6 research outputs found

    Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review

    Get PDF
    : Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions

    The debate on the ethics of AI in health care: a reconstruction and critical review

    Get PDF
    Healthcare systems across the globe are struggling with increasing costs and worsening outcomes. This presents those responsible for overseeing healthcare with a challenge. Increasingly, policymakers, politicians, clinical entrepreneurs and computer and data scientists argue that a key part of the solution will be ‘Artificial Intelligence’ (AI) – particularly Machine Learning (ML). This argument stems not from the belief that all healthcare needs will soon be taken care of by “robot doctors.” Instead, it is an argument that rests on the classic counterfactual definition of AI as an umbrella term for a range of techniques that can be used to make machines complete tasks in a way that would be considered intelligent were they to be completed by a human. Automation of this nature could offer great opportunities for the improvement of healthcare services and ultimately patients’ health by significantly improving human clinical capabilities in diagnosis, drug discovery, epidemiology, personalised medicine, and operational efficiency. However, if these AI solutions are to be embedded in clinical practice, then at least three issues need to be considered: the technical possibilities and limitations; the ethical, regulatory and legal framework; and the governance framework. In this article, we report on the results of a systematic analysis designed to provide a clear overview of the second of these elements: the ethical, regulatory and legal framework. We find that ethical issues arise at six levels of abstraction (individual, interpersonal, group, institutional, sectoral, and societal) and can be categorised as epistemic, normative, or overarching. We conclude by stressing how important it is that the ethical challenges raised by implementing AI in healthcare settings are tackled proactively rather than reactively and map the key considerations for policymakers to each of the ethical concerns highlighted

    Design and Evaluation of User-Centered Explanations for Machine Learning Model Predictions in Healthcare

    Get PDF
    Challenges in interpreting some high-performing models present complications in applying machine learning (ML) techniques to healthcare problems. Recently, there has been rapid growth in research on model interpretability; however, approaches to explaining complex ML models are rarely informed by end-user needs and user evaluations of model interpretability are lacking, especially in healthcare. This makes it challenging to determine what explanation approaches might enable providers to understand model predictions in a comprehensible and useful way. Therefore, I aimed to utilize clinician perspectives to inform the design of explanations for ML-based prediction tools and improve the adoption of these systems in practice. In this dissertation, I proposed a new theoretical framework for designing user-centered explanations for ML-based systems. I then utilized the framework to propose explanation designs for predictions from a pediatric in-hospital mortality risk model. I conducted focus groups with healthcare providers to obtain feedback on the proposed designs, which was used to inform the design of a user-centered explanation. The user-centered explanation was evaluated in a laboratory study to assess its effect on healthcare provider perceptions of the model and decision-making processes. The results demonstrated that the user-centered explanation design improved provider perceptions of utilizing the predictive model in practice, but exhibited no significant effect on provider accuracy, confidence, or efficiency in making decisions. Limitations of the evaluation study design, including a small sample size, may have affected the ability to detect an impact on decision-making. Nonetheless, the predictive model with the user-centered explanation was positively received by healthcare providers, and demonstrated a viable approach to explaining ML model predictions in healthcare. Future work is required to address the limitations of this study and further explore the potential benefits of user-centered explanation designs for predictive models in healthcare. This work contributes a new theoretical framework for user-centered explanation design for ML-based systems that is generalizable outside the domain of healthcare. Moreover, the work provides meaningful insights into the role of model interpretability and explanation in healthcare while advancing the discussion on how to effectively communicate ML model information to healthcare providers

    Role of machine learning in early diagnosis of kidney diseases.

    Get PDF
    Machine learning (ML) and deep learning (DL) approaches have been used as indispensable tools in modern artificial intelligence-based computer-aided diagnostic (AIbased CAD) systems that can provide non-invasive, early, and accurate diagnosis of a given medical condition. These AI-based CAD systems have proven themselves to be reproducible and have the generalization ability to diagnose new unseen cases with several diseases and medical conditions in different organs (e.g., kidneys, prostate, brain, liver, lung, breast, and bladder). In this dissertation, we will focus on the role of such AI-based CAD systems in early diagnosis of two kidney diseases, namely: acute rejection (AR) post kidney transplantation and renal cancer (RC). A new renal computer-assisted diagnostic (Renal-CAD) system was developed to precisely diagnose AR post kidney transplantation at an early stage. The developed Renal-CAD system perform the following main steps: (1) auto-segmentation of the renal allograft from surrounding tissues from diffusion weighted magnetic resonance imaging (DW-MRI) and blood oxygen level-dependent MRI (BOLD-MRI), (2) extraction of image markers, namely: voxel-wise apparent diffusion coefficients (ADCs) are calculated from DW-MRI scans at 11 different low and high b-values and then represented as cumulative distribution functions (CDFs) and extraction of the transverse relaxation rate (R2*) values from the segmented kidneys using BOLD-MRI scans at different echotimes, (3) integration of multimodal image markers with the associated clinical biomarkers, serum creatinine (SCr) and creatinine clearance (CrCl), and (4) diagnosing renal allograft status as nonrejection (NR) or AR by utilizing these integrated biomarkers and the developed deep learning classification model built on stacked auto-encoders (SAEs). Using a leaveone- subject-out cross-validation approach along with SAEs on a total of 30 patients with transplanted kidney (AR = 10 and NR = 20), the Renal-CAD system demonstrated 93.3% accuracy, 90.0% sensitivity, and 95.0% specificity in differentiating AR from NR. Robustness of the Renal-CAD system was also confirmed by the area under the curve value of 0.92. Using a stratified 10-fold cross-validation approach, the Renal-CAD system demonstrated its reproduciblity and robustness with a diagnostic accuracy of 86.7%, sensitivity of 80.0%, specificity of 90.0%, and AUC of 0.88. In addition, a new renal cancer CAD (RC-CAD) system for precise diagnosis of RC at an early stage was developed, which incorporates the following main steps: (1) estimating the morphological features by applying a new parametric spherical harmonic technique, (2) extracting appearance-based features, namely: first order textural features are calculated and second order textural features are extracted after constructing the graylevel co-occurrence matrix (GLCM), (3) estimating the functional features by constructing wash-in/wash-out slopes to quantify the enhancement variations across different contrast enhanced computed tomography (CE-CT) phases, (4) integrating all the aforementioned features and modeling a two-stage multilayer perceptron artificial neural network (MLPANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype. On a total of 140 RC patients (malignant = 70 patients (ccRCC = 40 and nccRCC = 30) and benign angiomyolipoma tumors = 70), the developed RC-CAD system was validated using a leave-one-subject-out cross-validation approach. The developed RC-CAD system achieved a sensitivity of 95.3% ± 2.0%, a specificity of 99.9% ± 0.4%, and Dice similarity coefficient of 0.98 ± 0.01 in differentiating malignant from benign renal tumors, as well as an overall accuracy of 89.6% ± 5.0% in the sub-typing of RCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The results obtained using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, and relational functional gradient boosting) as well as other different approaches from the literature. In summary, machine and deep learning approaches have shown potential abilities to be utilized to build AI-based CAD systems. This is evidenced by the promising diagnostic performance obtained by both Renal-CAD and RC-CAD systems. For the Renal- CAD, the integration of functional markers extracted from multimodal MRIs with clinical biomarkers using SAEs classification model, potentially improved the final diagnostic results evidenced by high accuracy, sensitivity, and specificity. The developed Renal-CAD demonstrated high feasibility and efficacy for early, accurate, and non-invasive identification of AR. For the RC-CAD, integrating morphological, textural, and functional features extracted from CE-CT images using a MLP-ANN classification model eventually enhanced the final results in terms of accuracy, sensitivity, and specificity, making the proposed RC-CAD a reliable noninvasive diagnostic tool for RC. The early and accurate diagnosis of AR or RC will help physicians to provide early intervention with the appropriate treatment plan to prolong the life span of the diseased kidney, increase the survival chance of the patient, and thus improve the healthcare outcome in the U.S. and worldwide

    Towards Interpretable Machine Learning in Medical Image Analysis

    Get PDF
    Over the past few years, ML has demonstrated human expert level performance in many medical image analysis tasks. However, due to the black-box nature of classic deep ML models, translating these models from the bench to the bedside to support the corresponding stakeholders in the desired tasks brings substantial challenges. One solution is interpretable ML, which attempts to reveal the working mechanisms of complex models. From a human-centered design perspective, interpretability is not a property of the ML model but an affordance, i.e., a relationship between algorithm and user. Thus, prototyping and user evaluations are critical to attaining solutions that afford interpretability. Following human-centered design principles in highly specialized and high stakes domains, such as medical image analysis, is challenging due to the limited access to end users. This dilemma is further exacerbated by the high knowledge imbalance between ML designers and end users. To overcome the predicament, we first define 4 levels of clinical evidence that can be used to justify the interpretability to design ML models. We state that designing ML models with 2 levels of clinical evidence: 1) commonly used clinical evidence, such as clinical guidelines, and 2) iteratively developed clinical evidence with end users are more likely to design models that are indeed interpretable to end users. In this dissertation, we first address how to design interpretable ML in medical image analysis that affords interpretability with these two different levels of clinical evidence. We further highly recommend formative user research as the first step of the interpretable model design to understand user needs and domain requirements. We also indicate the importance of empirical user evaluation to support transparent ML design choices to facilitate the adoption of human-centered design principles. All these aspects in this dissertation increase the likelihood that the algorithms afford interpretability and enable stakeholders to capitalize on the benefits of interpretable ML. In detail, we first propose neural symbolic reasoning to implement public clinical evidence into the designed models for various routinely performed clinical tasks. We utilize the routinely applied clinical taxonomy for abnormality classification in chest x-rays. We also establish a spleen injury grading system by strictly following the clinical guidelines for symbolic reasoning with the detected and segmented salient clinical features. Then, we propose the entire interpretable pipeline for UM prognostication with cytopathology images. We first perform formative user research and found that pathologists believe cell composition is informative for UM prognostication. Thus, we build a model to analyze cell composition directly. Finally, we conduct a comprehensive user study to assess the human factors of human-machine teaming with the designed model, e.g., whether the proposed model indeed affords interpretability to pathologists. The human-centered design process is proven to be truly interpretable to pathologists for UM prognostication. All in all, this dissertation introduces a comprehensive human-centered design for interpretable ML solutions in medical image analysis that affords interpretability to end users

    Classification des tumeurs rénales à l'aide d'imagerie par résonance magnétique dans un contexte d'apprentissage multitâches

    Get PDF
    Pour les patients présentant une lésion au rein, la connaissance de la malignité, ainsi que du sous-type et du grade (dans le cas où la tumeur serait maligne), sont des éléments essentiels pour le pronostic. Actuellement, la procédure standard pour obtenir ces informations est de procéder à une biopsie de la lésion. La biopsie étant très invasive et manquant de fiabilité pour les tumeurs hétérogènes, l'analyse d'imagerie non invasive, telle que l'imagerie par résonnance magnétique (IRM), à l'aide d'intelligence artificielle est une alternative qui a suscité beaucoup d'intérêt au cours des dernières années. Bien que les récentes études montrent que les réseaux de neurones à convolution soient très prometteurs lorsqu'il s’agit de classifier les tumeurs rénales par rapport à leur malignité, leur sous-type ou leur grade, les résultats ne sont pas encore suffisamment convaincants pour constituer une solution de rechange à la biopsie. Dans ce mémoire, nous vérifierons s'il est possible, à l'aide de l'apprentissage multitâche, d'améliorer les performances d'un modèle d'apprentissage profond pour la classification de la malignité, du sous-type et du grade des tumeurs rénales. Nous utiliserons un jeu de données comportant les images par résonance magnétique de pondération T1 avec contraste amélioré et T2 de 1082 patients qui présente une lésion à l'un des reins, la segmentation de cette lésion pour chaque modalité et un ensemble de données cliniques. Nous commencerons par vérifier la pertinence d'un modèle d'apprentissage à tâche unique utilisant l'imagerie par rapport à un modèle se basant sur les données cliniques. Par la suite, nous allons comparer les réseaux de neurones à convolution entraînés sur les tâches individuellement à des modèles entraînés à prédire les 3 caractéristiques simultanément. Pour finir, nous déterminerons s'il est bénéfique de forcer un modèle à simultanément classifier la tumeur et prédire un ensemble de caractéristiques radiomiques qui joueront le rôle de tâches auxiliaires
    corecore