747 research outputs found

    A Black-Box Physics-Informed Estimator based on Gaussian Process Regression for Robot Inverse Dynamics Identification

    Full text link
    In this paper, we propose a black-box model based on Gaussian process regression for the identification of the inverse dynamics of robotic manipulators. The proposed model relies on a novel multidimensional kernel, called \textit{Lagrangian Inspired Polynomial} (\kernelInitials{}) kernel. The \kernelInitials{} kernel is based on two main ideas. First, instead of directly modeling the inverse dynamics components, we model as GPs the kinetic and potential energy of the system. The GP prior on the inverse dynamics components is derived from those on the energies by applying the properties of GPs under linear operators. Second, as regards the energy prior definition, we prove a polynomial structure of the kinetic and potential energy, and we derive a polynomial kernel that encodes this property. As a consequence, the proposed model allows also to estimate the kinetic and potential energy without requiring any label on these quantities. Results on simulation and on two real robotic manipulators, namely a 7 DOF Franka Emika Panda and a 6 DOF MELFA RV4FL, show that the proposed model outperforms state-of-the-art black-box estimators based both on Gaussian Processes and Neural Networks in terms of accuracy, generality and data efficiency. The experiments on the MELFA robot also demonstrate that our approach achieves performance comparable to fine-tuned model-based estimators, despite requiring less prior information

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Object classification in semi structured enviroment using forward-looking sonar

    Get PDF
    La exploración submarina utilizando robots ha ido en aumento en los últimos años. La automatización de tareas tales como monitoreo, inspección y mantenimiento bajo el agua requiere la comprensión del entorno del robot. El reconocimiento de objetos en la escena se está convirtiendo en un problema crítico para estos sistemas. En este trabajo, se estudia una tubería de clasificación de objetos bajo el agua aplicada en imágenes acústicas adquiridas por Forward-Looking Sonar (FLS). La segmentación de objetos combina el umbral, la búsqueda de píxeles conectados y las técnicas de análisis de picos de intensidad. El descriptor del objeto extrae la intensidad y las características geométricas de los objetos detectados. Se presenta una comparación entre los clasificadores Máquina de vectores de soporte, Vecinos más cercanos a K y Árboles aleatorios. Se desarrolló una herramienta de código abierto para anotar y clasificar los objetos y evaluar su rendimiento de clasificación. El método propuesto segmenta y clasifica eficientemente las estructuras en la escena utilizando un conjunto de datos real adquirido por un vehículo submarino en un área de puerto. Los resultados experimentales demuestran la solidez y precisión del método descrito en este documento.The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper.• National Institute of Science and Technology - Integrated Oceanography and Multiple Uses of the Continental Shelf and Adjacent Ocean - Integrated Oceanography Center INCT-Mar COI funded by CNPq. Beca 610012/2011-8 • BS-NAVLOC (CAPES no 321/15, DGPU 7523 / 14-9, proyecto MEC PHBP14 / 00083)peerReviewe

    Model-Based Policy Search Using Monte Carlo Gradient Estimation with Real Systems Application

    Full text link
    In this paper, we present a Model-Based Reinforcement Learning algorithm named Monte Carlo Probabilistic Inference for Learning COntrol (MC-PILCO). The algorithm relies on Gaussian Processes (GPs) to model the system dynamics and on a Monte Carlo approach to estimate the policy gradient. This defines a framework in which we ablate the choice of the following components: (i) the selection of the cost function, (ii) the optimization of policies using dropout, (iii) an improved data efficiency through the use of structured kernels in the GP models. The combination of the aforementioned aspects affects dramatically the performance of MC-PILCO. Numerical comparisons in a simulated cart-pole environment show that MC-PILCO exhibits better data-efficiency and control performance w.r.t. state-of-the-art GP-based MBRL algorithms. Finally, we apply MC-PILCO to real systems, considering in particular systems with partially measurable states. We discuss the importance of modeling both the measurement system and the state estimators during policy optimization. The effectiveness of the proposed solutions has been tested in simulation and in two real systems, a Furuta pendulum and a ball-and-plate.Comment: Submitted to IEEE Transactions on Robotic

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling
    corecore