428 research outputs found

    A communication-free decentralized control for grid-connected cascaded pv inverters

    Get PDF
    This paper proposes a communication-free decentralized control for grid-connected cascaded PV inverter systems. The cascaded PV inverter system is an AC-stacked architecture, which promotes the integration of low voltage (LV) distributed photovoltaic (PV) generators into the medium/high voltage (MV/HV) power grid. The proposed decentralized control is fully free of communication links and phase-locked loop (PLL). All cascaded inverters are controlled as current controlled voltage sources locally and independently to achieve maximum power point tracking (MPPT) and frequency self-synchronization with the power grid. As a result, control complexity as well as communication costs are reduced, and the system’s reliability is greatly enhanced compared with existing communication-based methods. System stability and dynamic performance are evaluated by small-signal analysis to guide the design of system parameters. The feasibility and effectiveness of the proposed solution are verified by simulation tests

    Distributed Control and Advanced Modulation of Cascaded Photovoltaic-Battery Converter Systems

    Get PDF

    Model predictive control of a microgrid with energy-stored quasi-Z-source cascaded H-bridge multilevel inverter and PV systems

    Get PDF
    This paper presents a new energy management system (EMS) based on model predictive control (MPC) for a microgrid with solar photovoltaic (PV) power plants and a quasi-Z-source cascaded H-bridge multilevel inverter that integrates an energy storage system (ES-qZS-CHBMLI). The system comprises three modules, each with a PV power plant, quasi-impedance network, battery energy storage system (BESS), and voltage source inverter (VSI). Traditional EMS methods focus on distributing the power among the BESSs to balance their state of charge (SOC), operating in charging or discharging mode. The proposed MPC-EMS carries out a multi-objective control for an ES-qZS-CHBMLI topology, which allows an optimized BESS power distribution while meeting the system operator requirements. It prioritizes the charge of the BESS with the lowest SOC and the discharge of the BESS with the highest SOC. Thus, both modes can coexist simultaneously, while ensuring decoupled power control. The MPC-EMS proposed herein is compared with a proportional sharing algorithm based on SOC (SOC-EMS) that pursues the same objectives. The simulation results show an improvement in the control of the power delivered to the grid. The Integral Time Absolute Error, ITAE, achieved with the MPC-EMS for the active and reactive power is 20 % and 4 %, respectively, lower than that obtained with the SOC-EMS. A 1,3 % higher charge for the BESS with the lowest SOC is also registered. Furthermore, an experimental setup based on an OPAL RT-4510 unit and a dSPACE MicroLabBox prototyping unit is implemented to validate the simulation result

    Distributed Control of Islanded Series PV-Battery-Hybrid Systems with Low Communication Burden

    Get PDF

    A Review of Management Architectures and Balancing Strategies in Smart Batteries

    Get PDF

    Modular Medium-Voltage Grid-Connected Converter with Improved Switching Techniques for Solar Photovoltaic Systems

    Full text link
    © 1982-2012 IEEE. The high-frequency common magnetic-link made of amorphous material, as a replacement for common dc-link, has been gaining considerable interest for the development of solar photovoltaic medium-voltage converters. Even though the common magnetic-link can almost maintain identical voltages at the secondary terminals, the power conversion system loses its modularity. Moreover, the development of high-capacity high-frequency inverter and power limit of the common magnetic-link due to leakage inductance are the main challenging issues. In this regard, a new concept of identical modular magnetic-links is proposed for high-power transmission and isolation between the low and the high voltage sides. Third harmonic injected sixty degree bus clamping pulse width modulation and third harmonic injected thirty degree bus clamping pulse width modulation techniques are proposed which show better frequency spectra as well as reduced switching loss. In this paper, precise loss estimation method is used to calculate switching and conduction losses of a modular multilevel cascaded converter. To ensure the feasibility of the new concepts, a reduced size of 5 kVA rating, three-phase, five-level, 1.2 kV converter is designed with two 2.5 kVA identical high-frequency magnetic-links using Metglas magnetic alloy-based cores

    Power Electronic Architecture for Multi-Vehicle Extreme Fast Charging Stations

    Get PDF
    Electric vehicles (EV) are quickly gaining popularity but limited driving range and a lack of fast charging infrastructure are preventing widespread use when compared with gas powered vehicles. This gave rise to the concept of multi-vehicle extreme fast charging (XFC) stations. Extreme fast charging imposes challenges in the forms of power delivery, battery management, and energy dispatch. The extreme load demand must be handled in such a way that users may receive a timely charge with minimal impacts on the electric grid. Power electronics are implemented to address these challenges with highly power dense and efficient solutions. This work explores a power electronic architecture as one such solution. The system consists of three parts: a cascaded H-bridge (CHB) active rectifier that interfaces to a medium voltage (MV) grid, a dual active bridge (DAB) based solid state transformer (SST) that provides isolation and forms a low voltage DC (LVDC) bus, and full bridge DC-DC converters configured as partial power converters (PPC) that interface with the vehicle battery
    corecore