339 research outputs found

    QoS monitoring in real-time streaming overlays based on lock-free data structures

    Get PDF
    AbstractPeer-to-peer streaming is a well-known technology for the large-scale distribution of real-time audio/video contents. Delay requirements are very strict in interactive real-time scenarios (such as synchronous distance learning), where playback lag should be of the order of seconds. Playback continuity is another key aspect in these cases: in presence of peer churning and network congestion, a peer-to-peer overlay should quickly rearrange connections among receiving nodes to avoid freezing phenomena that may compromise audio/video understanding. For this reason, we designed a QoS monitoring algorithm that quickly detects broken or congested links: each receiving node is able to independently decide whether it should switch to a secondary sending node, called "fallback node". The architecture takes advantage of a multithreaded design based on lock-free data structures, which improve the performance by avoiding synchronization among threads. We will show the good responsiveness of the proposed approach on machines with different computational capabilities: measured times prove both departures of nodes and QoS degradations are promptly detected and clients can quickly restore a stream reception. According to PSNR and SSIM, two well-known full-reference video quality metrics, QoE remains acceptable on receiving nodes of our resilient overlay also in presence of swap procedures

    Multiple description image and video coding for P2P transmissions

    Get PDF
    Peer-to-Peer (P2P) media streaming is, nowadays, a very attractive topic due to the bandwidth available to serve demanding content scales. A key challenge, however, is making content distribution robust to peer transience. Multiple description coding (MDC) has, indeed, proven to be very effective with problems concerning the packets’ losses, since it generates several descriptions and may reconstruct the original information with any number of descriptions that may reach the decoder. Therefore multiple descriptions may be effective for robust peer-to-peer media streaming. In this dissertation, it will not only be showed that, but also that varying the redundancy level of description on the fly may lead to a better performance than the one obtained without varying this parameter. Besides that, it is shown, as well, that varying the Bitrate on the fly outperforms the redundancy on it. Furthermore, the redundancy and the Bitrate were varied simultaneously. Thus, it is shown that this variation is more efficient when the packet loss is high. The experiments reported above were done using an experimental test bed developed for this purpose at the NMCG lab of the University of Beira Interior. It was also used the REGPROT, a video encoder developed by our research team, to splitted the video into multiple descriptions, which were, later, distributed among the peers in the test bed. After the request of the client, the referred encoder decoded the descriptions as they were being received.Fundação para a Ciência e a Tecnologia (FCT

    Metrics, fundamental trade-offs and control policies for delay-sensitive applications in volatile environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 137-142).With the explosion of consumer demand, media streaming will soon be the dominant type of Internet traffic. Since such applications are intrinsically delay-sensitive, the conventional network control policies and coding algorithms may not be appropriate tools for data dissemination over networks. The major issue with design and analysis of delay-sensitive applications is the notion of delay, which significantly varies across different applications and time scales. We present a framework for studying the problem of media streaming in an unreliable environment. The focus of this work is on end-user experience for such applications. First, we take an analytical approach to study fundamental rate-delay-reliability trade-offs in the context of media streaming for a single receiver system. We consider the probability of interruption in media playback (buffer underflow) as well as the number of initially buffered packets (initial waiting time) as the Quality of user Experience (QoE) metrics. We characterize the optimal trade-off between these metrics as a function of system parameters such as the packet arrival rate and the file size, for different channel models. For a memoryless channel, we model the receiver's queue dynamics as an M/D/1 queue. Then, we show that for arrival rates slightly larger than the play rate, the minimum initial buffering required to achieve certain level of interruption probability remains bounded as the file size grows. For the case where the arrival rate and the play rate match, the minimum initial buffer size should scale as the square root of the file size. We also study media streaming over channels with memory, modeled using Markovian arrival processes. We characterize the optimal trade-off curves for the infinite file size case, in such Markovian environments. Second, we generalize the results to the case of multiple servers or peers streaming to a single receiver. Random linear network coding allows us to simplify the packet selection strategies and alleviate issues such as duplicate packet reception. We show that the multi-server streaming problem over a memoryless channel can be transformed into a single-server streaming problem, for which we have characterized QoE trade-offs. Third, we study the design of media streaming applications in the presence of multiple heterogeneous wireless access methods with different access costs. Our objective is to analytically characterize the trade-off between usage cost and QoE metrics. We model each access network as a server that provides packets to the user according to a Poisson process with a certain rate and cost. User must make a decision on how many packets to buffer before playback, and which networks to access during the playback. We design, analyze and compare several control policies. In particular, we show that a simple Markov policy with a threshold structure performs the best. We formulate the problem of finding the optimal control policy as a Markov Decision Process (MDP) with a probabilistic constraint. We present the Hamilton-Jacobi-Bellman (HJB) equation for this problem by expanding the state space, and exploit it as a verification method for optimality of the proposed control policy. We use the tools and techniques developed for media streaming applications in the context of power supply networks. We study the value of storage in securing reliability of a system with uncertain supply and demand, and supply friction. We assume storage, when available, can be used to compensate, fully or partially, for the surge in demand or loss of supply. We formulate the problem of optimal utilization of storage with the objective of maximizing system reliability as minimization of the expected discounted cost of blackouts over an infinite horizon. We show that when the stage cost is linear in the size of the blackout, the optimal policy is myopic in the sense that all shocks are compensated by storage up to the available level of storage. However, when the stage cost is strictly convex, it may be optimal to curtail some of the demand and allow a small current blackout in the interest of maintaining a higher level of reserve to avoid a large blackout in the future. Finally, we examine the value of storage capacity in improving system's reliability, as well as the effects of the associated optimal policies under different stage costs on the probability distribution of blackouts.by Ali ParandehGheibi.Ph.D

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Providing Best Quality Of Video Streaming Using AMES Method

    Get PDF
    In wireless networks(mobile networks) the wireless link capacity cannot be stable with the demand of traffic over the networks. Due to the gap between the traffic demand and the link capacity it results in poor service quality of video streaming over mobile networks. Long buffering time and intermittent disruptions results in poor service quality of video streaming. Hence we propose a new mobile video streaming framework, dubbed AMES-Cloud, which consists of two main parts namely AMoV (adaptive mobile video streaming) and ESoV(efficient social video sharing). To provide efficient video streaming services for each mobile user AMoV and ESoV construct a private agent. AMoV lets her private agent adaptively adjust her streaming flow with scalable video coding technique based on the feedback of link quality. Likewise ESoV lets her private agents to pre-fetch video content in advance and also monitors the social network interactions among mobile users

    Application framework for wireless sensor networks [thesis]

    Get PDF
    Wireless Sensor Networks (WSNs) are based on innovative technologies that had revolutionized the methods in which we interact with the environment; i.e., through sensing the physical (e.g., fire motion, contact) and chemical (e.g., molecular concentration) properties of the natural surroundings. The hardware in which utilized by WSNs is rapidly evolving into sophisticated platforms that seamlessly integrate with different vendors and protocols (plug-n-play). In this thesis, we propose a WSN framework which provides assistance with monitoring environmental conditions; we focus on three main applications which include: a. Air-quality monitoring, b. Gas-leak detection, and c. Fire sensing. The framework involves four specifications: 1. Over the air programming (OTAP), 2. Network interconnections, 3. Sensors manageability, and 4. Alarm signaling. Their aim is to enhance the internetwork relations between the WSNs and the outside-world (i.e., main users, clients, or audience); by creating a medium in which devices efficiently communicate, independent of location or infrastructure (e.g., Internet), in order to exchange data among networked-objects and their users. Therefore, we propose a WSN-over-IP architecture which provides several renowned services of the Internet; the major functionalities include: live-data streaming (real-time), e-mailing, cloud storage (external servers), and network technologies (e.g., LAN or WLAN). WSNs themselves operate independently of the Internet; i.e., their operation involve unique protocols and specific hardware requirements which are incompatible with common network platforms (e.g., within home network infrastructure). Hybrid technologies are those which support multiple data-communication protocols within a single device; their main capabilities involve seamless integration and interoperability of different hardware vendors. We propose an overall architecture based on hybrid communication technology in which data is transmitted using three types of protocols: 802.11 (Wi-Fi), 802.15.4 and Digimesh (WSN)

    Scalable Streaming Multimedia Delivery using Peer-to-Peer Communication

    Get PDF

    Computer Science's Digest Volume 1

    Get PDF
    This series is dedicated to the students of the Systems Department, to give them reading material related to computer science in a second language. This book covers the Introduction to Computer Science, Computer Communications, Networking and Web Applications
    corecore