4,539 research outputs found

    Toward Semantics-aware Representation of Digital Business Processes

    Get PDF
    An extended enterprise (EE) can be described by a set of models each representing a specific aspect of the EE. Aspects can for example be the process flow or the value description. However, different models are done by different people, which may use different terminology, which prevents relating the models. Therefore, we propose a framework consisting of process flow and value aspects and in addition a static domain model with structural and relational components. Further, we outline the usage of the static domain model to enable relating the different aspects

    Computer-assisted knowledge acquisition for hypermedia systems

    Get PDF
    The usage of procedural and declarative knowledge to set up the structure or 'web' of a hypermedia environment is described. An automated knowledge acquisition tool was developed that helps a knowledge engineer elicit and represent an expert's knowledge involved in performing procedural tasks. The tool represents both procedural and prerequisite, declarative knowledge that supports each activity performed by the expert. This knowledge is output and subsequently read by a hypertext scripting language to generate the link between blank, but labeled cards. Each step of the expert's activity and each piece of supporting declarative knowledge is set up as an empty node. An instructional developer can then enter detailed instructional material concerning each step and declarative knowledge into these empty nodes. Other research is also described that facilitates the translation of knowledge from one form into a form more readily useable by computerized systems

    Narrative based Postdictive Reasoning for Cognitive Robotics

    Full text link
    Making sense of incomplete and conflicting narrative knowledge in the presence of abnormalities, unobservable processes, and other real world considerations is a challenge and crucial requirement for cognitive robotics systems. An added challenge, even when suitably specialised action languages and reasoning systems exist, is practical integration and application within large-scale robot control frameworks. In the backdrop of an autonomous wheelchair robot control task, we report on application-driven work to realise postdiction triggered abnormality detection and re-planning for real-time robot control: (a) Narrative-based knowledge about the environment is obtained via a larger smart environment framework; and (b) abnormalities are postdicted from stable-models of an answer-set program corresponding to the robot's epistemic model. The overall reasoning is performed in the context of an approximate epistemic action theory based planner implemented via a translation to answer-set programming.Comment: Commonsense Reasoning Symposium, Ayia Napa, Cyprus, 201

    RuleCNL: A Controlled Natural Language for Business Rule Specifications

    Full text link
    Business rules represent the primary means by which companies define their business, perform their actions in order to reach their objectives. Thus, they need to be expressed unambiguously to avoid inconsistencies between business stakeholders and formally in order to be machine-processed. A promising solution is the use of a controlled natural language (CNL) which is a good mediator between natural and formal languages. This paper presents RuleCNL, which is a CNL for defining business rules. Its core feature is the alignment of the business rule definition with the business vocabulary which ensures traceability and consistency with the business domain. The RuleCNL tool provides editors that assist end-users in the writing process and automatic mappings into the Semantics of Business Vocabulary and Business Rules (SBVR) standard. SBVR is grounded in first order logic and includes constructs called semantic formulations that structure the meaning of rules.Comment: 12 pages, 7 figures, Fourth Workshop on Controlled Natural Language (CNL 2014) Proceeding

    Business Process Configuration According to Data Dependency Specification

    Get PDF
    Configuration techniques have been used in several fields, such as the design of business process models. Sometimes these models depend on the data dependencies, being easier to describe what has to be done instead of how. Configuration models enable to use a declarative representation of business processes, deciding the most appropriate work-flow in each case. Unfortunately, data dependencies among the activities and how they can affect the correct execution of the process, has been overlooked in the declarative specifications and configurable systems found in the literature. In order to find the best process configuration for optimizing the execution time of processes according to data dependencies, we propose the use of Constraint Programming paradigm with the aim of obtaining an adaptable imperative model in function of the data dependencies of the activities described declarative.Ministerio de Ciencia y Tecnología TIN2015-63502-C3-2-RFondo Europeo de Desarrollo Regiona

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014
    corecore