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Abstract

Background: Predictive models for delayed graft function (DGF) after kidney transplantation are usually developed
using logistic regression. We want to evaluate the value of machine learning methods in the prediction of DGF.

Methods: 497 kidney transplantations from deceased donors at the Ghent University Hospital between 2005 and 2011
are included. A feature elimination procedure is applied to determine the optimal number of features, resulting in 20
selected parameters (24 parameters after conversion to indicator parameters) out of 55 retrospectively collected
parameters. Subsequently, 9 distinct types of predictive models are fitted using the reduced data set: logistic regression
(LR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVMs; using
linear, radial basis function and polynomial kernels), decision tree (DT), random forest (RF), and stochastic gradient
boosting (SGB). Performance of the models is assessed by computing sensitivity, positive predictive values and area
under the receiver operating characteristic curve (AUROC) after 10-fold stratified cross-validation. AUROCs of the
models are pairwise compared using Wilcoxon signed-rank test.

Results: The observed incidence of DGF is 12.5 %. DT is not able to discriminate between recipients with and without
DGF (AUROC of 52.5 %) and is inferior to the other methods. SGB, RF and polynomial SVM are mainly able to identify
recipients without DGF (AUROC of 77.2, 73.9 and 79.8 %, respectively) and only outperform DT. LDA, QDA, radial SVM
and LR also have the ability to identify recipients with DGF, resulting in higher discriminative capacity (AUROC of 82.2,
79.6, 83.3 and 81.7 %, respectively), which outperforms DT and RF. Linear SVM has the highest discriminative capacity
(AUROC of 84.3 %), outperforming each method, except for radial SVM, polynomial SVM and LDA. However, it is the
only method superior to LR.

Conclusions: The discriminative capacities of LDA, linear SVM, radial SVM and LR are the only ones above 80 %. None
of the pairwise AUROC comparisons between these models is statistically significant, except linear SVM outperforming
LR. Additionally, the sensitivity of linear SVM to identify recipients with DGF is amongst the three highest of all models.
Due to both reasons, the authors believe that linear SVM is most appropriate to predict DGF.
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Background
Kidney transplantation is the preferred treatment for
patients with end-stage renal disease, improving survival,
cardiovascular comorbidity and quality of life [1, 2].
Unfortunately, not every transplanted kidney is function-
ing properly at the beginning. When ischemia/reperfu-
sion injury is the cause of this early postoperative graft
dysfunction, the term ‘delayed graft function’ (DGF) is
used [3, 4]. DGF is diagnosed clinically after exclusion of
other possible causes of early graft dysfunction, such as
vascular thrombosis or hyperacute rejection [4, 5]. It is
usually defined as the need for dialysis within the first
week after transplantation [4].
Despite advances in pretreatment of donors and recip-

ients, as well as in diagnostic and therapeutic modalities,
the incidence of DGF has not decreased, nor have its
short-term and long-term effects [6]. The incidence is
possibly increasing, which might partly be explained by
using more expanded-criteria donors and donors after
cardiac death, as well as by selecting more recipients
who are possibly more prone to DGF. The incidence of
DGF with deceased donors varies from 2 to 50 %, de-
pending on country, transplant center and the definition
used. The incidence of DGF with living donors is lower
and varies from 4 to 10 % [7].
The short-term and long-term consequences of DGF

are increasingly being documented. Firstly, DGF has an
adverse impact on the immediate post-transplant course
by causing prolonged hospitalization and rehabilitation,
and higher transplantation costs [8, 9]. Secondly, it is
associated with an increased rate of acute rejection and
with reduced long-term graft function [10]. Finally, it
leads to long-term graft loss [10], independent of the
increased risk of acute rejection [11, 12], and reduced
patient survival [13].
Because of the deleterious consequences, several pre-

dictive models for DGF have been developed within the
last few years. To date, four risk prediction models have
been developed using logistic regression [14–17]. How-
ever, machine learning methods are also effective to detect
new risk factors and to achieve acceptable predictive ac-
curacy [18, 19]. Brier et al. [20] and Santori et al. [21] have
already demonstrated that neural networks have higher
sensitivity but lower specificity than logistic regression in
the prediction of DGF. Other studies suggest that neural
networks [22] and tree-based models [23] also have higher
sensitivity but lower specificity than Cox regression in the
prediction of graft survival. Consistently, another tree-
based model [24] and a Bayesian belief network [25]
achieve reasonable predictive accuracy for graft survival.
In this study, the goal is therefore to analyze and dis-

cuss the performance of different modeling techniques
in the prediction of DGF and to identify which method
is most suited to the task at hand.

Methods
Study cohort
The study cohort consists of consecutive adults
(≥18 years) undergoing kidney transplantation from de-
ceased donors at the Ghent University Hospital between
January 1st, 2005 and December 31st, 2011. A total of
508 transplantations are performed. After exclusion of
11 transplantations, the study cohort consists of 497
transplantations. Reasons for exclusion are death of
recipient or graft loss within the first week after trans-
plantation. DGF is defined as the need for dialysis within
the first week after transplantation. This study is con-
ducted in accordance with the Declaration of Helsinki
and is approved by the Ethics Committee of Ghent Uni-
versity Hospital. Due to the retrospective nature of this
study, the need for informed consent is waived.
Fifty-five parameters are retrospectively collected as

potential risk factors for DGF. Parameters related to
donor include age, sex, body mass index, cytomegalovirus
serology, length of stay in intensive care unit, terminal
serum creatinine, subtype, terminal urine output, terminal
systolic and diastolic blood pressure, pretreatment with
dopamine/dobutamine/epinephrine/norepinephrine, ter-
minal central venous pressure, diabetes mellitus, history of
hypertension, hypotensive episodes during pre-explanta-
tion period, graft atherosclerosis (assessment by explant
surgeon), and graft quality (assessment by explant sur-
geon). Parameters related to preservation and operation
include preservation method, preservation solution, cold
ischemia time, warm ischemia time, perioperative diuresis,
perioperative graft reperfusion, donor-recipient sex, and
donor-recipient cytomegalovirus serology. Parameters re-
lated to recipient include age, sex, ethnicity, body mass
index, cytomegalovirus serology, modality and duration of
dialysis, panel reactive antibodies at time of transplant-
ation and peak panel reactive antibodies, number of previ-
ous kidney transplantations, human leukocyte antigen
mismatches, preoperative systolic and diastolic blood
pressure at time of transplantation, diabetes mellitus, lipid
levels (triglycerides, total cholesterol, high-density lipo-
protein and low-density lipoprotein) at time of trans-
plantation, pulmonary hypertension (systolic pulmonary
artery pressure >35 mmHg during pretransplant evalu-
ation period), iliac artery atheromatosis or stenosis
(imaging studies during pretransplant evaluation period
or assessment during transplantation), reduced cardiac
function (ejection fraction <40 % during pretransplant
evaluation period using echocardiography or coronary
catheterization), impaired effective circulating volume
(clinical assessment at time of transplantation), abdom-
inal compartment syndrome (clinical assessment at time of
transplantation), anti-thymocyte globulin induction therapy,
acute calcineurin inhibitor toxicity (serum level above the
recommended therapeutic range), urinary tract obstruction
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(assessment by surgeon during revision), and pretransplant
transfusion.
Categorical parameters with more than two pos-

sible values are converted to indicator parameters
(dummy variables) as required by most of the pre-
dictive models.

Feature selection
Feature (or variable) selection is a process of determin-
ing a subset of relevant parameters with respect to the
predictive models. Many parameters might be irrelevant
or contribute very little to the predictive models. Irrele-
vant parameters can actually degrade the prediction.
Hence, it is crucial to make a good selection of the most
influential subset of parameters.
In this study a recursive feature elimination procedure

is used based on 10-fold stratified cross-validation [26].
The relative importance of the features is ranked using
an external model, i.e., the coefficients of a logistic re-
gression model. The full feature set is then iteratively
pruned by removing the feature with the lowest import-
ance until the 10-fold stratified cross-validation score
decreases significantly, resulting in 24 selected parame-
ters (two categorical parameters out of 20 selected
parameters both have three possible values and are con-
verted to three indicator parameters, resulting in a total
of 24 selected parameters).

Statistical models
The reduced data set of 24 parameters is fitted using 9
distinct types of predictive models: logistic regression,
linear discriminant analysis, quadratic discriminant ana-
lysis, support vector machines (using linear, radial basis
function and polynomial kernels), decision tree, random
forest and stochastic gradient boosting. An exhaustive
grid search is used based on 10-fold stratified cross-
validation to determine the optimal hyper-parameters of
each predictive model. The hyper-parameters that are
optimized are presented in Table 1 with the optimal
values in bold. The hyper-parameters that are not de-
scribed in this table are set to the default values used in
the scikit-learn library [27].
Logistic regression (LR) is a linear model that assumes

that the targets follow a Gaussian distribution. A predic-
tion on a transplantation x is made using y(x) =wTx,
where w is the weight vector being learned.
Linear discriminant analysis (LDA) produces an opti-

mally weighted linear function of chosen log-transformed
markers and the discriminating threshold value minimizes
the expected number of misclassifications under the nor-
mal model.
Quadratic discriminant analysis (QDA) is related to

LDA. Unlike LDA however, there is no assumption that
the covariance of each class is identical. This produces a

quadratic discriminant function, which contains second
order terms.
Support vector machines (SVMs) are sparse kernel

machines, a type of models that rely only on a subset of
the data (the support vectors) to predict unknown class
labels. SVMs separate input data using a good-fitting
hyperplane. Kernels can be used to transform this hyper-
plane into a non-linear input separator. We chose a lin-
ear, a radial basis function and a polynomial kernel.
A decision tree (DT) separates the data (the parent

node) into two subsets (the child nodes) by the best
splitting feature. The two resulting subsets become the
new parent nodes, which are subsequently split further
into two child nodes. This procedure continues until all
observations are classified.
Random forest (RF) is an ensemble machine learning

method based on the construction of multiple decision
trees. The main underlying technique is bootstrap aggre-
gating (bagging). In each decision tree, a data point falls
into a particular leaf depending on its features and is
assigned a prediction. The predictions of the data points
are then averaged. RF has a built-in feature selection
system and allows for joint features, making it not only
an additive model but also a multiplicative one.
Stochastic gradient boosting (SGB) constructs additive

regression tree models sequentially to fit pseudo-residuals
of previous cumulative models. This stepwise manner
combines the performance of weak learners (i.e., regres-
sion trees here) iteratively into a strong learner with high
accuracy.
As RF has a built-in feature selection system, the full

data set of all collected parameters is also fitted using
RF. By doing this, we can compare the performance
between the RF fitted on the reduced data set and the
RF fitted on the full data set, to evaluate if the recursive
feature elimination procedure influences the built-in
feature selection of RF.

Model validation
Performance of the models is assessed by computing the
diagnostic test characteristics, including sensitivity and
positive predictive value (PPV), and by evaluating the
discriminative capacity, using the area under the receiver
operating characteristic curve (AUROC), which mea-
sures how well the relative ranking of the individual risk
is in substantially the correct order (observed incidence
in those with higher predicted risks are higher).
10-fold stratified cross-validation is used to obtain a bet-

ter generalization estimate of the performance. In 10-fold
stratified cross-validation, the data set is partitioned into
ten equal size folds such that each fold contains roughly
the same proportion of ‘DGF’ and ‘no DGF’ class labels.
Of the ten folds, a single fold is retained as the validation
data for testing the model, and the remaining nine folds
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are used as training data. The cross-validation process is
then repeated ten times, with each of the ten folds used
exactly once as the validation data. The ten results from
the folds are averaged to produce a single estimation. The
advantage is that all observations are used for both
training and validation, and each observation is used for
validation exactly once.

Model comparison
Subsequently, the models are pairwise compared. For
each model, the AUROC is computed in each of the ten
folds. The ten values for the AUROC of one model are
compared with the values of another model using the
two-sided Wilcoxon signed-rank test at 5 % significance
level.

Table 1 Optimal hyper-parameters after exhaustive grid search

Statistical method Hyper-parameter Values

Decision tree Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

Maximum depth 1 to 10 (8)

Minimum samples split 2 to nVars+1 (18)

Maximum features auto, sqrt, log2

Random forest Number of estimators 1000

Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

Maximum depth 1 to 10 (9)

Minimum samples split 2 to nVars+1 (24)

Maximum features auto, sqrt, log2

Random forest (full) Number of estimators 1000

Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

Maximum depth 1 to 10 (1)

Minimum samples split 2 to nVars+1 (63)

Maximum features auto, sqrt, log2

Gradient boosting Number of estimators 1000

Maximum depth 1 to 10 (1)

Minimum samples split 2 to nVars+1 (9)

Maximum features auto, sqrt, log2

Learning rate 0.1, 0.05, 0.02, 0.01

LDA Number of components None or 1 to nVars +1

QDA Regularizing parameter 0 to 1 (0.89)

Linear SVM Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

C 0.001, 0.01, 0.1, 1, 10, 100, 1000

Radial SVM Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

C 0.001, 0.01, 0.1,1, 10, 100, 1000

Gamma 0.1, 0.01, 0.001, 0.0001

Polynomial SVM Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

C 0.001, 0.01, 0.1,1, 10, 100, 1000

Gamma 0.1, 0.01, 0.001, 0.0001

Logistic regression Class weights auto, 0 to 0.20 and 1 to 0.80, 0 to 0.10 and 1
to 0.90, 0 to 0.05 and 1 to 0.95

C 0.001, 0.01, 0.1,1, 10, 100, 1000

The hyper-parameters that are not described in this table are set to the default values used in the scikit-learn library [27]
Abbreviations: LDA linear discriminant analysis, QDA quadratic discriminant analysis, SVM support vector machine
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All computations are carried out using Python, specific-
ally in the SciPy environment using the scikit-learn library
[27]. Continuous data are presented as mean ± standard
deviation and categorical data are reported as percentages.
Counts are put in parentheses.

Results
Descriptive statistics
The most relevant donor, preservation/operation, and
recipient characteristics are presented in Table 2. After
exclusion, 497 transplantations are used for the analysis,
consisting of 432 unique donors (362 donated a single
kidney to a recipient of our center and the other kidney
to a recipient of a different center, 5 donated both kid-
neys to the same recipient of our center, and 65 donated
both kidneys to different recipients of our center) and
496 unique recipients (1 recipient underwent two kidney
transplantations at different times from deceased donors
during the study period). The observed incidence of
DGF is 12.5 % (62/497).
This imbalance in the data set is addressed by assigning

more weight to the ‘DGF’ class during the learning phase
of the predictive models. Only 11 (categorical) parameters
out of the 55 retrospectively collected parameters are in-
complete and contain missing values for a number of
transplantations. The most frequent occurring value,
which is the ‘normal’ category, is used to fill in these miss-
ing values. This is a safe assumption, because ‘abnormal’
values for risk factors are more likely to be emphasized
and registered in the electronic medical records. However,
‘normal’ values are not always routinely registered in the
electronic medical records and are retrospectively consid-
ered as missing values.

Model performance and comparison
Diagnostic test characteristics and AUROCs after 10-fold
stratified cross-validation are presented in Table 3. The re-
ceiver operating characteristic curves and the p-values of
the pairwise AUROC comparisons are presented in Figs. 1
and 2, respectively. The selected features and their respect-
ive odds ratios (LR), Z-scores (linear SVM), and Gini index
(RF fitted on the full data set) are presented in Table 4.
DT is not able to discriminate between recipients with

and without DGF (AUROC of 52.5 %) and is inferior to
the other methods.
As SGB and RF mainly have high sensitivity (98.8 and

96.3 %, respectively) and high PPVs (89.2 and 89.0 %,
respectively) in identifying recipients without DGF, their
discriminative capacity (AUROC of 77.2 and 73.9 %, re-
spectively) is superior to DT. However, RF is still outper-
formed by LDA, QDA, linear SVM, radial SVM and LR.
SGB is only outperformed by linear SVM.
LDA and QDA already have higher sensitivity in identi-

fying recipients with DGF (27.6 and 37.6 %, respectively)

and only slightly lower sensitivity in identifying recipients
without DGF (94.7 and 89.9 %, respectively), resulting in
higher discriminative capacity (AUROC of 82.2 and
79.6 %, respectively). Both LDA and QDA outperform DT
and RF, but only QDA is inferior to linear SVM.
Amongst all methods used, linear SVM, radial SVM and

LR have the highest sensitivity in identifying recipients with

Table 2 Baseline characteristics (n = 497)

Donor

Sex

male 60.4 % (300)

female 39.6 % (197)

Subtype

DBD 90.3 % (449)

DCD 9.7 % (48)

Age (year) 42.6 ± 14.77

Terminal SCr (mg/dL) 0.878 ± 0.4757

Preservation/Operation

Preservation solution

HTK 31.0 % (154)

HTK + UW 0.2 % (1)

UW 68.6 % (341)

missing 0.2 % (1)

CIT (hour) 14.19 ± 4.328

WIT (min) 22.3 ± 7.09

Recipient

Sex

male 66.6 % (331)

female 33.4 % (166)

Modality of dialysis

hemodialysis 71.2 % (354)

peritoneal dialysis 22.7 % (113)

pre-emptive 6.0 % (30)

HLA mismatches

0 8.9 % (44)

1 7.8 % (39)

2 26.4 % (131)

3 40.8 % (203)

4 10.9 % (54)

5 4.0 % (20)

6 1.2 % (6)

Age (year) 52.8 ± 11.68

Duration of dialysis (year) 2.7 ± 1.68

PRA at time of Tx (%) 2.7 ± 11.44

Abbreviations: CIT cold ischemia time, DBD donor after brain death, DCD donor
after cardiac/circulatory death, HLA human leukocyte antigen, HTK histidine-
tryptophan-ketoglutarate, PRA panel reactive antibody, SCr serum creatinine,
Tx transplantation, UW University of Wisconsin, WIT warm ischemia time
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DGF (83.8, 88.8 and 85.5 %, respectively), at the expense of
identifying recipients without DGF (72.0, 57.9 and 65.0 %,
respectively). However, their capability to identify both out-
comes is reflected in a strong discriminative capacity
(AUROC of 84.3, 83.3 and 81.7 %, respectively). Linear
SVM outperforms each method, except for radial SVM,
polynomial SVM and LDA. Radial SVM and LR outper-
form DTand RF, but only LR is inferior to linear SVM.

The performance of polynomial SVM is similar to that
of SGB and RF, with high sensitivity (97.5 %) and high
PPV (88.5 %) in identifying recipients without DGF,
resulting in an AUROC of 79.8 %. Polynomial SVM also
outperforms DT. Unlike SGB and RF however, it is not
inferior to any of the methods used.
RF fitted on the full data set has a sensitivity of 100 %

and a PPV of 87.5 % in identifying recipients without

Table 3 Performance of the statistical methods after 10-fold stratified cross-validation

Statistical method Sensitivity (%) PPV (%) AUROC (%)

No DGF DGF No DGF DGF

Decision tree 75.4 ± 6.64 29.5 ± 16.29 88.2 ± 2.73 14.2 ± 8.13 52.5 ± 8.55

Gradient boosting 98.8 ± 1.55 16.2 ± 12.94 89.2 ± 1.67 58.3 ± 38.19 77.2 ± 9.64

Random forest 96.3 ± 4.05 16.4 ± 14.92 89.0 ± 2.09 43.9 ± 38.19 73.9 ± 9.94

Random forest (full) 100.0 ± 0.00 0.0 ± 0.00 87.5 ± 0.64 0.0 ± 0.00 71.6 ± 12.38

LDA 94.7 ± 2.92 27.6 ± 15.10 90.2 ± 2.00 42.3 ± 19.94 82.2 ± 6.14

QDA 89.9 ± 5.35 37.6 ± 17.26 91.0 ± 2.55 37.9 ± 20.82 79.6 ± 7.55

Linear SVM 72.0 ± 6.29 83.8 ± 7.51 96.9 ± 1.34 30.6 ± 5.60 84.3 ± 4.11

Radial SVM 57.9 ± 7.45 88.8 ± 7.38 97.2 ± 1.87 23.6 ± 4.14 83.3 ± 4.05

Polynomial SVM 97.5 ± 1.90 10.9 ± 12.20 88.5 ± 1.14 24.0 ± 24.17 79.8 ± 5.33

Logistic regression 65.0 ± 8.25 85.5 ± 8.94 96.9 ± 1.84 26.5 ± 4.75 81.7 ± 5.82

Abbreviations: AUROC area under the receiver operating characteristic curve, DGF delayed graft function, LDA linear discriminant analysis, PPV positive predictive
value, QDA quadratic discriminant analysis, SVM support vector machine

Fig. 1 Receiver operating characteristic curves after 10-fold stratified cross-validation. Abbreviations: AUROC area under the receiver operating
characteristic curve, LDA linear discriminant analysis, QDA quadratic discriminant analysis, SVM support vector machine
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DGF, resulting in an AUROC of 71.6 %. It is superior to
DT, which is fitted on the reduced data set and has no
discriminative capacity, and non-inferior to RF fitted on
the reduced data set. However, RF fitted on the full data
set is inferior to each of the other methods used.

Discussion
The risk prediction of DGF may be important in pre-
venting its deleterious short-term and long-term conse-
quences. To date, four predictive models are developed
as a clinical tool to quantify the risk for DGF [14–17].
All models are developed using LR. We compared in this
study several machine learning methods, including LR,
in terms of their predictive accuracy for DGF. There are
no studies that have used DT, SGB, RF, LDA, QDA or
SVM in the prediction of DGF.
In our study, DT is not able to discriminate between

recipients with and without DGF, and is inferior to the
other methods. SGB, RF and polynomial SVM are
mainly able to identify recipients without DGF and only
outperform DT. Despite lower sensitivity in varying
degrees to identify recipients without DGF, LDA, QDA,
radial SVM and LR also have the ability to identify
recipients with DGF, resulting in higher discriminative
capacity, which outperforms DT and RF. Linear SVM
has the highest discriminative capacity (AUROC of
84.3 %), outperforming each method, except for radial

SVM, polynomial SVM and LDA. However, it is the
only method superior to LR.
The AUROC focuses solely on the predictive accuracy

of a model. As such, it cannot tell us whether the model
is worth using in clinical practice, because it does not in-
corporate information on consequences. The method
with maximal accuracy is not necessarily the best to
choose. This choice should depend on the disadvantages
or costs of not identifying a recipient with DGF as op-
posed to incorrectly predicting DGF in a recipient who
will not develop it [28]. The advantages of an early hypo-
thetic treatment should be weighed against possible iat-
rogenic damage and unnecessary additional costs. If we
assume that the damage of an unnecessary treatment of
DGF (a false-positive result) is limited, a more sensitive
method should be used. If an unnecessary treatment is
harmful, a more specific method should be used. Of
course the trade-off between sensitivity and specificity
should be kept in mind: a very sensitive method is use-
less when it is not specific enough and vice versa [29].
Currently, the management of DGF consists of a careful

follow-up. Besides sonographic evaluation and precise bio-
chemical monitoring, a biopsy is often performed, which
is costly and invasive, possibly damaging the graft. Because
of the complex and multifactorial characteristics of DGF, a
standard therapy or drug does not yet exist [30]. Although
a biopsy might be harmful, this is outweighed by the

Fig. 2 P-values (%) of pairwise model comparison using Wilcoxon signed-rank test. Abbreviations: LDA linear discriminant analysis, QDA quadratic
discriminant analysis, SVM support vector machine
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potential benefit of an early management, because DGF
has deleterious short-term and long-term consequences.
To date, a more sensitive method is therefore preferred. In
our study, linear SVM, radial SVM and LR have the high-
est sensitivity in identifying recipients with DGF (83.8,
88.8 and 85.5 %, respectively).
To sum up, the discriminative capacities of LDA, linear

SVM, radial SVM and LR are the only ones above 80 %
(82.2, 84.3, 83.3 and 81.7 %, respectively). None of the
pairwise AUROC comparisons between these models is
statistically significant, except linear SVM outperforming
LR. Additionally, a method with higher sensitivity is
preferred over a method with higher specificity in the

prediction of DGF. The sensitivity of linear SVM to iden-
tify recipients with DGF (83.8 %) is amongst the three
highest of all methods used. Only radial SVM and LR have
a slightly higher sensitivity (88.8 and 85.5 %, respectively).
Due to both reasons, the authors believe that linear SVM
is most appropriate to predict DGF.
72.0 % of the recipients who will not develop DGF are

identified. These recipients can undergo the kidney trans-
plantation without the need for a more precise monitor-
ing. Only 3.1 % will still develop DGF. 83.8 % of the
recipients who will develop DGF are identified. These re-
cipients will have to be precisely monitored after kidney
transplantation, making an early identification of graft

Table 4 Weights of the selected features

Feature Odds ratio (LR)a Z-score (linear SVM)a Gini index (RF)b

Donor

Age (per 1 year) 1.060 0.744 0.037 (#9)

BMI (per 1 kg/m2) 0.751 −1.700 0.023 (#20)

Terminal SCr (per 1 mg/dL) 6.512 1.126 0.024 (#17.5)

Hypotensive episodes: yes vs. no 1.784 0.165 0.001 (#48.5)

Diabetes mellitus: yes vs. no 0.013 −1.041 0.001 (#48.5)

History of hypertension: yes vs. no 3.585 0.940 0.011 (#28)

Donor after cardiac death: yes vs. no 25.789 1.534 0.080 (#1)

Preservation/Operation

Machine perfusion: yes vs. no 0.003 −1.078 0.000 (#60)

Perioperative graft reperfusionc 0.740 −0.844 0.027 (#14.5)

Preservation solution

HTK + UW 0.00005 −0.510 0.000 (#60)

UW 0.080 −1.557 0.016 (#25)

HTK 0.050 −1.725 0.007 (#32.5)

Male donor-to-female recipient: yes vs. no 0.352 −0.750 0.019 (#23)

Recipient

BMI (per 1 kg/m2) 1.144 0.941 0.054 (#4)

Duration of dialysis (per 1 day) 1.0005 0.324 0.057 (#3)

PRA at time of Tx (per 1 %) 0.977 −0.557 0.008 (#30.5)

Peak PRA (per 1 %) 1.017 0.585 0.025 (#16)

Acute CNI toxicity: yes vs. no 22.044 0.964 0.007 (#32.5)

Reduced cardiac function: yes vs. no 5.570 0.897 0.033 (#13)

Impaired ECV: yes vs. no 0.003 −1.141 0.000 (#60)

Urinary tract obstruction: yes vs. no 6.638 0.942 0.004 (#38.5)

Iliac artery

normal 1.520 0.221 0.001 (#48.5)

atheromatosis 2.389 0.573 0.006 (#34.5)

stenosis 28.465 0.948 0.037 (#9)
aFitted on the reduced data set
bFitted on the full data set. Tied rank amongst all 68 features is given in parentheses
cPerioperative graft reperfusion is an ordinal feature (poor – patchy – moderate – good)
Abbreviations: BMI body mass index, CNI calcineurin inhibitor toxicity, ECV effective circulating volume, HTK histidine-tryptophan-ketoglutarate, LR logistic
regression, PRA panel reactive antibody, RF random forest, SCr serum creatinine, SVM support vector machine, Tx transplantation, UW University of Wisconsin
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dysfunction possible. 69.4 % of all positively identified re-
cipients will eventually not develop DGF.
Our study does have limitations. Firstly, our sample size

of approximately 500 transplantations is lower than in the
existing models. It is known that machine learning tech-
niques generally benefit from a large amount of data, in-
creasing their performance [19]. However, we benefited
from the detailed and high-quality peritransplant data that
could be collected, which is largely unavailable in regis-
tries. Secondly, the incidence of DGF in our cohort is
lower than in the existing models. This imbalance is ad-
dressed by assigning more weight to the ‘DGF’ class dur-
ing the learning phase of the predictive models. Thirdly,
single-center models limit generalizability. However, we
used cross-validation to attenuate the generalization error.
Finally, our analysis included most, but not all, of the
identified risk factors for DGF.

Conclusions
Nine distinct types of predictive models for DGF are
considered. The discriminative capacities of LDA, linear
SVM, radial SVM and LR are the only ones above 80 %.
None of the pairwise AUROC comparisons between
these models is statistically significant, except linear
SVM outperforming LR. Additionally, a method with
higher sensitivity is preferred over a method with higher
specificity in the prediction of DGF, because the damage
of an unnecessary biopsy is outweighed by the potential
benefit of an early management. The sensitivity of linear
SVM to identify recipients with DGF is amongst the
three highest of all models. Due to both reasons, the
authors believe that linear SVM is most appropriate to
predict DGF.

Abbreviations
AUROC: Area under the receiver operating characteristic curve; DGF: Delayed
graft function; DT: Decision tree; LDA: Linear discriminant analysis;
LR: Logistic regression; PPV: Positive predictive value; QDA: Quadratic
discriminant analysis; RF: Random forest; SGB: Stochastic gradient boosting;
SVM: Support vector machine.
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