23,759 research outputs found

    Can virtual reality predict body part discomfort and performance of people in realistic world for assembling tasks?

    Get PDF
    This paper presents our work on relationship of evaluation results between virtual environment (VE) and realistic environment (RE) for assembling tasks. Evaluation results consist of subjective results (BPD and RPE) and objective results (posture and physical performance). Same tasks were performed with same experimental configurations and evaluation results were measured in RE and VE respectively. Then these evaluation results were compared. Slight difference of posture between VE and RE was found but not great difference of effect on people according to conventional ergonomics posture assessment method. Correlation of BPD and performance results between VE and RE are found by linear regression method. Moreover, results of BPD, physical performance, and RPE in VE are higher than that in RE with significant difference. Furthermore, these results indicates that subjects feel more discomfort and fatigue in VE than RE because of additional effort required in VE

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials

    Design and Development of an Ergonomic Hybrid Forklift Seat

    Get PDF
    Ergonomic designs have positive impact on the end-user experience of any product. One of the main challenges is to accommodate a range of end-users, for which the concept of adjustability has been found to be very effective. The backrest in a forklift, for example, is provided for comfortable driving in the form of leaning/sitting postures. An ergonomic backrest has to consider the anthropometric variation in the human population to ensure optimum levels of comfort for everyone. This study provides a comprehensive methodology for developing an ergonomic backrest by combining the features of two different backrests and incorporating the adjustability concept into the design. Our study comprised of both, field and laboratory evaluations of the original and new designs for a variety of anthropometric characteristics (5th, 50th and 95th percentiles of both males and females). Using the phenomenon of restlessness, discomfort of the user was associated with the amount of body movement, where we have used the motion-capture system and the force platform to quantify the individuals’ movements. The results of the field evaluation indicated that the new backrest improved comfort during both static and driving tasks by ~10% and 23%, respectively. The results of objective metrics showed a reduction in the mean torso and the maximum center of pressure change of locations by 300 and 6 mm, respectively, for the new design. Further, the change in movement during the trials as assessed by the deviation in center of pressure measure was decreased (12%, p-value=0.32) for the new design, compared to the increase of 47% (p-value=0.0078) for the original design, suggesting that new backrest performed better over time. Based on these findings, the new design was further improved. Outcomes of this study may facilitate higher comfort levels to a wide range of forklift operators using a new adjustability concept

    Li-BIM, an agent-based approach to simulate occupant-building interaction from the Building-Information Modelling

    Get PDF
    International audienceBuilding design involves many challenges and requires to take into account the interaction between the building and the users. Different occupant behaviour models implemented with building simulation tools (thermal, air quality, lighting) have been proposed. Among these, models based on the agent approach seem to be the most promising. However, existing models poorly describe human cognition and the social dimension. Moreover, they are often oriented towards a specific use (thermal simulation, waste management) without being transposable to another field, and they require a significant instantiation effort for each new case, making their use difficult. This article proposes an agent-based model called Li-BIM that simulates the behaviour of the occupants in a building and their indoor comfort. Li-BIM model is structured around the numerical modelling of the building-BIM-(with standard exchange format IFC), a high-resolution cognitive model, and the coupling with various physical models. Li-BIM simulates the reactive, deliberative and social behaviour of occupants in residential dwellings based on the Belief-Desire-Intention architecture. This model, thanks its ease of use and flexibility, is an operational and relevant tool to support building design process with a human-centred approach. An application of the model is presented, focusing on energy consumption and the inhabitants' comfort. In-situ data obtained from the instrumented house that served as case study have been compared with simulation results from Li-BIM and a standard energy simulation software, demonstrating the reliability of the proposed model

    Workforce challenges: 'inclusive design' for organizational sustainability

    Get PDF
    Today's challenge for workforce management lies in providing a healthy, safe and productive working culture where people are valued, empowered and respected. Workforce diversity is becoming an essential aspect of the global workforce, and ageing is the most prominent and significant factor in this regard. Diversity brings many opportunities and challenges, as workers with different backgrounds, cultures, working attitudes, behaviours and age work together, and in future, the key to organizational effectiveness and sustainability will heavily depend on developing and sustaining inclusive work environments where people with their differences can co-exist safely and productively. Manufacturing organizations expect the highest levels of productivity and quality, but unfortunately the manufacturing system design process does not take into account human variability issues caused by age, skill, experience, attitude towards work etc. This thesis focuses on proposing an inclusive design methodology to address the design needs of a broader range of the population. However, the promotion and implementation of an inclusive design method is challenging due to the lack of relevant data and lack of relevant tools and methods to help designers. This research aims to support the inclusive design process by providing relevant data and developing new design methodologies. The inclusive design methodology suggested in this thesis is a three step approach for achieving a safe and sustainable work environment for workers, with special concern for older workers. The methodology is based on the provision of relevant human capabilities data, the capture and analysis of difference in human behaviour and the use of this knowledge in a digital human modelling tool. The research is focused on manual assembly through a case study in the furniture manufacturing industry and joint mobility data from a wide-ranging population has been analysed and the task performing strategies and behaviours of workers with different levels of skills have been recorded and analysed. It has been shown that joint mobility significantly decreases with age and disability and that skilful workers are likely to adopt safer and more productive working strategies. A digital human modelling based inclusive design strategy was found to be useful in addressing the design needs of older workers performing manufacturing assembly activities. This strategy validates the concept of using human capabilities data for assessing the level of acceptability of any adopted strategy for older workers, and suggests that the strategies adopted by skilful workers are more likely to be equally acceptable for older and younger workers keeping in view differences in their joint mobility. The overall purpose of this thesis is to present a road map towards the promotion and implementation of the inclusive design method for addressing workforce challenges and in future the same strategies might be implemented within a variety of other industrial applications. The proposed three step inclusive design methodology and getting a reasonable understanding of human variability issues along with the use of human capabilities data (joint mobility in this case) in a human modelling system for design assessment at a pre-design stage can be considered as the major contributions of this research

    Re-design of drivers’ car seat using three dimensional reverse engineering

    Get PDF
    Automobile seat design in current practice requires satisfying the ergonomics guidelines as well as considers the comfort expectation of the population. The main aim is to re-examine the existing car seat designs and to propose a novel seat design for better comfort. The number of cars reviewed for drivers’ seat features and user comfort are based on the analysis using a statistical tool. The statistical tool analysis is defined using data from the survey conducted. The proposed design is obtained using the 3-D Reverse Engineering procedure on the selected car seat models. The result is assessed to show that the modified car seat design is superior in terms of form, shape, seat features, usability and comfort. Through this work, the basic seat needs while driving, for example pain preclusion aspects and comfort weightage are defined. The survey done can expunge the expenditure for test experimentations in the future and the proposed methodology can be useful in establishing new design standards for the seat
    corecore