221 research outputs found

    Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    Get PDF
    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously

    Text Classification Aided by Clustering: a Literature Review

    Get PDF

    ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set

    Get PDF
    This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145

    Identifying Heavy-Flavor Jets Using Vectors of Locally Aggregated Descriptors

    Full text link
    Jets of collimated particles serve a multitude of purposes in high energy collisions. Recently, studies of jet interaction with the quark-gluon plasma (QGP) created in high energy heavy ion collisions are of growing interest, particularly towards understanding partonic energy loss in the QGP medium and its related modifications of the jet shower and fragmentation. Since the QGP is a colored medium, the extent of jet quenching and consequently, the transport properties of the medium are expected to be sensitive to fundamental properties of the jets such as the flavor of the parton that initiates the jet. Identifying the jet flavor enables an extraction of the mass dependence in jet-QGP interactions. We present a novel approach to tagging heavy-flavor jets at collider experiments utilizing the information contained within jet constituents via the \texttt{JetVLAD} model architecture. We show the performance of this model in proton-proton collisions at center of mass energy s=200\sqrt{s} = 200 GeV as characterized by common metrics and showcase its ability to extract high purity heavy-flavor jet sample at various jet momenta and realistic production cross-sections including a brief discussion on the impact of out-of-time pile-up. Such studies open new opportunities for future high purity heavy-flavor measurements at jet energies accessible at current and future collider experiments.Comment: 18 pages, 6 figures and 3 tables. Accepted by JINS

    Conduits of Intratumor Heterogeneity: Centrosome Amplification, Centrosome Clustering and Mitotic Frequency

    Get PDF
    Tumor initiation and progression is dependent on the acquisition and accumulation of multiple driver mutations that acti­vate and fuel oncogenic pathways and deactivate tumor suppressor networks. This complex continuum of non-stochastic genetic changes in accompaniment with error-prone mitoses largely explains why tumors are a mosaic of different cells. Contrary to the long-held notion that tumors are dominated by genetically-identical cells, tumors often contain many different subsets of cells that are remarkably diverse and distinct. The extent of this intratumor heterogeneity has bewildered cancer biologists’ and clinicians alike, as this partly illuminates why most cancer treatments fail. Unsurprisingly, there is no “wonder” drug yet available which can target all the different sub-populations including rare clones, and conquer the war on cancer. Breast tumors harbor ginormous extent of intratumoral heterogeneity, both within primary and metastatic lesions. This revelation essentially calls into question mega clinical endeavors such as the Human Genome Project that have sequenced a single biopsy from a large tumor mass thus precluding realization of the fact that a single tumor mass comprises of cells that present a variety of flavors in genotypic compositions. It is also becoming recognized that intratumor clonal heterogeneity underlies therapeutic resistance. Thus to comprehend the clinical behavior and therapeutic management of tumors, it is imperative to recognize and understand how intratumor heterogeneity arises. To this end, my research proposes to study two main features/cellular traits of tumors that can be quantitatively evaluated as “surrogates” to represent tumor heterogeneity at various stages of the disease: (a) centrosome amplification and clustering, and (b) mitotic frequency. This study aims at interrogating how a collaborative interplay of these “vehicles” support the tumor’s evolutionary agenda, and how we can glean prognostic and predictive information from an accurate determination of these cellular traits

    Numerical Experiments with Support Vector Machines

    Get PDF
    The report presents a series of numerical experiments concerning application of Support Vector Machines for the two class spatial data classification. The main attention is paid to the variability of the results by changing hyperparameters: bandwidth of the radial basis function kernel and C parameter. Training error, testing error and number of support vectors are plotted against hyperparameters. Number of support vectors is minimal at the optimal solution. Two real case studies are considered: Cd contamination in the Leman Lake, Briansk region radionuclides soil contamination. Structural analysis (variography) is used for the description of the spatial patterns obtained and to monitor the performance of SVM

    A unified framework for detecting groups and application to shape recognition

    Get PDF
    A unified a contrario detection method is proposed to solve three classical problems in clustering analysis. The first one is to evaluate the validity of a cluster candidate. The second problem is that meaningful clusters can contain or be contained in other meaningful clusters. A rule is needed to define locally optimal clusters by inclusion. The third problem is the definition of a correct merging rule between meaningful clusters, permitting to decide whether they should stay separate or unit. The motivation of this theory is shape recognition. Matching algorithms usually compute correspondences between more or less local features (called shape elements) between images to be compared. This paper intends to form spatially coherent groups between matching shape elements into a shape. Each pair of matching shape elements indeed leads to a unique transformation (similarity or affine map.) As an application, the present theory on the choice of the right clusters is used to group these shape elements into shapes by detecting clusters in the transformation space

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine
    • …
    corecore