψ2

2. Thus the nonlinearity and two mode
expansion produce three distinct terms whose POD-Galerkin projection (inner prod-
ucts) can be computed offline. This trick is standard for the Navier–Stokes equation,
for instance, where a simple quadratic nonlinearity is present. However, for more
complex nonlinearities or sufficiently high rank truncation k, this method remains
computationally expensive.

To avoid this computationally expensive, high-dimensional, evaluation, EIM [3]
and [9] were introduced. The DEIM algorithm was built upon the mathematical
framework of EIM but specifically tailored for POD basis functions and time or param-
eter dependent PDEs. The interested reader is referred to [9] for further information.

The computation of the POD basis functions for the nonlinear part is related to
the set of the snapshots f(tj ,y(tj)), where y(tj) are already computed from (2.1). We
denote with U ∈ Rn×k the POD basis function of rank k of the nonlinear part. The
DEIM approximation of f(t,y(t)) is as follows:

fDEIM(t,yDEIM(t)) := U(STU)−1f(t,yDEIM(t)),

where S ∈ Rn×k and yDEIM(t) := STΨPODy`(t). The role of the matrix S is to select
interpolation points to evaluate the nonlinearity. The selection is made according to
an LU decomposition algorithm with pivoting [9], or following the QR decomposition
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with pivoting [10]. Furthermore, if each component of the nonlinearity is independent
from the other, then the matrix S can be moved into the nonlinearity.

Let us define ΨDEIM := U(STU)−1. We note that ΨDEIM ∈ Rn×k. Therefore the
reduced nonlinearity may be expressed as

(ΨPOD)T fDEIM(t,yDEIM(t)) = (ΨPOD)TΨDEIMf(t,yDEIM),

where we only select a small (sparse) number of rows of ΨPODy`(t) by the matrix S.
As for the computational expense, the matrices

STΨPOD ∈ Rk×`, (STU)−1 ∈ Rk×k and (ΨPOD)TΨDEIM ∈ R`×k

can all be precomputed. All the precomputed quantities are independent of the full
dimension n. Additionally, during the iteration process the nonlinearity needs only
to be evaluated at the k interpolation points since STΨPODy`(t) ∈ Rk. Typically
the dimension k is much smaller than the full dimension. This allows the ROM to be
completely independent of the full dimension as follows:

(2.7)
{

M`ẏ`(t) = A`y`(t) + (ΨPOD)TΨDEIMf(t,yDEIM(t)),
y`(0) = y0

`.

We note that the only difference with respect to (2.6) is the low-rank approximation
of the nonlinear term. The error between f(t,y(t)) and its DEIM approximation fDEIM

is given by

‖f − fDEIM‖2 ≤ c‖(I−UUT )f‖2 with c = ‖(STU)−1‖2,

where different error performance is achieved depending on the selection of the inter-
polation points in S as shown in [10].

3. Dynamic mode decomposition. DMD is an equation-free, data-driven
method capable of providing accurate assessments of the spatio-temporal coherent
structures in a given complex system, or short-time future estimates of such a system.
It traces its origins to pioneering work of Bernard Koopman in 1931 [15], whose work
was revived in a set of papers starting in 2004 [22, 23, 24]. Koopman theory is a dy-
namical systems tool that provides information about a nonlinear dynamical system
via an associated infinite-dimensional linear system. Specifically, it provides a char-
acterization that is readily interpretable in terms of standard methods of dynamical
systems. Defining it as a data-driven algorithm, the DMD architecture for modeling
complex flows was proposed in [33, 34], and it was shown quickly thereafter that the
DMD method is actually a special case of Koopman theory in [32].

Given the connection between DMD and Koopman theory [22, 23, 32], we begin
by defining the Koopman operator.

Definition 1 (Koopman operator [15]). For a dynamical system,

(3.1)
dy
dt

= N(y),

where y ∈M, an n-dimensional manifold. The Koopman operator K acts on a set of
scalar observable functions g :M→ C so that

(3.2) Kg(y) = g (N(y)) .
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This shows that the Koopman operator is a linear operator that acts on scalar
functions g. In a general setting, the Koopman operator can act on a set of observables
gj that are denoted by components of the vector g. But as already mentioned, the
DMD is a specific realization of the Koopman theory. Specifically, the observable is
the state space itself so that one considers the linear observable g(y) = y. In some
cases, a better set of observables g(y) can be found for decomposing the data and
performing a spectral analysis [24, 25, 26, 8].

When considering such a linear observable, the DMD algorithm determines the
Koopman eigenvalues and modes directly from data. Specifically, one can use the
recent formal definition of the DMD method [36].

Definition 2 (dynamic mode decomposition [36]). Suppose we have a dynam-
ical system (3.1) and two sets of data

(3.3) Y=

y(t0) y(t1) · · · y(tm−1)

 , Y′=

y(t1) y(t2) · · · y(tm)


with y(tj) an initial condition to (3.1) and y(tj+1) its corresponding output after some
prescribed evolution time τ with there being m initial conditions considered. The DMD
modes are eigenvectors of

(3.4) Ay = Y′Y†,

where † denotes the Moore–Penrose pseudoinverse.

The definition of DMD thus yields the matrix Ay, which is a finite dimensional
approximation of the Koopman operator for a linear observable.

The definition of DMD produces a regression procedure whereby the data snap-
shots in time are used to produce the best-fit linear dynamical system to the nonlinear
evolution y(t), denoted by the vector ỹ(t), for the data Y and Y′. The DMD proce-
dure thus constructs the proxy, approximate linear evolution of (3.1)

(3.5)
dỹ
dt

= Ayỹ

with ỹ(0) = ỹ0 and whose solution is

(3.6) ỹ(t) =
k∑
i=1

biψi exp(ωit) ,

where ψi and ωi are the eigenfunctions and eigenvalues of the matrix Ay.
The coefficients bi of the vector b can be determined from the initial data. For

example, at t = t0 we have y(t0) = y0 so that (3.6) gives b = Ψ†y0, where Ψ is
a matrix comprising the DMD modes ψi. The ultimate goal in the DMD algorithm
is to optimally construct the matrix Ay so that the true and approximate solutions
remain optimally close in a least-square sense, i.e., ‖y(t) − ỹ(t)‖ � 1. Of course,
the optimality of the approximation holds only over the sampling window where Ay

is constructed, but the approximate solution can be used not only to make future
state predictions but also to decompose the dynamics into various time-scales since
the ωk are prescribed. Moreover, the DMD typically makes use of low-rank structure
so that the total number of modes, k � n, allows for dimensionality reduction of the
dynamical system.
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In effect, the least-square regression of the nonlinear dynamical system to the lin-
ear system (3.5) allows us to approximate the governing equation (2.1) in the following
manner:

(3.7) Mẏ(t) = Ay(t) + f(t,y(t)) ≈ Ay(t) + Ayy(t),

where the DMD algorithm constructs the matrix Ay approximating the nonlinearity
over the snapshots collected.

In practice, the matrix Ay is, in general, highly ill-conditioned and when the state
dimension n is large, the aforementioned matrix may be even intractable to analyze
directly. Instead, DMD circumvents the eigendecomposition of Ay by considering
a rank-reduced representation in terms of a POD-projected matrix Ãy. The DMD
algorithm proceeds as follows [36]:

1. First, take the SVD of Y ∈ Cn×m:

(3.8) Y = UΣV∗,

where ∗ denotes the conjugate transpose, U ∈ Cn×k, Σ ∈ Ck×k, and V ∈
Cm×k. Here k is the rank of the reduced SVD approximation to Y. The left
singular vectors U are POD modes.
The SVD reduction in (3.8) could also be exploited at this stage in the al-
gorithm to perform a low-rank truncation of the data. Specifically, if a low-
dimensional structure is present in the data, the singular values of Σ will
decrease sharply to zero with perhaps only a limited number of dominant
modes. A principled way to truncate noisy data would be to use the recent
hard-thresholding algorithm of Gavish and Donoho [12].

2. Next, compute Ãy, the k × k projection of the full matrix Ay onto POD
modes:

Ay = Y′VΣ−1U∗

=⇒ Ãy = U∗AyU = U∗Y′VΣ−1.(3.9)

3. Compute the eigendecomposition of Ãy:

(3.10) ÃyW = WΛ,

where columns of W are eigenvectors and Λ is a diagonal matrix containing
the corresponding eigenvalues λi.

4. Finally, we may reconstruct eigendecomposition of Ay from W and Λ. In
particular, the eigenvalues of Ay are given by Λ and the eigenvectors of Ay

(DMD modes) are given by columns of Ψ:

(3.11) Ψ = Y′VΣ−1W.

Note that (3.11) from [36] differs from the formula Ψ = UW from [34], although
these will tend to converge if Y and Y′ have the same column spaces. As a pseudo-
algorithm, it can be summarized in Algorithm 1.

3.1. Applications of the DMD method. In this section, we propose two
different applications of the DMD method to ROMs. Our first application concerns the
interpolation of a parametrized function which is compared with the DEIM approach.
The second one is related to the reduction of dynamical systems and considers the
DMD method as a Galerkin projection strategy.
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Algorithm 1. Exact DMD.
Require: Snapshots {y(t0), . . . ,y(tm)},

1: Set Y = [y(t0), . . . ,y(tm−1)] and Y ′ = [y(t1), . . . ,y(tm)]
2: Compute the SVD of Y, Y = UΣVT

3: Define Ãy := U∗Y′VΣ−1

4: Compute eigenvalues and eigenvectors of ÃyW = WΛ
5: Set ΨDMD = Y′VΣ−1W

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

FULL

DMD

DEIM

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

FULL

DMD

DEIM

Fig. 3.1. Test 1: DMD and DEIM interpolation with µ = 1.2 (left) and µ = 3.1 (right) for k = 20.

Test 1: Interpolation of parametrized functions. Let us consider the fol-
lowing nonlinear parametrized functions:

(3.12) s(x;µ) = (1− x) cos(3πµ(x+ 1))e−(1+x)µ,

where s : Ω×D → R, x ∈ Ω = [−1, 1] and µ ∈ D = [1, π]. This nonlinear function is
from [9]. Let us discretize the space domain [x1, . . . , xn] ∈ Rn with xi equidistant in
Ω. With compact notation we define f : D → Rn by

(3.13) f(µ) = [s(x1;µ), . . . , s(xn;µ)] ∈ Rn

for µ ∈ D. This example uses 51 snapshots of f(µj) to build the POD basis functions
where µi are equidistributed points in [1, π] and n = 101.

The purpose of this subsection is to show that the DMD might also be used as
an interpolation method as shown in Figure 3.1. As we can see DMD is able to
reconstruct the parametrized functions in µ = {1.2, 3.1} which is not included in the
snapshot set. If we look more closely into these approximations and compare it with
the DEIM interpolation method we can see that the DMD method is always much
faster than DEIM (Figure 3.2, left) and the error, at the beginning, is comparable up
to the first 20 modes. The error is computed with respect to the Frobenius norm.

Test 2: DMD-Galerkin approximation. Although DMD is a well-known
equation-free method, it also works in a Galerkin projection framework. In this sub-
section, we compare the performances of POD and DMD integrated with the Galerkin
method. We note that DMD basis functions in the DMD-Galerkin projection are com-
puted following Algorithm 1 and then orthonormalized. Let us consider the following
one-dimensional linear advection equation:
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Fig. 3.2. Test 1: CPU time (left) and relative error (right) for k = 1, . . . , 25.
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Fig. 3.3. Test 2: Solution of (3.14) (left) and singular values (right).

(3.14)
yt(x, t) + θyx(x, t) = 0, (x, t) ∈ [a, b]× [0, T ],

y(x, 0) = y0(x), x ∈ [a, b],
y(a, t) = 0 = y(b, t), t ∈ [0, T ],

where a = 0, b = 4, T = 3, θ = 1, y0(x) = sin(πx) if 0 ≤ x ≤ 1 and 0 elsewhere.
In order to lead (3.14) to our general formulation (2.1) we utilize a finite difference
discretization with a spatial step ∆x = 0.01. The dimension of the problem is n = 399.
We note that in this case the mass matrix M is the identity matrix. In order to
apply POD and DMD, we need to compute the snapshot set which is given by the
temporal discretization of (3.14) with an implicit Euler scheme and a temporal step
size ∆t = 0.01. The solution of (3.14) builds the snapshot set and it is visualized
on the left side of Figure 3.3. We also show the decay of the singular values of the
snapshot set on the right of Figure 3.3.

POD-Galerkin has already been explained in section 2. The DMD-Galerkin ap-
proach assumes that our solution can be written as y(t) ≈ ΨDMDyDMD(t). This as-
sumption is very similar to (2.5) but considers different basis functions. The reduced
problem has the same form of (2.6). Figure 3.4 shows the results of model order
reduction with POD (top), with DMD considered as a Galerkin projection method
(middle), and DMD as an equation-free method. The first column refers to approxi-
mations of rank 5, the second of rank 10, and the third of rank 15. As expected, if we
increase the rank of the basis functions, we can easily see that the approximation gets
better and better. It is well known that advection problems have a high variability
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Fig. 3.4. Test 2: Reduced approximation with 5 basis functions (first column), 10 basis func-
tions (second column), and 15 basis functions (third column). POD approximation (top), DMD-
Galerkin (middle), DMD (data-driven) (bottom).

during time evolution and it is difficult to capture the dynamics with only a few basis
functions.

The error analysis in the left panel of Figure 3.5 confirms our heuristic expecta-
tions. Here we compute the relative error with respect to the Frobenius norm where
we consider as truth the solution of the governing equations approximated by a finite
difference scheme. The error decays as soon as we increase the dimension of the re-
duced model, in particular, the POD method always performs better. On the other
hand, it is, in general, hard to see a significant difference between the DMD-Galerkin
and the DMD data-driven method as shown in Figure 3.4. This phenomena has been
observed for both linear and nonlinear problems (see section 5). In fact, this error
analysis brings us to the idea of working with a data-driven method for the approxi-
mation of nonlinear dynamical systems. For the sake of clarity, we also show the first
two modes in Figure 3.5, where we can clearly observe that the DMD basis functions
oscillate more than the POD modes.

4. Coupling POD and DMD for nonlinear problem. This section focuses
on the approximation of a nonlinear problem by means of model order reduction. As
discussed in section 2, the use of POD basis functions does not lead to a surrogate
model which is independent of the full dimension of the problem (see (2.6)) unless
all the nonlinear terms are exapended into POD modes and their inner products
computed. We advocate an alternative method to EIM/DEIM by working with the
DMD algorithm for evaluating the nonlinear term in (2.1). As already discussed,
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Fig. 3.5. Error analysis with respect to the Frobenius norm (left), first mode (middle), and
second mode (right).

the snapshot measurements used in DMD approximate the dynamics and predict
the future state. The use of DMD, in this work, concerns the approximate of the
nonlinearity f(t,y(t)) of the dynamical system (2.1).

To begin with, let us collect snapshots from the system {y(t0), . . . ,y(tm)} for
some given time instances {t0, . . . , tm} and compute the POD basis functions of rank `.
Then, we need to collect snapshots for the nonlinearity {f(t0,y(t0)), . . . , f(tm,y(tm))}
and divide them into two different sets as explained in section 3. We apply the DMD
algorithm (see Algorithm 1) to the nonlinear measurements. The DMD approximation
of the nonlinearity reads

fDMD(t, y(t)) =
k∑
i=1

biψ
DMD
i exp(ωit) ,(4.1)

where ψDMD
i are the DMD basis functions of rank k related to the nonlinear function

f(t,y(t)) and ωi are the eigenvalues of the linear matrix Ãy. The weighting coefficients
bi for each DMD mode can be determined by projecting on the initial evaluation of
the nonlinear function fDMD(t0, y(t0)) and taking the pseudoinverse. With compact
notation we obtain

fDMD(t, y(t)) ≈ ΨDMD diag(eω
DMDt)b,(4.2)

where b = (ΨDMD)†f(t0,y(t0)) ∈ Rk, diag(eω
DMDt)b ∈ Rk represents the reduced

approximation of the data in terms of the DMD modes. As we can see from (4.2) the
nonlinearity is approximated by a DMD representation and no further evaluation of
the nonlinearity is required. This circumvents the DEIM selection of the interpolation
points. If we plug the approximation of the nonlinearty (4.2) into the POD system
(2.6) we get the following reduced system:{

M`ẏ`(t) = A`y`(t) + (ΨPOD)TΨDMD diag(eω
DMDt)b,

y`(0) = y0
`.

(4.3)

Let us analyze the dimension of the new reduced dynamical system (4.3). The
matrix M`,A` ∈ R`×` has the same dimension as the POD system. The quan-
tity (ΨPOD)TΨDMD ∈ R`×k is independent of the dimension of the full system, and
diag(eω

DMDt)b ∈ Rk. Even for this formulation we are able to build a surrogate model
which does not depend on the dimension of the original system. Moreover, in this
formulation we do not have to evaluate the nonlinearity further, which gives an im-
portant speedup in the efficiency of the formulation. We also note that the efficiency
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Algorithm 2. POD-DMD.
Require: Snapshots {y(t0), . . . ,y(tm)}, ` number of POD modes, k number of DMD

modes
1: Compute the POD basis function {ψi}`i=1 of rank of `
2: Compute nonlinear snapshots {f(t0,y(t0)), . . . , f(tm,y(tm))}
3: Set Y = [f(t0,y(t0)), . . . , f(tm−1,y(tm−1))]
4: Set Y′ = [f(t1,y(t1)), . . . , f(tm,y(tm)]
5: Compute DMD modes following Algorithm 1
6: Set and integrate (4.3)
7: Project back full solution

of the DEIM method is related to the nonlinear term since it is not always clear if
the components of the nonlinear term are independent. As in the DEIM case some
quantities can be precomputed offline. Of course, this method is closely related to the
snapshot set and approximates the nonlinear term with a linear regression operator.
The algorithm is summarized in Algorithm 2.

The POD-DMD method has one significant advantage: computational speed.
Indeed, as we will show, the POD-DMD algorithm is significantly faster than the
POD-DEIM method in approximating the nonlinear terms in the model reduction.
Indeed, the computational efficiency for this task is improved by an order of magnitude
or more. The drawback of the method is that the DMD modes produced for the low-
rank projection are not orthogonal, which is in contrast to POD modes which give
an optimal orthonormal basis with some guaranteed convergence properties [16]. We
hope to fix this problem in future work by potentially orthogonalizing the DMD
modes. However, reorthogonalization of the DMD modes is nontrivial. Specifically,
one can easily use, for instance, Gram–Schimdt to orthogonalize the DMD modes of
the matrix ΨDMD. But the new orthogonal modes would no longer be associated with
the DMD spectra ωj . Thus the DMD approximation (4.2) no longer holds. To date,
reorthogonalization remains an open theoretical challenge in the DMD community.

5. Numerical tests. In this section we present our numerical tests. In our
numerical computations we use the finite difference method to reduce a partial dif-
ferential equation into the form (2.1) and integrate the system with a semi-implicit
scheme. All the numerical simulations reported in this paper are performed on a Mac-
Book Pro with an Intel Core i5, 2.2 GHz, and 8 GB RAM using MATLAB R2013a.

In the following numerical examples we build different surrogate models, such
as POD, POD-DEIM, and POD-DMD, and compare their performances in terms of
CPU time and the error with respect to a reference solution computed by the finite
difference approach. For the sake of completeness we also utilize DMD as a data
driven method. The tests consider three types of equations.

Test 3: Semilinear parabolic equation. Let us consider the following equa-
tion:

yt(x, t)− θ∆y(x, t) + µ
(
y(x, t)− y3(x, t)

)
= 0, (x, t) ∈ Ω× [0, T ],

y(x, 0) = y0(x), x ∈ Ω,
y(x, t) = 0, t ∈ ∂Ω× [0, T ],

(5.1)

where ∆ is the Laplace operator, Ω = [0, 1] × [0, 1], T = 3, θ = 0.1, µ = 1, x =
(x1, x2), y0(x) = 0.1 if 0.1 ≤ x1x2 ≤ 0.6 and 0 elsewhere. The POD basis vectors
are built upon 100 equidistant snapshots. The finite difference discretization yields
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a system of ODEs of the same form as (2.1) with n = 10000. The solution of this
equation generates a stationary solution y(x, t) ≡ 1 for large t, as shown in Figure
5.1. Figure 5.2 shows a similar decay for the singular values of the snapshot set and
of the nonlinear term in (5.1).

The complexity of problem (5.1) is reduced by model order reduction. When
dealing with model order reduction, it is relevant to consider the CPU time of the
simulation and the error. In general it is important to have a trade-off between the
two quantities. Figure 5.3 considers the CPU time on the left. The DMD is always
the fastest method since it is an equation-free method. Among the equation-based
approaches, the POD-DMD approximation is computationally faster than any other
approximation for any dimension of the reduced system. The strength of POD-DMD
is the fact we do not have to evaluate the nonlinearity after collecting snapshots. We
note that the number of POD, DEIM, and DMD are always the same in Figure 5.3,
e.g., ` = k. In the middle of Figure 5.3 we compute the relative error with respect
to the Frobenius norm. It is clear that POD provides the best approximation. As
expected, all the methods decrease their error when increasing the number of basis
functions. A more appropriate comparison is given in the right panel of Figure 5.3.
There we look at the CPU time for a given fixed error tolerance. As shown, the DMD
method is faster than the POD-DMD approach.
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Fig. 5.1. Test 3: Solution of (5.1) at time t = {0, 0.1} (top) and t = {1.5, 3} (bottom).
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Since POD-DMD is faster than other methods it is natural to look at the perfor-
mance with a different number of basis functions. Figure 5.4 shows the error for a fixed
number of basis functions ` = {5, 10, 15} and k ∈ [1, 40]. As we can see POD-DMD
performs better than POD-DEIM when ` = 5, 10. In this case increasing the number
of DMD basis functions lead to more accurate solutions of POD-DEIM. Moreover,
we can observe a monotone decay of the error for the POD-DMD approach.

Test 4: Burgers’ equation. Let us consider the following one-dimensional
Burgers equation:

(5.2)
yt(x, t)− θyxx(x, t) + y(x, t)yx(x, t) = 0, (x, t) ∈ [a, b]× [0, T ],

y(x, 0) = y0(x), x ∈ [a, b],
y(a, t) = 0 = y(b, t), t ∈ [0, T ],

where a = 0, b = 1, T = 1, θ = 0.01, y0(x) = sgn(x). The dimension of the semi-
discrete problem is n = 101 in (2.1). In Figure 5.5 we visualize the full solution of
(5.2) and the decay of the singular values. We note that the decay is very similar for
y and its nonlinearity. The results of the model reduction are shown in Figure 5.6.
In the left panel, the POD approximation with 20 basis function is demonstrated.
POD-DEIM is visualized in the middle panel, and finally, the POD-DMD approach is
in the right panel. With a 20-rank truncation of the DEIM and DMD approximation,
it is difficult to see any differences in the solution.

The CPU time is expressed on the left side of Figure 5.7 and we can see, as already
discussed in the previous example, that the CPU time of POD-DMD is always below
the other two approximations but we lose some accuracy, as expected. The relative
error is represented in the middle of Figure 5.7, where one can see that it decays when
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for a given error (right).

we increase the dimension of the surrogate model. We also show the DMD as a data-
driven method which turns out to be faster than the other with a similar accuracy
to POD-DMD. In the right panel of Figure 5.7 we show the CPU time for a given
error tolerance. It turns out that DMD and POD-DMD are faster than the other
methods.

It is difficult to directly compare POD-DMD and POD-DEIM since the meaning
of the rank in DEIM is different from DMD. For this reason we also compute the error
varying the rank k for a fixed number of POD basis functions. Figure 5.8 shows that
POD-DMD always has a monotone decay. POD-DEIM is in general more accurate,
especially for large k. Since POD-DMD is always faster, this is not a big issue, and
in fact, one could work with a low-dimensional structure of the POD basis functions
and consider a larger number of DMD basis functions as shown in Figure 5.7 in the
right panel.
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Fig. 5.9. Test 5: Full approximation (left), and singular values of the solution (middle) and of
the nonlinearity (right) of (5.3).

Test 5: Nonlinear Schrödinger equation. Let us consider the following
Schrödinger equation:

(5.3)
yt − iθyxx − iθ|y|2y = 0, (x, t) ∈ [−L,L]× [0, T ],

y(x, 0) = y0(x), x ∈ [−L,L],
y(−L, t) = 0 = y(L, t), t ∈ [0, T ],

where L = 15, T = 3, θ = 0.5, and y0(x) = 2sech(x). The dimension of the correspon-
dent semidiscrete problem (2.1) is n = 301. The solution of (5.3) is shown in Figure
5.9 on the left. The singular values of the solution are shown in the middle panel,
whereas the singular values of the nonlinearity are in the right panel. It is well known
that Schrödinger’s equation generates wave functions in its solution and therefore it
is difficult to capture this behavior with only a few modes.

Approximation by means of the model order reduction technique is shown in
Figure 5.10; we can see it is hard to distinguish any difference between the reduced
solutions. In this case POD-DEIM always performs better than POD-DMD but is
more expensive. Again, we emphasize the speedup of the DMD and POD-DMD
methods with respect to the other methods and performance of these methods with a
fixed error tolerance (see Figure 5.11.) Finally, we show in Figure 5.12 the error decay
with a fixed number of POD basis functions and varying the rank k for the nonlinear
term.

6. Conclusions and future work. In order to make model reduction meth-
ods such as POD computationally efficient, innovative methods for evaluating the
nonlinear terms of the governing equations (2.1) must be used. Previous successful
techniques used sparse sampling to evaluate the nonlinearity. Indeed, the discrete em-
pirical interpolation method identifies through a greedy algorithm a limited number
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Fig. 5.10. Test 5: Approximation with 20 POD basis functions (top left), approximation with
20 POD basis functions and 10 DEIM (top right), approximation with 20 POD basis functions
and 20 DMD (bottom left), and approximation with 20 DMD basis functions as data-driven method
(bottom right).
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Fig. 5.11. Test 5: CPU time (left) and relative error in the Frobenius norm. Number of POD
modes and DEIM/DMD points are the same with ` = k = {1, . . . , 25} (middle), CPU time for a
given error (right).
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Fig. 5.12. Test 5: Relative error for 5 POD basis functions (left), 10 POD basis functions
(middle), and 15 POD basis functions (right) for k = {1, . . . , 25}.

of spatial sampling locations that can allow for reconstruction of the nonlinear terms
in a low-dimensional manner. Such sparse sampling of the nonlinearity is directly re-
lated to compressive sensing strategies whereby a small number of sensors can be used
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to characterize the dynamics of the high-dimensional nonlinear system. In this paper
we present a new model order reduction approach for nonlinear dynamical systems.
The method couples the POD method for the projection of the system and the DMD
algorithm for the approximation of the nonlinear term. In particular, DMD provides
a significant reduction of the system in terms of the CPU time since the nonlinearity
is never evaluated online. The method is effective for nonlinear dynamical systems
where POD approximations are relevant.

The DMD method is a fairly robust technique, but it can fail when the data
sampled exhibit strong transient growth and decay phenomena and/or intermittency.
Of course, such scenarios can also be problematic for POD methods in general as
they rely on correlations in the sampled data for producing POD modes. Thus,
generally speaking, the POD-DMD method advocated should be robust in dynamical
systems where standard POD-DEIM methods are applied to take advantage of low-
dimensional dynamics. Future work will focus on error estimation of the proposed
method in both the DMD and POD-DMD projection techniques. Special focus will be
given to improving the error estimates. We also intend to use recent innovations in the
DMD method, specifically around multiresolution analysis [18] and compression [6, 1],
to more effectively construct approximations to the nonlinear dynamics.
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