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Abstract

With the explosion of consumer demand, media streaming will soon be the dominant
type of Internet traffic. Since such applications are intrinsically delay-sensitive, the
conventional network control policies and coding algorithms may not be appropriate
tools for data dissemination over networks. The major issue with design and analysis
of delay-sensitive applications is the notion of delay, which significantly varies across
different applications and time scales.

We present a framework for studying the problem of media streaming in an un-
reliable environment. The focus of this work is on end-user experience for such ap-
plications. First, we take an analytical approach to study fundamental rate-delay-
reliability trade-offs in the context of media streaming for a single receiver system.
We consider the probability of interruption in media playback (buffer underflow) as
well as the number of initially buffered packets (initial waiting time) as the Quality
of user Experience (QoE) metrics. We characterize the optimal trade-off between
these metrics as a function of system parameters such as the packet arrival rate and
the file size, for different channel models. For a memoryless channel, we model the
receiver's queue dynamics as an M/D/1 queue. Then, we show that for arrival rates
slightly larger than the play rate, the minimum initial buffering required to achieve
certain level of interruption probability remains bounded as the file size grows. For
the case where the arrival rate and the play rate match, the minimum initial buffer
size should scale as the square root of the file size. We also study media streaming
over channels with memory, modeled using Markovian arrival processes. We charac-
terize the optimal trade-off curves for the infinite file size case, in such Markovian
environments.

Second, we generalize the results to the case of multiple servers or peers streaming
to a single receiver. Random linear network coding allows us to simplify the packet



selection strategies and alleviate issues such as duplicate packet reception. We show
that the multi-server streaming problem over a memoryless channel can be trans-
formed into a single-server streaming problem, for which we have characterized QoE
trade-offs.

Third, we study the design of media streaming applications in the presence of mul-
tiple heterogeneous wireless access methods with different access costs. Our objective
is to analytically characterize the trade-off between usage cost and QoE metrics. We
model each access network as a server that provides packets to the user according to
a Poisson process with a certain rate and cost. User must make a decision on how
many packets to buffer before playback, and which networks to access during the
playback. We design, analyze and compare several control policies. In particular, we
show that a simple Markov policy with a threshold structure performs the best. We
formulate the problem of finding the optimal control policy as a Markov Decision Pro-
cess (MDP) with a probabilistic constraint. We present the Hamilton-Jacobi-Bellman
(HJB) equation for this problem by expanding the state space, and exploit it as a
verification method for optimality of the proposed control policy.

We use the tools and techniques developed for media streaming applications in
the context of power supply networks. We study the value of storage in securing
reliability of a system with uncertain supply and demand, and supply friction. We
assume storage, when available, can be used to compensate, fully or partially, for the
surge in demand or loss of supply. We formulate the problem of optimal utilization
of storage with the objective of maximizing system reliability as minimization of the
expected discounted cost of blackouts over an infinite horizon. We show that when
the stage cost is linear in the size of the blackout, the optimal policy is myopic in the
sense that all shocks are compensated by storage up to the available level of storage.
However, when the stage cost is strictly convex, it may be optimal to curtail some
of the demand and allow a small current blackout in the interest of maintaining a
higher level of reserve to avoid a large blackout in the future. Finally, we examine the
value of storage capacity in improving system's reliability, as well as the effects of the
associated optimal policies under different stage costs on the probability distribution
of blackouts.
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Chapter 1

Introduction

Media streaming is fast becoming the dominant application on the Internet [1]. The

predictions [2] show that by 2014, the various forms of video (TV, VoD, Internet

Video, and P2P) will exceed 91 percent of global consumer traffic. Figure 1-1 il-

lustrates the growth of IP traffic for different applications based on Cisco's forecast.

The popularity of such media transfers has been accompanied by the growing usage

of wireless handheld devices as the preferred means of media access. It is expected

that such media streaming would happen in both a device to device (D2D) as well as

in a base-station to device fashion, and both the hardware and applications needed

for such communication schemes are already making an appearance [3, 4].

Media streaming applications are intrinsically delay-sensitive. Hence, they need

to be managed differently from the traditional less delay-sensitive applications such

as Web, Email and file downloads. Most of the current approaches for providing a

reasonable Quality of Service (QoS) for streaming applications are based on resource

over-provisioning. The basic philosophy behind this approach is that higher band-

width and more reliable communication links result in smaller delays and better QoS.

Therefore, users need a broadband connection or a dedicated reliable channel to have

a reasonable Quality of Experience (QoE). Nevertheless, with rapid growth of IP traf-

fic and resource limitations specially in the wireless domain, this approach seems to

be less plausible over time.

In this work, we address this problem by focusing specifically on end-user per-
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Figure 1-1: Cisco Visual Networking Index (June 2010): By 2014 video will be 91
percent of all consumer IP traffic and 66 percent of mobile data traffic.

ceptions of delay-sensitive applications. We pay special attention to communication

and control techniques that are specifically designed with Quality of user Experience

(QoE) in mind. The goal, on one hand, is to make the optimal use of the limited and

possibly unreliable resources to provide a seamless experience for the user. On the

other hand, we would like to provide a tool for the service providers to improve their

service delivery (specifically for delay-sensitive applications) in the most economical

way. Our contributions are summarized in the following.

1. 1 End-user Quality of Experience Metrics

Media streaming is generally accomplished by dividing the media file into blocks,

which are then further divided into packets for transmission. After each block is

received, it can be played out by the receiver. In order to ensure smooth sequential

playback, a fresh block must be received before the current block has been played.

If such a fresh block is not available the playback stops, causing a negative user

experience.

For most of media streaming applications e.g. Internet video, TV, Video on



Demand (VoD), the user may tolerate some initial buffering delay before the me-

dia playback, so that he or she has a seamless experience throughout the playback.

Hence, there is a trade-off between the initial waiting time and likelihood of play-

back interruptions. Two of the key Quality of user Experience (QoE) metrics that

we consider in this work, are the initial waiting time and the probability of having

any interruptions throughout the media playback. Here, the waiting time captures

the delay aspect of the user experience, and the interruption probability captures the

reliability aspect of the experience.

We would like to emphasize that these QoE metrics are significantly different

from those that consider per packet deadlines as the delay, and the number of missed

deadlines as the reliability metric. These metrics are more appropriate for highly in-

teractive applications such as video conferencing. Even though video communications

traffic is experiencing a fast growth, these applications still form a small fraction of

the total IP traffic [2]. The metrics concerning per packet delays are too restrictive

for most of the media streaming applications, because they do not take into account

the slack obtained by the initial buffering. Therefore, they are generally more difficult

to satisfy unless by over-provisioning. The QoE metrics that we introduce are more

realistic and less restrictive, but still strong enough to guarantee a reasonable user

experience. For example, if the probability of playback interruption is guaranteed to

be less than one percent, it means out of 100 media files streamed to the end-user,

approximately 99 of them will be played with no interruptions.

We may consider other less restrictive QoE metrics such as the number or duration

of interruptions (stalls) in media playback. For example, the user may tolerate a few

interruptions in media playback as long as they are not too long or too frequent.

Other QoE metrics of interest are the resolution (clarity) of the media playback as

well as temporal variations of these features.



1.2 Fundamental QoE Trade-offs for Single-server

Streaming Systems

Once we identify the appropriate QoE metrics, our first goal is to understand the

fundamental trade-offs among end-user rate, delay and reliability metrics in the con-

text of media streaming. For communication over a noisy channel (physical layer),

the following equation captures the essence of such trade-offs from an information

theoretic point of view:

Probability of block decoding error= eE(R).(block length)

where E(R) is the error exponent (reliability function), which depends on rate R and

the properties of the channel. The block length is considered as the delay metric,

and probability of recovering the original block of symbols captures the reliability

of communication. The delay-reliability trade-off is governed by the error exponent,

which is an increasing function of the gap between the rate, R, and the channel's

capacity. In this work, we establish similar rate-delay-reliability trade-offs for media

streaming applications.

The main objective of this part is to characterize the amount of buffering needed

for a target probability of playback interruption over the duration of the playback.

If the packets arrive at the receiver deterministically, the required initial buffering

is zero when the packet arrival rate is larger than the playback rate, and it grows

linearly with the file size when the arrival rate is smaller than the playback rate.

However, since most of the communication links of interest are noisy and unreliable,

packets cannot be obtained deterministically. Thus, our question is how much should

we buffer prior to playback in order to account for channel variations?

We first consider the problem of streaming a media file of finite size from a single

server to a single receiver. In order to take into account the channel variations such

as packet erasures, we model the packet arrival process at the receiver using a Poisson

process of rate R. Since the media file is generally played in a deterministic fashion,



we model the receiver's buffer as an M/D/1 queue. We then provide upper and lower

bounds on the minimum initial buffering required so that the playback interruption

probability is below a desired level. The optimal trade-off between the initial buffering

and the interruption probability depends on the file size as well as the playback rate

compared to the arrival rate of the packets. Our bounds are asymptotically tight

as the file size tends to infinity. Moreover, when the arrival rate and the play rate

match, we show that the minimum initial buffer size grows as the square-root of the

file size. In this case, the amount of buffering is solely for alleviating the stochastic

variations of the communication channel, so that the end-user will have a seamless

experience. If the arrival rate is slightly larger than the play rate, the minimum initial

buffering for a given interruption probability remains bounded as the file size grows.

In particular, for the infinite file size case, we establish the following relation

Probability of interruption = e-I(R)-(initial buffering) (1.2)

where we define I(R) as the interruption exponent or reliability function in analogy

with (1.1). In (1.2), the reliability metric (interruption probability) is related to the

delay metric (initial buffering) via the reliability function I(R).

The fundamental relation in (1.2) is not restricted to the case of Poisson arrival

processes. We may establish such result for a more general class of channels. In

this work, we also explicitly characterize the interruption exponent for Poisson arrival

models as well as channels with memory, which are modeled using Markov modulated

arrival processes. For channels with memory, we show that the behavior of the inter-

ruption exponent is not only governed by the average packet arrival rate, but also by

the mixing rate of the underlying Markov chain.

Explicit characterization of the interruption exponents is also extremely valuable

from system designer's point of view. This allows the designer to observe how sensitive

end-user experience is to changes in allocated communication resources. Therefore,

having an insight on the level of customer satisfaction, the system operator can decide

whether provisioning more resources is economically reasonable. We shall discuss this



aspect in the context of streaming from multiple servers.

1.3 Multi-server Streaming Systems and Network

Coding

We address the problem of streaming delay-sensitive information from multiple servers

to a single receiver (user). Each sever can be a wireless access point or another peer

operating as a server. We consider a model in which the communication link between

the receiver and each server is unreliable, and hence, it takes a random period of time

for each packet to arrive at the receiver from the time that the packet is requested from

a particular server. One of the major difficulties with such multi-server systems is the

packet tracking and duplicate packet reception problem, i.e., the receiver need to keep

track of the index of the packets it is requesting from each server to avoid requesting

duplicate packets. Since the requested information are delay sensitive, if a requested

packet does not arrive within some time interval, the receiver need to request the

packet from another server. This may eventually result in receiving duplicate packets

and waste of the resources. We address this issue and show that using random linear

network coding (RLNC) across packets within each block of the media file we can

alleviate this issue. This technique allows that, with high probability, no redundant

information will be delivered to the receiver.

Another important issue regarding multi-server, in particular peer-to-peer (P2P)

systems, is the packet selection (piece selection) strategy. This issue arises in situa-

tions where some of the servers do not carry all of the pieces (packets) of a media file,

hence, they may not be able to help the receiver with its missing piece. The piece

selection strategy is to decide which packet to request from a particular server (peer)

among all possible packets that are available at that server, so that to avoid wasting

the communication resources on contacting a server that may not have any useful

pieces. In this work, we use random linear network coding to address this problem.

Here, the receiver instead of requesting a particular packet, asks for a generic packet



within a particular block, and the server transmits a random linear combination of

the available packets in that block. This greatly simplifies the piece selection strategy

and the need for tracking the packets, while effectively guaranteeing delivery of useful

packets from each server with high probability.

We would like to emphasize that one of the critical roles of network coding tech-

niques in this work, other than improving efficiency, is their simplicity and ability to

greatly simplify the communication models, so that we can focus on end-user metrics

and trade-offs. For example, if each server can effectively transmit packets according

to an independent Poisson process, using RLNC we can merge these processes into one

Poisson process of sum rate. Hence, the system model boils down to a single-server

system for which the optimal single-server QoE trade-offs results apply.

1.4 Control Policies for Streaming in Heteroge-

neous Multi-server Systems

When there are multiple networks that can be used to access a particular piece of

content (e.g. from a base station or a peer device) each device must take decisions

on associating with one or more such access networks. However, the costs of different

access methods might be different. For example, accessing the base station of a

cellular network can result in additional charges per packet, while it might be possible

to receive the same packets from the access point of a Wireless Local Area Network

(WLAN) or another device with a lower cost or possibly for free (see Figure 1-2).

Further, the cost of communication might be mitigated by the initial amount of

buffering before playback. This adds another dimension to the problem that end-

user is facing. That is certain levels of user satisfaction can only be achieved by

paying a premium for extra resource availability. Figure 1-3 illustrates a conceptual

three-dimensional cost-delay-reliability trade-off curve.

The objective of this part is to understand the trade-off between initial waiting

time, and the usage cost for attaining a target probability of interruption. We consider
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a system wherein network coding is used to ensure that packet identities can be

ignored, and packets may potentially be obtained from two class of servers with

different rates of transmission. The wireless channel is unreliable, and we assume

that each server can deliver packets according to a Poisson process with a known

rate. Further, the costs of accessing the two servers are different; for simplicity we

assume that one of the servers is free. Thus, our goal is to develop a control policy

that switches between the free and the costly servers in order to attain the target QoE

metrics at the lowest cost.

We study several classes of server selection policies. Using the QoE trade-offs

for a single-server system, we obtain a lower bound on the cost of offline policies

that do not observe the trajectory of packets received. We show that such policies

have a threshold form in terms of the time of association with the costly server.

Using the offline algorithm as a starting point, we develop an online algorithm with

lower cost that has a threshold form - both free and costly servers are used until

the queue length reaches a threshold, followed by only free server usage. We then

develop an online algorithm in which the risk of interruption is spread out across the

trajectory. Here, only the free server is used whenever the queue length is above a

certain threshold, while both servers are used when the queue length is below the

threshold. The threshold is designed as a function of the initial buffer size and the



desired interruption probability.

We formulate the problem of finding the optimal network association policy as a

Markov Decision Process (MDP) with a probabilistic constraint. Similar to the Bell-

man equation proposed by Chen [5] for a discrete-time MDP with probabilistic con-

straints, we write the Hamilton-Jacobi-Bellman (HJB) equation for our continuous-

time problem by proper state space expansion. Using a guess and check approach,

we obtain a solution for the HJB equation for the fluid approximation model. We

characterize the optimal policy and show that the it is Markov with respect to the

queue-length process at the receiver. In particular, we establish the optimality of the

online threshold policy with a properly designed threshold value.

1.5 Analytical Tools and Techniques

Even though the main application of our work is media streaming, the tools that we

have developed to analyze our system from this new perspective are not limited to

such applications. In order to characterize the fundamental trade-offs between QoE

metrics, especially for the case of finite file size, we need to perform a transient analy-

sis of the system. The set of techniques that we developed to provide tight bounds on

interruption probabilities are different from the traditional approaches in the Queue-

ing Theory literature. The main focus of that body of work is to understand system's

stability conditions as well as steady state behavior, e.g. queue length, waiting time,

etc. These steady state metrics cannot be easily transformed to reasonable QoE

metrics for streaming applications because of their delay-sensitive nature.

The techniques developed in this work can be employed for analysis of other delay-

sensitive applications such as cloud-based services and applications. Moreover, our

methods could be useful in other areas such as insurance and financial industries where

statistical methods are used for risk assessment. The questions of interest in these

industries include computing the likelihood of an insurance or financial institution

facing bankruptcy, and similar ruin related measures.

Another set of tools that we used in this work include dynamic programming



approach to Markov decision problems with probabilistic constraints. Since the prob-

abilistic constraint is over the whole horizon of the problem, we need to expand the

state space to decouple the state evolution and cost. This technique can be of partic-

ular interest for Inventory Control problems. Such problems include decision making

by a firm on how much to order in any time period to meet the customer's demand.

It is generally undesirable to have a situation where the inventory is empty due to

high customer demand or late arrival of the ordered product. This situation is similar

to an interruption in media playback. Instead of the conventional approach of back-

ordering and assigning an artificial penalty for back-ordered products, we can use the

probabilistic constraints in our formulation to avoid stock-outs. The dynamic pro-

gramming approach used in this work allows us to develop inventory control policies

of the threshold form, which are close to optimal and simple enough from practical

point of view.

1.6 Application to Power Systems in Volatile En-

vironments

We employ the analytical tools developed motivated by media streaming applications

in the context of power systems in volatile environments. Supply and demand in elec-

tric power networks are subject to exogenous, impulsive, and unpredictable shocks

due to generator outages, failure of transmission equipments or unexpected changes

in weather conditions. On the other hand, environmental causes along with price

pressure have led to a global trend in large-scale integration of renewable resources

with stochastic output. This is likely to increase the magnitude and frequency of

impulsive shocks to the supply side of the network. The questions that we are inter-

ested are: what is the value of energy storage in mitigating volatility of supply and

demand, and what are the fundamental limits that cannot be overcome by storage

due to physical ramp constraints for charging the storage, and finally, what are the

impacts of different control policies on system reliability, for instance, on the expected



cost or the probability of large blackouts?

We focus on the reliability value of storage, defined as the maximal improvement

in system reliability as a function of storage capacity. Two metrics for quantifying

reliability in a system are considered: The first is the expected long-term discounted

cost of blackouts (cost of blackouts (COB) metric), and the second is the probability

of loss of load by a certain amount or less.

We model the system as a supply-demand model that is subject to random arrivals

of energy deficit shocks, and a storage of limited capacity, with a ramp constraint on

charging, but no constraint on discharging. The storage may be used to partially or

completely mask the shocks to avoid blackouts. We formulate the problem of optimal

storage management as the problem of minimization of the COB metric, and provide

several characterizations of the optimal cost function. By ignoring other factors such

as the environment, cost of energy or storage, we characterize the value of storage

purely from a reliability perspective, and examine the effects of physical constraints

on system reliability. Moreover, for a general convex stage cost function, we present

various structural properties of the optimal policy.

In particular, we prove that for a linear stage cost, a myopic policy which com-

pensates for all shocks regardless of their size by draining from storage as much as

possible, is optimal. However, for nonlinear stage costs where the penalty for larger

blackouts is significantly higher, the myopic policy is not optimal. Intuitively, the

optimal policy is inclined to mitigate large blackouts at the cost of allowing more

frequent small blackouts. Our numerical results confirm this intuition. We further

investigate the value of additional storage under different control policies, and for

different ranges of system parameters. Our results suggest that if the ratio of the av-

erage rate of deficit shocks to ramp constraints is sufficiently large, there is a critical

level of storage capacity above which, the value of having additional capacity quickly

diminishes. When this ratio is significantly large, there seems to be another critical

level for storage size below which, storage capacity provides very little value. Finally,

we investigate the effect of storage size and volatility of the demand/supply process

on the probability of large blackouts under various policies. We observe that for all



control policies, there appears to be a critical level of storage size, above which the

probability of suffering large blackouts diminishes quickly.

1.7 Related Work

The set of works related to this thesis spans several distinct areas of the literature.

One of the major difficulties in the literature is the notion of delay, which greatly varies

across different applications and time scales at which the system is modeled. The role

of delay-related metrics has been extensive in the literature on Network Optimization

and Control. Neely [6, 7] employs Lyapunov Optimization techniques to study the

delay analysis of stochastic networks, and its trade-offs with other utility functions.

Other related works such as [8], [9] take the flow-based optimization approach, also

known as Network Utility Maximization (NUM), to maximize the delay-related utility

of the users. Closer to our work is the one by Hou and Kumar [10] that considers per-

packet delay constraints and successful delivery ratio as user experience metrics. Such

flow-based approaches are essentially operating at the steady state of the system, and

fail to capture the end-user experience for delay-sensitive applications of interest.

Media streaming, particularly in the area of P2P networks has attracted significant

recent interest. For example, works such as [11, 12, 13, 14] develop analytical models

on the trade-off between the steady state probability of missing a block and buffer

size under different block selection policies. Unlike our model, they consider live

streaming, e.g. video conferencing, with deterministic channels.

There are two main approaches to P2P video streaming, namely, (i) using push-

based multicast trees, and (ii) using pull-based mesh P2P networks. Push-based

multicast trees require that each entering user join one or more multicast trees [15,

16, 17]. Each block is pushed along a multicast tree to ensure that each user obtains

blocks sequentially and with an acceptable delay. However, such an approach often

involves excessive infrastructural overheads, and peer churn causes inefficiencies [18].

Pull-based mesh P2P has recently seen significant usage as a means of video delivery.

Here peers maintain a playback buffer and pull blocks from each other. The approach



is similar to the popular BitTorrent protocol [19], which makes use of a full mesh with

a subset of peers being exposed to each peer. This approach has been used in many

systems such as CoolStreaming [20], PPLive [21], QQLive [22] and TVAnts [23]. A

more recent modification is to use random linear network coding techniques [24] to

make block selection simpler [25, 26, 27] in the wired and wireless context. RLNC

allows for a push-based mechanism without requiring the overhead of a tree-based

push strategy. We use the same idea to ensure that packets can be received from

multiple sources without the need to coordinate the exact identities of the packets

from each. However, we focus on content that is at least partially cached at multiple

locations, and must be streamed over one or more unreliable channels. Further, our

analysis is on transient effects-we are interested in the first time that media playback

is interrupted as a function of the initial amount of buffering. Also related to our

work is [28], which considers two possible wireless access methods (WiFi and UMTS)

for file delivery, assuming particular throughput models for each access method. In

contrast to this work, packet arrivals are stochastic in our model, and our streaming

application requires hard constraints on quality of user experience.

The techniques we use to compute the optimal trade-off curves in the infinite

file size case, are related to those used in the literature of Ruin Theory [29], which

study insurer's vulnerability to insolvency. In particular, Reinhard [30] employs a

system of integro-differential equations to characterize the non-ruin probabilities of

an insurer with constant premium rates and exponentially distributed claim amounts

in a Markovian environment. For the finite file size case, we need to characterize

hitting probabilities of crossing a time-varying threshold for which such methods

are not effective. Our work could be of independent interest since it provides novel

techniques for characterizing the trade-offs with finite file sizes.

Another body of related work is the literature on constrained Markov decision

processes. There are two main approaches to these problems. Altman [31], Piunovskiy

[32, 33] and Feinberg and Shwartz [34] take a Convex Analytic approach leading to

Linear Programs for obtaining the optimal policies. On the other hand, Chen [5],

Chen and Blankenship [35], Piunovskiy [36] use the more natural and straightforward



Dynamic Programming approach to characterize all optimal policies. These works

mainly focus on different variations of the discrete-time Markov decision processes. In

this work, we take the dynamic programming approach for the control of a continuous-

time Markovian jump process. Further, we employ Stochastic Calculus techniques

used in treatment of Stochastic Control problems [37] to properly characterize the

optimal control policies.

Related to energy storage and power systems, recent works have examined the

effects of ramp constraints on the economic value of storage [38]. Herein, our focus is

on reliability. Prior research on using queueing models for characterization of system

reliability, particularly in power systems, has been reported in [39] and [40]. Similar

models and concepts exist in the queueing theory literature [41], [42], perhaps with

different application contexts. Despite similarities, our model is different than those

of [39], [40] in many ways. We assume that the storage capacity (reserve in their

model) is fixed and find the optimal policy for withdrawing from storage (consuming

from reserve), as opposed to always draining the reserve and optimizing the capacity.

Another difference is that our model of uncertainty is a compound poisson process

instead of the brownian motion used in [39], [40]. We show that the myopic policy of

always draining storage to mask every energy deficit shock is not optimal for strictly

convex costs, and investigate the effects of nonlinear stage costs (strictly convex cost

of blackouts) on the optimal policy and the statistics of blackouts.

Notation. Throughout the thesis, lEA denotes the indicator function of a set A. We

use the notation R for real numbers, and Pr{-} and E[.] for probability and expectation

operators, respectively. We also denote the minimum of two scalars x, y by x A y. The

operator [x]+ = max{0, x} is the projection operator onto the nonnegative orthant.

1.8 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we formally define the

QoE metrics and characterize the optimal QoE trade-off curves for various channel

models in a point-to-point system. In Chapter 3, we generalize the results to a system



with multiple servers and discuss network coding techniques. Chapter 4 is dedicated

to the problem of media streaming from heterogeneous servers. We present and

compare several server association policies. The dynamic programming approach for

characterization of the optimal control policy is discussed in this chapter. In Chapter

5, we present our results on the reliability value of energy storage for power systems

in volatile environments. Finally, Chapter 6 presents a summary of this thesis with

pointers for potential extensions in the future.
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Chapter 2

Fundamental QoE Trade-offs for

Media Streaming in Single-server

Systems

We start by investigating the problem of streaming a media file from a single server

to a single user. The goal is to have a proper model of factors that affect Quality of

user Experience, and understand the fundamental trade-off between these metrics as

a function of system parameters. We start with the simplest model of an unreliable

communication channel and generalize the results to other channel models and multi-

server systems.

2.1 System Model and QoE Metrics

Consider a single server (peer) streaming a media file to a single receiver (user) over

an unreliable channel. Time is continuous, and we assume it takes a random amount

of time for the server to successfully deliver each packet to the receiver. For this part,

we assume that the packet arrival process at the receiver is a Poisson process of rate

R. This corresponds to the case of a memoryless channel. We shall study channels

with memory in the subsequent parts. We assume that the media file consists of F

packets. We normalize the playback rate to one, i.e., it takes one unit of time to play



a single packet. We also assume that the parameter R is known at the receiver, which

first buffers D packets from the beginning of the file, and then starts the playback.

The dynamics of the receiver's buffer size' Q(t) can be described as follows

Q(t) = D + A(t) - t, (2.1)

where D is the initial buffer size and A(t) is a Poisson process of rate R. We de-

clare an interruption in playback when the buffer size reaches zero before completely

downloading the media file. More precisely, let

Te = inf{t : Q(t) <O}, T = inf{t : Q(t) > F - t}, (2.2)

where Tf corresponds to time of completing the file download, because we have already

played Tf packets and the buffer contains the remaining F - Tf packets to be played.

The media streaming is interrupted if and only if Te < Tf.

We consider the following metrics to quantify Quality of user Experience (QoE).

The first metric is the initial waiting time before the playback starts. This is captured

by the initial buffer size D. The second metric is the probability of interruption during

the playback denoted by

p(D) = Pr{Te < rf}, (2.3)

where Te and Tf are defined in (2.2). In our model, the user expects to have an

interruption-free experience with probability higher than a desired level 1 - e. Note

that there is a fundamental trade-off between the interruption probability e and the

initial buffer size D. For example, owing to the randomness of the arrival process, in

order to have zero probability of interruption, it is necessary to fully download the

file, i.e., D = F. Nevertheless, we need to buffer only a small fraction of the file if user

tolerates a positive probability of interruption. These trade-offs and their relation to

system parameters R and F are addressed in the following.

'We use the terms "buffer size" and "queue length" interchangeably throughout this work.



2.2 Optimal QoE Trade-offs

We would like to obtain the smallest initial buffer size so that the interruption prob-

ability is below a desired level e, which is denoted by

D*(c) = min{D > 0 : p(D) < e}, (2.4)

where p(D) is the interruption probability defined in (2.3). Note that in general p(D)

and hence D*(e) depend on the arrival rate R and the file size F which are assumed

to to be known. In the following we characterize the optimal trade-off between the

initial buffer size and the interruption probability by providing bounds on D* (e). An

upper bound (achievability theorem) on D*(c) is particularly useful, since it provides

a sufficient condition for desirable user experience. A lower bound (converse theorem)

of D*(e) is helpful to show that the provided upper bound is close to the exact value.

The proofs of the main theorems are included in the appendix of this chapter.

Theorem 2.2.1. [Achievability] Let D*(e) be defined as in (2.4), and I(R) be the

largest root of -y(r) = r + R(e-r - 1), i.e.,

I(R) = sup{r :y(r) = 0}. (2.5)

(a) For all R > 1,

D*(E) < log(-). (2.6)
1(R)

(b) For all 0 < R < 1 + log()2

D*(e) < min jF(1 - R) + (2FR log ((R) log(-) . (2.7)

When the arrival rate R is smaller than one (the playback rate), the upper bound

in Theorem 2.2.1 consists of two components. The first term, F(1 - R), compensates

the expected number of packets that are required by the end of [0, F] period. The

second component, (2FR log ( ) , compensates the randomness of the arrivals to



avoid interruptions with high probability. Note that this term increases by decreasing

the maximum allowed interruption probability, and it would be zero for a deterministic

arrival process. For the case when the arrival rate is larger than the playback rate,

the minimum required buffer size does not grow with the file size. This is so since

the buffer size in (3.1) has a positive drift. Hence, if there is no interruption at the

beginning of the playback period, it becomes more unlikely to happen later.

In the following, we show that the upper bounds presented in Theorem 2.2.1 are

asymptotically tight, by providing lower bounds on the minimum required buffer size

D*(e), for different regimes of the arrival rate R. Let us first define the notion of a

tight bound.

Definition 2.2.1. Let D be a lower or upper bound of the D*(e), which depends on

the file size F. The bound D is an asymptotically tight bound if ID-D*() vanishes as

F goes to infinity.

Theorem 2.2.2. [Converse] Let D*(e) be defined as in (2.4), and I(R) be given by

(2.5). Then

(a) For all R > 1,
1 ( (R-1>2 

F
D*(e) > - log c + 2e4(R+1) . (2.8)

I(R)

(b) For each R < 1 and c < -, if F > Clog {{) for a constant C, then

116

D*(e) > F(1 - R) + (2FR log (±)). (2.9)

Note that the inequality (2.9) in part (b) of Theorem 2.2.2 does not hold for all

E. In fact, we can show that D*(e) < F(1 - R) for a large interruption probability

e. In the extreme case e = 1, it is clear that D*(c) = 0. Nevertheless, since we are

interested in avoiding interruptions, we do not study this regime of the interruption

probabilities. Comparing the lower bounds obtained in Theorem 2.2.2 with the up-

per bounds obtained in Theorem 2.2.1, we observe that they demonstrate a similar

behavior as a function of the parameters F and R.



Corollary 2.2.1. The upper bounds and lower bounds of D*(e) given by Theorems

2.2.1 and 2.2.2 are asymptotically tight, if R > 1, or R < 1 and e < 1
16

Corollary 2.2.2. Let p(D) be the interruption probability defined in (2.3). For the

case of R > 1, and infinite file size, F = oo, we have

p(D) = Pr min Q(t) < 0 = e-I(R)D, for all D > 0, (2.10)
St>o

where I(R) is defined in (2.5).

Proof. The proof simply follows from Theorems 2.2.1 and 2.2.2, and continuity of the

probability measure.
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Figure 2-1: The reliability function (interruption exponent) defined in (2.5) for the
Poisson arrival process. Simple lower and upper bounds are given by Lemma 2.6.1.

Corollary 2.2.2 relates the reliability of media playback (interruption probability)

to delay in media playback (initial buffer size) via the reliability function, I(R). The

reliability function or interruption exponent depends on the rate and distribution of

the arrival process, i.e., properties of the communication channel. Figure 2-1 plots

the reliability function I(R) as a function of the arrival rate. Observe that as the

ratio of the arrival rate and the playback rate increases, so does the reliability func-

tion. When arrival and playback rates match, the reliability function is zero. This

behavior is reminiscent of the error exponent of a noisy communication channel, i.e.,



the error exponent is zero when the rate is equal to the capacity, and is increasing

in the distance between the communication rate and the capacity. In the context of

media streaming, Corollary 2.2.2 provides an analogue of the error-exponent char-

acterizations that capture the delay-rate-reliability trade-off of block channel codes

used for communication over noisy channels.

Thus far, we have studied the QoE trade-offs for media streaming applications

with Poisson arrivals. This model does not capture the burstiness of the traffic of-

ten associated with correlated losses over a wireless channel. In the following, we

generalize the results of this section to the case where packets arrive according to a

Markovian process. These results are analogous to error exponent characterization of

channels with memory such as the Gilbert-Elliot channel [43].

2.3 QoE Trade-offs for Bursty Traffic (Markovian

Channels)

Consider a media streaming scenario from a server to a single receiver. In this part,

we focus on the case where the media file size is infinite, and the packet arrival rate is

strictly larger than the playback rate (normalized to one). The packet arrival process

is governed by a two-state continuous time Markov process depicted in Figure 2-

2. For each state i, Aj denotes the transition rate from state i to the other state.

We may verify that the stationary distribution of this Markov process is given by

7i = 1 - , i = 1, 2.

X2
1,22

RX R2

Figure 2-2: Two-state Markov process used to model the burstiness of packet arrivals.
A, and A2 denote transition rates.



Let the packets arrive at the receiver according to some stationary stochastic

process with rate Ri, when the underlying Markov process is in state i. Throughout

this work, we assume that R1 and R2 are such that the average arrival rate is larger

than the playback rate, i.e.,

R=Z E riRi= A2R, + A=R2 > 1. (2.11)
i=1,2

For R < 1, the receiver's queue-length has a negative drift and interruption occurs

almost surely for any finite initial buffer size. For a Markovian channel, the interrup-

tion probability not only depends on D, but also on the initial state. Let pj(D) be

the interruption probability, when the initial state of the underlying Markov process

is i, and the initial buffer size is D. In the following, we study QoE trade-offs for

various scenarios of Markovian packet arrival processes.

2.3.1 Markovian Channels with Deterministic Arrivals

In this part, we focus on the case where the packet arrival process is deterministic

with rate Ri, when the underlying two-state Markov process is in state i. The trade-

off between the interruption probability and the initial buffer size is characterized

next.

Theorem 2.3.1. Consider the Markov process depicted in Figure 2-2. Let the arrival

process at the receiver be deterministic with rate Ri, when in state i. If R1 > 1 > R 2

and (2.11) holds, then

pi(D) = P1( 2 - 1 )D p 2 (D) ep2p1)D(2.12)

where pi = , for i = 1,2.

Proof. Since we are considering the infinite file size case, the interruption probability

starting from any particular time, only depends on the queue-length and the state of



the Markov process at that time. For any D, h > 0, write

pi(D) =+Aihpi(D+(Ri-)h)+(1-Aih)pi(D+(R -1)h)+o(h), i= 1,2,

where -i denotes the index of the state other than i, and o(h) denotes the terms that

vanish faster than h, as h goes to zero. Dividing by h and letting h tend to 0, we get

&pi(D)
ap D) = pi(p1(D)- p2(D)), i = 1,2, (2.13)

with the boundary condition pi(oo) = 0. The assumption in (2.11) is necessary for

this boundary condition to hold. Using (2.13) together with the boundary condition,

we have pi(D) - P'P2(D). Replacing this relation back in (2.13) for i = 2, we obtain
P2

a differential equation for p2 (D)

P2 (D) - - 1P2(D),
aD (P2

which has the solution p2 (D) = cie-(P2--p1)D+c 2. Observe that c2 = 0 by the boundary

condition. Since R 2 < 1, we also have P2(0) = 1. Hence, ci = 1, that proves the claim

in (2.12).

3

2.5

2

1.51

Figure 2-3: The reliability function, P2 - P1, given by
Elliot channel with deterministic arrivals. Here, A1 =

Theorem 2.3.1 for the Gilbert-
A2 = 1, and R2 = 0.8.



We observe similar exponential decay in the interruption probability as in Corol-

lary 2.2.2. The interruption exponent (reliability function) given by P2 - Pi is increas-

ing in R1 and R 2 . Figure 2-3 plots the reliability function, P2 -P1, as a function of R 1,

when R 2 = 0.8 and A, = A2 = 1. Observe that the reliability function goes to zero as

the average arrival rate R approaches the playback rate. It is worth mentioning that

for a fixed average arrival rate, as A, and A2 increase the mixing time of the Markov

process decreases and the hence, the arrival process tend to look deterministic with

rate R > 1. Therefore, larger reliability function is achieved. This behavior is similar

to that of the conventional Gilbert-Elliot communication channel [43].

Note that the characterization of the trade-off curve is trivial for the case where

R 1, R 2 > 1. In this case, pi(D) = 0, for i = 1, 2.

2.3.2 Markovian Channels with Poisson Arrivals

We consider a two-state Markov modulated Poisson process as the packet arrival

process. The Poisson arrivals allow us to model the channel variations in small time

scales, while the underlying Markov process models the large scale changes in the

environment. Next, we characterize the interruption probabilities as a function of the

initial state and buffer size.

Theorem 2.3.2. Consider the two-state Markov process depicted in Figure 2-2. Let

the arrival process at the receiver be Poisson with rate Ri, when in state i. If the

average arrival rate is larger than the playback rate, i.e., (2.11) holds, then

pi(D) = cie-s1D + c12e s2D, p 2(D) = c2 1e-s1D + c22 e s2D (2.14)

where s1 < s 2 are the positive roots of the characteristic function

<D(s) = (s + Ri(e-" - 1) - Aj)(s + R 2 (e-s - 1) - A2) - AjA2, (2.15)



and

82 + Ri(e-s2 - 1) si + Rj(e-" - 1)
(S2 - 1)+ Ri(e-S2 - e-si) (82 - si) + Ri(e-s2 - e-si) -

Proof. We sketch the proof owing to space limitation. Similarly to the proof of

Theorem 2.3.1, and [30], we obtain the following system of delay differential equations

8pi(D)
D) = R (pi(D + 1) - pi(D)) + A (pi(D) - pi(D)), i = 1, 2. (2.17)

Using the assumption in (2.11), we get the boundary conditions p1(oo) = P2(00) = 0.

Moreover, since the packets depart from the receiver's queue deterministically, we

obtain the additional boundary conditions p1(0) = P2(0) = 1. We may solve the

above system of differential equations using the roots of characteristic equation given

by (2.15). Observe that the first set of boundary conditions imply that we only need

to consider the terms that vanish as D grows to infinity. We may verify that <b(s) has

two roots Si, S2 > 0 if the condition in (2.11) holds (see Figure 2-4). Therefore, the

interruption probabilities take the form of (2.14). Further, the second set of boundary

conditions imply that cii + ci2 = 1 for i = 1, 2. We may solve for the coefficients in

(2.16) by plugging (2.14) in (2.17), and using these boundary conditions. 0

0.2.

-0.2. . I

.0.8 .. .

-1 I

0 '05 1 1.5 2 2.5 3 35
1 s S2

Figure 2-4: The characteristic function <b(s) given by (2.15). si denotes the dominant
root.
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Figure 2-5: The dominant root of the characteristic function given by (2.15), as
a function of the average arrival rate for different A1 = A2 = A. Here, we select

R1= 1.4R, and R2 = 0.6R.

The behavior of the interruption probabilities given by Theorem 2.3.2 is governed

by the dominant mode si. Even though, we cannot compute the roots of the charac-

teristic function analytically, we may examine approximate solutions of the charac-

teristic equation when the Markov process is fast mixing, i.e., A1, A >> 1. Using the

notation in (2.11), we can rewrite (2.15) as

<b(s) = (s±+Ri(e-" - 1)) (s +R 2 (e-" - 1)) - (A4 +A)(s +R(e~" - 1)). (2.18)

Now, let A1, A2 tend to infinity, while keeping R1 and R2 fixed. There are two

possibilities for any root of <b (s): First, the root does not grow to infinity; second,

the root scales to infinity as A1, A2 grow. In the former case, we need to have the

coefficient of (A1 + A2) in (2.18) go to zero, i.e., for A1, A2 large enough we have

s+R(e-" -1) ~ 0. Therefore, using the notation in (2.5), s = I(R) is an approximate

root of <b(s). Figure 2-5 plots si, the exact root of <b(s), as a function of the average

arrival rate, R, for different mixing times. Observe that as A grows, si approaches

i(R~), which is the reliability function for the Poisson arrival case (see Corollary

2.2.2). In the second case, we may approximate the characteristic function in (2.18)

as <b(s) ~ s - (A1 + A2)s. This results in s2 ~ A1 + A2 that grows to infinity with A1
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Figure 2-6: The queue dynamics for a live streaming scenario.

and A2 . This root is significantly larger than the dominant root, s1 , which remains

bounded. Finally, note that if R1 = R2= R, we have c12 = C22= 0 for all A, and A2.
This confirms the earlier result of Corollary 2.2.2.

2.4 Live Streaming Applications

Thus far, we have considered streaming scenarios where the content is completely

available at the servers. Such scenarios are of particular interest for applications such

as VoD (Video on Demand) and time-shifted programming (shows that are already

broadcast). However, this model does not cover scenarios where the content is not

fully available at the servers. This situation arises in live streaming applications such

as sporting events, where the content is being generated as it is streamed to the

end-users. Another relevant application is P2P streaming applications, where the

upstream peer has not completely received the content. We would like to emphasize

that our notion of live streaming applications are inherently different from video

conferencing applications where the streaming is extremely delay-sensitive due to its

interactive nature.

In live streaming scenarios, the end-user can generally tolerate some lag from the

actual timing of the live event. This lag can be significantly larger than the average



packet delivery delay (round trip time) as well as initial waiting time for buffering.

In this model, by causality of the system, the receiver's queue length cannot exceed

this lag 2. Figure 2-6 plots a sample path of the receiver's buffer over time. We are

interested in characterizing delay-rate-reliability trade-offs for QoE metrics defined in

terms of initial waiting time and interruptions, as a function of the system parameters.

Let us consider the case of Poisson arrivals and a large media file. Note that

in this case, even if the arrival rate is larger than the playback rate, the receiver's

buffer does not have a positive drift because of the maximum allowable buffer size.

Since there is a positive probability of not having any arrivals for a finite period of

time, we may easily show that the interruption probability goes to 1 as the file size

grows. Therefore, interruption probability is too strict as the QoE metric in live

streaming scenarios. However, we may use weaker metrics that capture the transient

characteristics of media playback in terms of interruptions, but are not as strict as

interruption probability.

2.4.1 Refined Interruption-related QoE Metrics

The probability of interruption as QoE metrics is less restrictive than having per

packet deadlines, but quite strong in the sense that having any interruptions in the

whole playback duration is assumed to be unacceptable. Using this metric, the system

is designed so that interruptions are rare events. However, if such events occur e.g.

in a live streaming scenario, we need to have a policy to buffer a few blocks of the

media file before resuming the playback.

We propose user experience metrics based on end-user related penalties for the

gaps in media playback, which facilitates design of re-buffering policies, so that the

total end-user penalty regarding the interruptions is minimized. In order to capture

the transient behavior of the system, the penalty that we assign to each gap in media

playback must be a non-linear function of the duration of the gap. Otherwise, we

cannot distinguish many small gaps (which is intuitively less desirable) from a few

larger gaps. On the other hand, when the duration of each gap increases beyond
2We still assume the playback rate is normalized to one.



some threshold (user's patience), the penalty function should grow at a faster rate.

A conceptual example of a candidate for such penalty function is plotted in Figure

2-7.

Penalty

Gap duration

Figure 2-7: The end-user experience degrades as a nonlinear function of the duration
of a gap in media playback.

We may consider different scenarios for designing re-buffering policies. The sim-

plest of all is the case with infinite file size, with a memoryless channel where we

expect to obtain a stationary control policy. Upon any interruption event, such a

policy observes the arrivals and decides to resume the playback based on the number

of arrivals and elapsed time from the occurrence of the interruption event. A more

challenging case is the scenario of streaming a finite file size. We can formulate this

problem as a finite horizon dynamic program. Here, the optimal control policy also

depends on the time of the interruption event. Intuitively, as the interruption event

occurs closer to the end of the file, the optimal policy requires to re-buffer fewer

packets before resuming the playback.

Next, we numerically obtain the optimal trade-off curve between the interruption

probability and initial buffer size, and compare the results with the bounds derived

earlier.

2.5 Numerical Results

We use MATLAB simulations to compute the minimum initial buffer size D*(C) for

a given interruption probability e in various scenarios. We start from a small initial



buffer size D, and for each D we compute the interruption probability p(D) via the

Monte-Carlo method. We increase D until the constraint p(D) < c is satisfied. Since

p(D) is monotonically decreasing in D, this gives the minimum required buffer size.

We restrict D to take only integer values, and round each upper bound value up, and

each lower bound value down to the nearest integer.
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Figure 2-8: The minimum buffer size D*(E) as a function of the interruption proba-
bility.

Figure 2-8 shows the minimum required buffer size D*(e) as a function of , as

well as the bounds given by Theorems 2.2.1, 2.2.2. The arrival rate is fixed to R = 1.2

and the file size F = 500. We observe that the numerically computed trade-off curve

closely matches our analytical results.

Figure 2-9 plots the minimum required buffer size D*(e) as well as the upper

and lower bounds given by Theorems 2.2.1 and 2.2.2 versus the arrival rate R, where

C = 10-2 and the file size is fixed to F = 103. Note that when the arrival rate is almost

equal or less than the playback rate, increasing the arrival rate can significantly reduce

the initial buffering delay. However, for larger arrival rates D*(E) is small enough such

that increasing R does not help anymore. Such sensitivity analysis has important

practical ramifications. This allows the service provider to understand the actual

effect of resource provisioning on the end-user's quality of experience.
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Figure 2-9: The minimum buffer size D*(c) as a function of the arrival rate R.

2.6 Appendix to Chapter 2 - Proofs

2.6.1 Proof of the Achievability Theorem

We first prove some useful lemmas used in the proof of Theorem 2.2.1.

Lemma 2.6.1. Let I(R) be given by (2.5). The following relations hold:

2(R - 1) <1(R)
R

I(R) = 0,

< 2(R - 1),

R - I1 I(R) < R < 2(R- 1),

if 0 K R K 1,

if 1 < R < 2,

if R > 2.

Proof. We consider three different cases separately.

Case I (0 < R < 1): First note that 7(r) is a continuously differentiable function,

and -y(O) = 0. For each R < 1, we have 7'(r) > 0 for all r > 0. Therefore, -y(r) > 0

for all r > 0, i.e., I(R) = 0 for each R < 1.

Case II (1 < R < 2): By definition of I(R) in (2.5),

= I(R) + R(e-I(R) -
12 (R)

1) < I(R) + R(-I(R) + -2

(2.19)

(2.20)

(2.21)

0 = -y(I (R))



Rearranging the terms in the above relation, gives the lower bound in (2.20). We

show the upper bound in two steps. First, we show that y(2(R - 1)) > 0 for R > 1,

then we verify that -y(r) > 0 for all r > 2(R- 1). These two facts imply that -y(r) > 0

for all r > 2(R - 1), i.e., I(R) < 2(R - 1). The first step can be verified by noting

that
&

y(2(R - 1))I R=1 = O R y( 2 (R - 1)) > 0.

It is also straightforward to show that -L-y(r) > 0, for all r > log(R), which immedi-

ately yields the second step by noting r > 2(R - 1) > log(R).

Case III (R > 2): We use a similar technique as in the preceding case. The upper

bound is immediate by the following facts:

a
-y(R) = Re-R > 0, -y(r) > 0, for all r > R.

Or

We may also check that -y(R - 1) < 0 for all R > 2. Moreover, note that -y(R) > 0.

Therefore, by the intermediate value theorem, -y(r) has a root in [R - 1, R], i.e.,

I(R) > R - 1.

Lemma 2.6.2. Let X(t) = e-'Q(), where Q(t) is given by (3.1). Also let ytr) =

r + R(e-r - 1). Then for every r > 0 such that y(r) > 0, X(t) is a sub-martingale

with respect to the canonical filtration F = or(X(s), 0 < s < t), i.e., the smallest

--field containing the history of the stochastic process X up to time t. Moreover, if

-y(r) = 0 then X(t) is a martingale.

Proof. For every t, |X(t)| < 1. Hence, X(t) is uniformly integrable. It remains to

show that for every t > 0 and h > 0,

E [X(t + h)|Tt] > X(t) a.s. (2.22)

X(t) is a martingale if (2.22) holds with equality. The left-hand side of (2.22) can be



expressed as

E[X(t + h)|Ft] = E[er(Qtth)--t)) t]X(t)

SE [e-r(A(t+h)-A(t)) ] erhX

E (e~() rrhXh

( e) h(r+R(e-r- 1 ))X(t) - eh(r))X (t)

where (a) follows from independent increment property of the Poisson process, and

(b) follows from the fact that A(t) is a Poisson random variable. Now, it is immediate

to verify (2.22) for any r with 7(r) > 0. Finally, note that if -y(r) = 0, the equality

in the above relations hold through, and (2.22) holds with equality. Therefore, X(t)

is a martingale for r with -y(r) = 0. l

Next, we use Doob's maximal inequality [44] to bound the interruption probability.

Lemma 2.6.3. Let p(D) be the interruption probability defined in (2.3), and -Y(r) =

r + R(e-r - 1). Then, for any r > 0 with y(r) > 0

p(D) e-rD+Ty(r), for all D, T, R> 0. (2.23)

Proof. By definition of p(D) in (2.3), we have

p(D) = Pr{Te <Tf} < Pr{Te < T}

Pr inf Q(t) < 0f0<t<T)
= Pr sup e-rQ(t) > 1

f0<t<T

E[erQ(T)] = E[e-r(D+A(T)-T)

_ -r(D-T) eRT(e-r-1) - erD+Ty (r)

where (a) holds by applying Doob's maximal inequality [44] to the non-negative sub-

martingale X(t) = e-rQ(t). Note that X(t) is a sub-martingale for all r with -Y(r) > 0

by Lemma 2.6.2. l



Lemma 2.6.4. It holds that -(1 - z) log(1 - z) - z < -2, for all 0 < z <1.

Proof. Let f(z) = -(1 - z) log(1 - z) - z + 2. f(z) is a continuously differentiable

function on [0, 1). Moreover, f(0) = 0, and f'(z) = log(1 - z) + z < 0. Therefore,

f(z) < f(0) = 0, for all z C [0, 1). III

Proof of Theorem 2.2.1. First, note that for any upper bound p(D) of the inter-

ruption probability p(D), any feasible solution of

D(c) = min{D > 0 : p(D) < E} (2.24)

provides an upper bound on D*(e). This is so since the optimal solution of the above

problem is feasible in the minimization problem (2.4). If the problem in (2.24) is

infeasible, we use the convention D(c) = oc, which is a trivial bound on D*(e). The

rest of the proof involves finding the tightest bounds on p(D) and solving (2.24).

Part (a): By Lemma 2.6.3, for r = I(R), we can write p(D) < pa(D) = e-I(R)D

for all D, T, R > 0. Solving Pa(D) = e for D gives the result of part (a). Since

I(R) = 0 for R < 1 (cf. Lemma 2.6.1), this bound is not useful in that range.

Part (b): First, we claim that for all D > T(1-R+I(R)), we have p(D) < pb(D) =

eTRz 2 , where z = 1-j(1- ). We use Lemma 2.6.3 with r = r* = -log (j(1- ))

to prove the claim. Note that r* > 0, because D > T(1 - R). In order to verify the

second hypothesis of Lemma 2.6.3, consider the following

R(e-* - e--I(R)) = I(R) + R(e~r* - 1) - (I(R))

(a I(R) - R +(1- )

(b) 1(C)
= [T(1-R+I(R))- DI 0)

where (a) and (b) follow from the definition of I(R) and r*, respectively, and (c) holds

by the hypothesis of the claim. Thus, r* > I(R). Using the facts that I(R) is the

largest root of -y(r), and -y(r) - - +o as r -+ oc, we conclude that -y(r*) > 0. Now,



we apply Lemma 2.6.3 to get

p(D) < exp (-r*D + Th(r*))

- exp yTR( ( 1- )r - (1 - e-r*))

(c)
< exp (2TRz,

where (a) and (b) follow from the definition of -y(r) and z, and (c) is true by Lemma

2.6.4. Therefore, the claim holds.

Now, let D = T(1 - R) + (2TR log () . Using the claim that we just proved,

we may verify that p(D) < pb(D) = e if D > T(1 - R + I(R)). In order to check the

hypothesis of the claim, note that for R < 1, I(R) = 0 (cf. Lemma 2.6.1), and for all

(I)2

= (2TR log (1))2 log 2
(e)

2T(R - 1) TI(R),

where (d) follows from the hypothesis, and inequality (e) is true by Lemma 2.6.1.

Therefore, D*(e) < ) for all R < 1 + log ()) . Note that, the upper bound

that we obtained in Part (a) is also valid for all R. Hence, the minimum of the two

gives the tightest bound.

2.6.2 Proof of the Converse Theorem

Next, we establish some lemmas used in the proof of Theorem 2.2.2. The proofs of

Lemmas 2.6.5 and 2.6.6 are based on the results from [45], [46].

Lemma 2.6.5. Let Z be a Poisson random variable with mean A. If A > 2, and

k> 2, then

- )2)

) - T(l - R)

1<5R 5 1+ -!-log

> 2T I

Pr{Z < A - k} < exp (I(k (2.25)



Proof. Glynn [45] proves that for A > 2 and k > 2

Pr{Z < A - k} < bxQ 2 ,/

where
1 2

Q'x) =J 2 dt,

The result follows from the facts that bx < 2 for A > 2, and Q(x) < 1 exp ( - )
for all x > 0.

Lemma 2.6.6. Let Z be a Poisson random variable with mean A. For all m < 120

Pr{Z < A - mVX} > Iexp (2.27)
- 2(m+ ))

Proof. It follows from Proposition 6 of [46] that for all 0 < i < A/4

Pr{Z = A - i} > c,\exp 21- A,

where cx = . Therefore, for m < v'X/20 - 1, we may verify that

Pr{Z < A - md} > c exp(-
j=0

(mVA + j)2

> c e 1 exp ( -
j=0

m
2 ie -1.9

C e 1.9 3m
-- e 1.9V/X

1.9e+T-2
(3T (12-7

1
exp

3

-e 19)) e 19

1
1.9+

1)2

2 )

(2.26)

1 1
bx = (1 + -) esi

(2.28)

>e - - 6 e ~

3m



Lemma 2.6.7. Let Q(t) be given by (3.1). For s, 6 > 0, define the boundary function

u(t) = D+6+ (R+s - 1)t.

If s < R, then the probability of crossing the boundary is bounded from above as

Pr sup Q(t) > u(t) < exp ( s - ).
0<t<TR

Proof. Define Z(t) eQ'(t), where Q'(t)

r > 0 satisfies p(r) e'--1-r(1+ j) =

can show that Z(t) is a martingale. This

to obtain

Pr{ sup Q(t) > u(t)} = Pr{

Now it is sufficient to show that r >

1 + X + X2. Hence, for all s < R

= Q(t) - u(t) = -6 + A(t) + (R + s)t, and

0. Similarly to the proof of Lemma 2.6.2, we

allows us to use Doob's maximal inequality

sup Z(t) > 1} < E[Z(T)] = e--.
0<t<T

i. Observe that for all 0 < K 1, ex <

so( , ) = e -- 1- (1)+ )R R R
< 8 +82_S(I+S8

R R R R (2.29)

Moreover, o(r) -+ oc when r - oc. Therefore, by intermediate value theorem

there exists r > -L such that yp(r) 0. This completes the proof. E

Proof of Theorem 2.2.2. Part(a): Similarly to the argument as in the proof of

Theorem 2.2.1, it is sufficient to provide a lower bound on p(D) defined in (2.3).

Define TB as the first time that Q(t) crosses a threshold B > D, i.e., TB = inf{t:

Q(t) > B}.

A necessary condition for the interruption event to happen is to have the receiver's

buffer emptied before time T' = T - B, or crossing the threshold B (see Figure 2-10).

In particular,

p(D) = Pr{Te < Tf} > Pr{Te < min{TB,T'}}. (2.30)
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Figure 2-10: Two sample paths of the buffer size Q(t) demonstrating the interruption
event at time Te, crossing the threshold B at time TB, and the download complete
event at time Tf.

Define the stopping time T = min{Te, TB, T'}, and let Y(t) = e-I(R)Q(t), where

I(R) > 0 is given by (2.5).

Y(t) < 1, and r < T < oo.

theorem [44] to get

By Lemma 2.6.2, Y(t) is a martingale. Moreover,

Therefore, we can apply Doob's optional stopping

= E[Y(0)] & E[Y(T)]

< e-I(R)- -(Pr P{r = Tre + Pr = T'})

+e-I(R)-B __- r T = Tel __ PrI = T'j

< Pr{r = Te} + Pr{T = T'} + e-(R)-B

(c)
p(D) + Pr{r = T'} + e-I(R)-B

where (a) is the result of Doob's optional stopping time. (b) holds because Y(t) 1

for all t, and Y(t) < e-I(R).B if Q(t) ;> B. Finally, (c) follows from (2.30). Rearranging

the terms in the above relation, we obtain

p(D) > e-I(R)D _ e-I(R)B - Pr{r = T'}

-I(R).D

(2.31)



Now, choose B = (1 - a)T, where a R1 > - for all R > 1. For all D, T > 2,

we have

Pr{r = T'} Pr{O < Q(T - B) < B}

Pr{aT - D < A(aT) < T - D}

Pr{A(aT) : RaT - ((Ra - 1)T + D)}

exp

exp

2RaT ((Ra - 1)T + D -

(R - 1)2T
4(R + 1) )

3)2

(2.32)

where (a) holds because Q(t) cannot be negative or above the threshold B if stopping

at T', and (b) follows from the buffer dynamics in (3.1). Recall that A(aT) is a

Poisson random variable with mean RaT. Since a > j, (c) holds for D, T > 2 by

employing Lemma 2.6.5 with

A = RaT > T > 2 k = (Ra - 1)T + D > D > 2.

Finally, (d) is immediate by definition of a noting that D > 2.

By Lemma 2.6.1, we have I(R) > (R - 1) for all R > 1. Therefore, we can bound

the second term in (2.31) as follows

- (R - 1 ) < exp (

Combine the bounds in (2.32) and (2.33) with (2.31) to obtain

p(D) > exp (-I(R)D) - 2 exp( (- 1)2T)

Therefore, p(D) > if D = - I log E

for all D,§

+ 2e 4(R+) > 2.

V > 2. (2.34)

This immediately

gives the result in (2.8).

trivially.

For the case in which D < 2 or T < 2, the claim holds

e-I(R)B < exp ( -- ( (2.33)
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Figure 2-11: Guideline for the proof of Theorem 2.2.2(b).

Part(b): It is sufficient to show p(D) > c for E < 1 and T large enough where
__ - 16

D = T(1 - R) + (2TR

Let us first define the boundary functions

ui(t)

u2(t)

log (A))2.

= D+61+(R+ J- 1)t, t E [0, T'],

= D2+2 +(R + Tj 1)(t - T'),

(2.35)

t E [T',T ],

where T' = (1 - a)T for some constant 0 < a < 1, and

6 1 - aTR
2

- (2TR log ( J2= (aTR log (2.36)

(2.37)

Denote by T the first time to hit the boundary ui(t), i.e., T = inf{t : Q(t) ;> ui(t)},

for i = 1, 2.

Observe that for every sample path of the buffer size Q(t), the only way for

completing the file download, Q(t) = T - t, is to cross the boundary functions ui(t)

)1D2 =aT(1 - R) - 2 (aTR log()2.



or have Q(T') > D 2 (cf. Figure 2-11). This gives a necessary condition for the

interruption event. Hence,

p(D) = Pr{re < Ty}

> Pr{r, < min{Ti, T'}} + Pr{Te T2 , T' < min{re, 1i}, Q(T') < D 2}

= Pr{re min{ri, T'}} + Pr{Te T2|T' < min{re, T1}, Q(T') 5 D 2 } [1

-Pr{T < min{re, T'}} - Pr{re < min{ri, T'}}

-Pr{T' < min{re,Ti}, Q(T') > D 2 }]

> Pr{Te T2 IT' < min{re, Ti}, Q(T') < D2 }[1 - Pr{T < min{re, T'}}

-Pr{T' < min{T, Ti}, Q(T') > D 2 }]. (2.38)

In the following we provide bounds on each of the terms in (2.38). By Markov property

of the Poisson process we have

Pr{re < T2 IT' < min{re, Ti}, Q(T') < D2 }

= Pr{Te 5 T2 |Q(T') < D2 }

> Pr{-e < 2 |Q(T') = D2 }

= 1 - Pr{T2 < Te|Q(T') = D 2 }

> 1-Pr sup Q(t) > U2 (t)IQ(T') = D 2
T'<t<T

>1-e R( ') 1- 6 , (2.39)

where the last inequality follows from Lemma 2.6.7 with parameters 6 = 62 and

s = ThT, if its hypothesis s < R is satisfied. This is equivalent to having T satisfy

T ;> A log ()



Similarly, by employing Lemma 2.6.7 with 6 = 61 and s = -- we have

Pr{T < min{re, T'}} < Pr sup Q(t) > ui(t)
f O<t<T'

< exp

= exp

Note that the hypothesis of Lemma 2.6.7 is satisfied here for all a < 1. Moreover, if

T > 1 log (1), we have

Pr{T < min{tre, T'}}

For the last term in (2.38) write

1 - Pr{T' < min{Te, ri}, Q(T') > D 2 }

< exp(

< exp(

- 4log (I)[1- 1

- 2 log ()=E2. (2.40)

> 1- Pr{Q(T') > D 2} = Pr{Q(T') < D2 }

= Pr{D+A(T')-T'<D2}

= Pr{A(T') < T'R - mv/R},

where A(T') is a Poisson random variable with mean RT', and

2log(1) -

2(1 -ao)I
[1 + (8a)"].

For T > 1 log (1) and a, e < -, we may verify that m < RT'/20 - 1. Hence,

we can use Lemma 2.6.6 to bound (2.41) from below and conclude

1 ( )
1 - Pr{T' < min{Te, T1}, Q(T')

1
> D 2} > exp

RT')

a2RT
4(1 - a)

log ( ) )(2a2RT)/

(2.41)

(2.42)

11 
2)

2

1 2

2 )



Oe) 

1
Observe that for~ a=0, we have mn - mo = ( log ())2 and verify that

1 12 1 1
for alr e16

By continuity of m in a (cf. (2.42)), we can choose a = ao > 0 small enough such

that je- ,(E2 e. Now, by plugging this relation as well as (2.39) and (2.40)3 15

back in (2.38) we have for all c < i-16'

(2.43)

if T > 16 log(). Therefore, the buffer size D, defined in (2.35), is a lower bound

on D*(e).
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Chapter 3

Network Coding for

Technology- heterogeneous

Streaming Systems

In this part, we study the problem of streaming a media file from multiple servers to a

single receiver over unreliable communication channels. Each of the servers could be

a wireless access point, base station, another peer, or any combination of the above.

Such servers may operate under different protocols in different ranges of the spec-

trum such as WiFi (IEEE 802.11), WiMAX (IEEE 802.16), HSPA, EvDo, LTE, etc.

We refer to such system as a technology-heterogeneous multi-server system. In this

setup, the receiver can request different pieces of the media file from different servers.

Requesting packets form each server may cause delays due to channel uncertainty.

However, requesting one packet from multiple servers introduces the need to keep

track of packets, and the duplicate packet reception problem. In this chapter, we

discuss methods that enable efficient streaming across different paths and network

interfaces. This greatly simplifies the model when analyzing such systems.



3.1 Multi-path Single-server Systems

In order to resolve such issues of the multi-server and technology-heterogeneous sys-

tems, let us take a closer look at the process of media streaming across different layers.

Media files are divided into blocks of relatively large size, each consisting of several

frames. The video coding is such that all the frames in the block need to be available

before any frames can be played. Blocks are requested in sequence by the playback

application from the user-end. The server (or other peers) packetize the requested

block and transmit them to the user as in Figure 3-1.

Server Client

Request block i

Application Application
Layer Layere di

player
Block i Block i

Network Network
Layer Layer

p13 p2 P31 --- 1Pw 1 P2 P3 --- PE

Figure 3-1: The media player (application layer) requires complete blocks. At the
network layer each block is divided into packets and delivered.

Now consider the scenario, illustrated in Figure 3-2, where there are multiple paths

to reach a particular server. Each of these paths could pass through different network

infrastructures. For example, in Figure 3-2, one of the path is using the WiFi access

point, while the other one is formed by the Lte network.

The conventional approach in exploiting the path diversity in such scenarios is

scheduling each packet to be delivered over one of the available paths. For instance,

odd-numbered packets are assigned to path 1, and even-numbered packets are as-

signed to path 2. This approach requires a deterministic and reliable setting, where

each path is lossless and the capacity and end-to-end delay of each path is known.



Server - 0 -~ ' Client

Application layer Request block i Application layer Media

Block i Block i

Divide & Schedule Combine

IP flow 1 IP flow 2 IP flow 1 IP flow 2
1
Ps P~6 I ff

P4 Lte NIC WiFi NIC

Figure 3-2: Streaming over multiple paths/interfaces.

However, the wireless medium is intrinsically unreliable and time varying. Moreover,

flow dynamics in other parts of the network may result in congestion on a particular

path. Therefore, the slowest or most unreliable path becomes the bottleneck. In

order to compensate for that, the scheduler may add some redundancy by sending

the same packet over multiple paths which results in duplicate packet reception and

loss of performance. There is a significant effort to use proper scheduling and control

mechanisms to reduce these problems. For more information on this approach, gen-

erally known as MultiPath TCP (MPTCP), please refer to the works by Wischik et

al. [47, 48], and IETF working draft on MPTCP [49].

We propose random linear network coding (RLNC) to alleviate the duplicate

packet reception problem. Figure 3-3 illustrates an example. Here, instead of re-

questing a particular packet in block i, the receiver simply requests a random linear

combination of all the packets in block i. The coefficients of each combination are

chosen uniformly at random from a Galois field of size q. The coded packets delivered

to the receiver can be thought of as linear equations, where the unknowns are the

original packets in block i. Block i can be fully recovered by solving a system of

linear equations if it is full rank. Note that we can embed the coding coefficients in

the header of each coded packet so that the receiver can form the system of linear

equations. For more implementation details, please refer to Sundararajan et al. [50].
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Figure 3-3: Streaming over multiple paths/interfaces using Network Coding.

It can be shown that if the field size q is large enough, the received linear equations

are linearly independent with very high probability [24]. Therefore, for recovering

a block of W packets, it is sufficient to receive W linearly independent coded pack-

ets from different peers. Each received coded packet is likely to be independent of

previous ones with probability 1 - 6(q), where 6(q) -+ 0 as q -+ 00.

By removing the notion of unique identity assigned to each packet, network coding

allows significant simplification of the scheduling and flow control tasks at the server.

For instance, if one of the paths get congested or drops a few of the packets, the

server may complete the block transfer by sending more coded packets over the other

paths. Hence, the sender may perform TCP-like flow management and congestion

control on each of the paths independently. Therefore, network coding provides a

mean to homogenize a technology-heterogeneous system as if the receiver only has

single interface. The following proposition summarizes the corollaries of random linear

network coding with a large field size.

Proposition 3.1.1. Consider a single client receiving random linearly coded packets

over m paths with rates R 1,... Rm. The effective rate of receiving decoded packets is

m

R = ER,.
k=1



3.2 Multi-path Multi-server Systems

Server 1 Server 2 Client

Application laye Application layer Application layer

Network Encoder Network Encoder
Ne- , I Network Decoder

sub-flow 1 sub-flow 2 [sub-flow 3
sub-flow 1 sub-flow 2 sub-flow 3

lP flow 1 Pflow 2 IP flow 3

IP flow 1 IP flow 2 IP flow 3

Figure 3-4: Streaming over multiple paths/interfaces from multiple servers/peers us-
ing Network Coding.

Our observations in a single-server multi-path case, lead us to further general-

ization of the multi-path streaming scenario to cases with multiple servers or peers.

Figure 3-4 shows a scenario where two independent servers stream a single file over

three paths to a client with two interfaces. In this scenario, there are three network

(IP) flows corresponding to three paths that are aggregated at the client. Each path

delivers random linear combinations of packets in a particular block of the file. The

number of coded packets delivered per unit time depends on the level of congestion

and the over quality of each path. However, it does not depend on the quality or

congestion along other paths.

Figure 3-4 also represents P2P systems, where each of the randomly contacted

peers act as a server. In a standard P2P system, it is unlikely that a randomly

contacted peer would have all packets corresponding to a particular block. However,

storing blocks in a random linear coded fashion ensures that the selected peer has a



useful equation to offer (see [27] for further discussion). Therefore, we may assume

that the effective rate at which each path delivers packets to the client is only a

function of path state (e.g. congestion and losses) not server state. The following

proposition states this observation.

Proposition 3.2.1. Consider a single client receiving random linearly coded packets

over m paths (with independent conditions) from n different servers. The packet

arrival process from each path k G {1, .. ,m} is independent of the arrival process on

all other paths.

Note that such random linear coding does not introduce additional decoding delay

for each block, since the frames in a block can only be played out when the whole

block is received. So there is no difference in delay whether the end-user received

W uncoded packets of the block or W independent coded packets that can then be

decoded.

In the following, we discuss the conditions under which we can convert a access

technology-heterogeneous multi-server system to a single-path single-server system.

Consider a single user receiving a media file from various servers it is connected to.

Assume that the media file is divided into blocks of W packets. Each server sends

random linear combinations of the packets within the current block to the receiver.

We assume that the linear combination coefficients are selected from a Galois field of

large enough size, so that no redundant packet is delivered to the receiver. Moreover,

we assume that the block size W is small compared to the total length of the file,

but large enough to ignore the boundary effects of moving from one block to the

next. Assume time is continuous, and the arrival process of packets from each server

is a Poisson process. Using network coding, by Proposition 3.2.1, we may assume

that the arrival process from each server is independent of other arrival processes.

Moreover, since no redundant packet is delivered from different peers (Proposition

3.1.1), we can combine the arrival processes into one Poisson process of the sum-rate

R. Similarly to the preceding Chapter, we normalize the playback rate to one, i.e.,

it takes one unit of time to play a single packet. Thus, our simplified model is just a



single-server-single-receiver system with the queue dynamics given by (3.1).

The presence of some packets in the buffer does not guarantee no interruption,

since we require W packets corresponding to a block before it can be decoded. How-

ever, if there are at least W packets in the buffer, there is at least one playable packet.

This is so since either the first W packets in the buffer belong to the same block, or

they belong to two different blocks. In the former case, the packets of the block can

be decoded, and in the latter case, the first block of the two must be already decoded;

otherwise, the next block would not be sent from the server. We declare an interrup-

tion in playback when the buffer size decreases to the threshold W. For simplicity of

notation, we assume that an extra block is initially buffered (not counted in the initial

buffer size D). Hence, we can declare an interruption in playback when the buffer size

reaches zero before reaching the end of the file. Since the queue dynamics and the

interruption event match the single-server case, the results of the preceding chapter

(in particular Theorems 2.2.1, 2.2.2) directly apply to a technology-heterogeneous

multi-server system. We summarize the above discussions into the following Propo-

sition, which is the key for development of the analytical results in the subsequent

parts.

Proposition 3.2.2. Consider one or more servers streaming a single media file to

a single client over m independent path using random linear network coding. The

packet delivery process over path k is modeled as a Poisson process of rate Rk. Let

the playback rate be normalized to one at the receiver. Then, the receiver queue

dynamics is given by:

Q(t) = D + A(t) - t, (3.1)

where D is the initial queue length and A(t) is a Poisson process of rate R = Z Rk.

We declare an interruption in media playback if and only if the queue length hits

zero before reaching the end of the file, i.e., when Te < Tf, where Te and Tf are defined

in (2.2).

Proposition 3.2.2 provides the necessary tool for analyzing technology-heterogeneous

multi-server systems as a single-server system. For instance, we can apply most of the



results of Chapter 2 on fundamental delay-interruption trade-offs. This is essential

for tractability of the analysis of cost-heterogeneous systems, which is the focus of

the subsequent Chapter.



Chapter 4

Cost-heterogeneous Multi-server

Streaming Systems

In this part, we study the multi-server media streaming problem, where the cost of

accessing different servers can be different. This scenario adds another dimension to

end-user metrics, i.e., the usage cost (see Figure 1-3). The goal is to satisfy user's

quality of experience requirements in terms of the initial waiting time and interruption

probability at a minimum cost.

4.1 System Model and QoE Metrics

We consider a media streaming system as follows. A single user is receiving a media

file of size F packets, from various servers or access points. The receiver first buffers

D packets from the beginning of the file, and then starts the playback at unit rate.

We assume that time is continuous, and the arrival process of packets from each

server is a Poisson process independent of other arrival processes. Further, we assume

that each server sends random linear combination of the packets in the source file.

Therefore, by discussions of Chapter 3 (cf. Proposition 3.1.1), no redundant packet

is delivered from different servers. Therefore, we can combine the arrival processes

of any subset of the servers into one Poisson process of rate equal to the sum of the

rates from the corresponding servers (cf. Proposition 3.2.2).



There are two types of servers in the system: free servers and the costly ones.

There is no cost associated with receiving packets from a free server, but a unit cost

is incurred for every unit time that the costly servers are used. As described above,

we can combine all the free servers into one free server from which packets arrive

according to a Poisson process of rate Ro. Similarly, we can merge all of the costly

servers into one costly server with effective rate of Rc. At any time t, the user has the

option to use packets only from the free server or from both the free and the costly

servers. In the latter case, the packets arrive according to a Poisson process of rate

R1 = Ro + Rc.

The user's action at time t is denoted by Ut E {0, 1}, where ut = 0 if only the

free server is used at time t, while ut = 1 if both free and costly servers are used.

We assume that the parameters R& and R1 are known at the receiver. Figure 4-1

illustrates the system model.

Sre

Rc ;> 0

!Ut

Figure 4-1: Streaming frow two classes of servers: costly and free.

The dynamics of the receiver's buffer size (queue-length) Qt can be described as

follows

Qt=D+Nt+ udN,-t, (4.1)

where D is the initial buffer size, Nt Poisson processes of rate Ro and Ntc is a Poisson

counter of rate Rc which is independent of the process Nt. The last term correspond

-rib

server

RO >



to the unit rate of media playback.

The user's association (control') policy is formally defined below.

Definition 4.1.1. [Control Policy] Let

h= {Q, :0<s <t}JU{fu :0< s <t}

denote the history of the buffer sizes and actions up to time t, and 7N be the set of

all histories for all t. A deterministic association policy denoted by7r is a mapping

-r 71 '- {0, 1}, where at any time t

7r(ht) { 0, if only the free server is chosen,

1, if both servers are chosen.

Denote by II the set of all such control policies.

Similarly to Section 2.1, we use the initial buffer size D, and interruption proba-

bility as quality of user experience metrics. The definition of interruption event and

hence, interruption probability remains unchanged (see (2.3)). However, the inter-

ruption event not only depends on the initial buffer size D, but also on the control

policy 7r. To emphasize this dependency, we denote the interruption probability by

p"(D) = Pr{Te < Ty}, (4.2)

where Te and Ty are defined in (2.2).

Definition 4.1.2. The policy -r is defined to be (D, c)-feasible if p'(D) < C. The set

of all such feasible policies is denoted by H(D, e).

The third metric that we consider in this thesis is the expected cost of using the

costly server which is proportional to the expected usage time of the costly server.

'Throughout the rest of this chapter, we use the notion of control policy and association policy,
interchangeably.



For any (D, e), the usage cost of a (D, e)-feasible policy 7r is given by2

.min(-re,rg)

J'(D, e) = E utdt]. (4.3)

The value function or optimal cost function V is defined as

V(D, c) = min J'(D, c), (4.4)
7rEU(D,c)

and the optimal policy lr* is defined as the optimal solution of the minimization

problem in (4.4).

In our model, the user expects to buffer no more than D packets and have an

interruption-free experience with probability higher than a desired level 1 - e. Note

that there are trade-offs between the interruption probability e, the initial buffer size

D, and the usage cost. These trade-offs depend on the association policy as well as

the system parameters Ro, Re and F.

Throughout the rest of this chapter, we study the case that Ro > 1 and the file

size F goes to infinity, so that the control policies in this case take simpler forms.

Moreover, the cost of such control policies provide an upper bound for the finite file

size case.

We first characterize the region of interest in the space of QoE metrics where a

feasible control policy exists and is non-degenerate. We then use these results to

design association policies.

Theorem 4.1.1. Let (D, e) be user's QoE requirement when streaming an infinite

file from two servers. The arrival rate of the free server is given by Ro > 1, and the

total arrival rate when using the costly server is denoted by R1 > Ro. Let I(R) be the

largest root of 7(r) = r + R(e-r - 1). Then

(a) For any (D, e) such that D > 1 log (i),

min J'(D, e) = 0.
7rErI

2Throughout this work, we use the convention that the cost of an infeasible policy is infinite.



(b) For any (D, c) such that D < ' log ( ),

min J(D, c) = oo.
7rEH

Proof. Consider the degenerate policy ro - 0. This policy is equivalent to a single-

server system with arrival rate R = Ro. By Definition 4.1.2, and Corollary 2.2.2, the

policy ro is (D, 6)-feasible for all D > I( log (.). Note that by (4.3) this policy

does not incur any cost, which results in part (a).

Moreover, for all (D, c) with D < 1 log (i), there is no (D, E)-feasible policy.

This is so since the buffer size under any policy 7r is stochastically dominated by the

one governed by the degenerate policy 7ri = 1. Hence,

p"(D) 2 p" (D) = exp(-I(RI)D) > e.

Using the convention of infinite cost for infeasible policies, we obtain the result in

part (b). 0

Figure 4-2: Non-degenerate, zero-cost and infeasible regions for QoE metrics (D, E).

For simplicity of notation, let ao = I(Ro), and ai = I(R 1 ). By Theorem 4.1.1 we



focus on the region

R= (D,e) : I log (1) < D < - log (1) (4.5)

to analyze the expected cost of various classes of control policies. Figure 4-2 illus-

trates a conceptual example of this non-degenerate region as well as the zero-cost and

infeasible regions.

4.2 Design and Analysis of Association Policies

In this part, we propose several classes of parameterized control policies. We first

characterize the range of the parameters for which the association policy is feasible

for a given initial buffer size D and the desired level of interruption probability e.

Then, we try to choose the parameters such that the expected cost of the policy is

minimized. All of the proofs of the main theorems are included in Appendix 4.5.

4.2.1 Off-line Policy

Consider the class of policies where the decisions are made off-line before starting

the media streaming. In this case, the arrival process is not observable by the deci-

sion maker. Therefore, the user's decision space reduces to the set of deterministic

functions u : R -+ {0, 1}, that maps time into the action space.

Theorem 4.2.1. Let the cost of a control policy be defined as in (4.3). In order to

find a minimum-cost off-line policy, it is sufficient to consider policies of the form:

r(ht) = ut= 1 if t < ts (4.6)
0, if t > ts,

which parameterized are by a single parameter t, > 0.

Proof. In general any off-line policy 7 consists of multiple intervals in which the costly

server is used. Consider an alternative policy ir' of the form of (4.6) where t, = J'. By



definition of the cost function in (4.3) the two policies incur the same cost. Moreover,

the buffer size process under policy 7r is stochastically dominated by the one under

policy ir', because the policy ir' counts the arrivals from the costly server earlier, and

the arrival process is stationary. Hence, the interruption probability of ir' is not larger

than that of 7r. Therefore, for any off-line policy, there exists another off-line policy

of the form given by (4.6).

Theorem 4.2.2. Consider the class of off-lines policies of the form (4.6). For any

(D, e) G R, the policy ir defined in (4.6) is feasible if

ts > t* = [I log ( - D. (4.7)
R 1 - Ro o e Q1- e-

Note that obtaining the optimal off-line policy is equivalent to finding the smallest

t, for which the policy is still feasible. Therefore, t* given in (4.7) provides an upper

bound on the minimum cost of an off-line policy. Observe that t* is almost linear in

D for all (D, e) that is not too close to the lower boundary of region R. As (D, e)

gets closer to the boundary, t* and the expected cost grows to infinity, which is in

agreement with Theorem 4.1.1. In this work we pick t* as a benchmark for comparison

to other policies that we present next.

4.2.2 Online Safe Policy

Let us now consider the class of online policies where the decision maker can observe

the buffer size history. Inspired by the structure of the optimal off-line policies, we

first focus on a safe control policy in which in order to avoid interruptions, the costly

server is used at the beginning until the buffer size reaches a certain threshold after

which the costly server is never used. This policy is formally defined below.

Definition 4.2.1. The online safe policy rS parameterized by the threshold value S

is given by

1, if t < Ts (4.8)
0, if t > rs,



where Ts = inf{t 2 0 : Qt > S}.

Theorem 4.2.3. Let irs be the safe policy defined in Definition 4.2.1. For any

(D, e) G 7, the safe policy is feasible if

S > S* = Ilog ( 1  i. (4.9)

Moreover,

min J, S(D, e)= J'" S (DIE)=- log- D + IS;>S* R1 - 1 [ao e - e-a1iD

where e [0, 1).

Let us now compare the online safe policy rS* with the off-line policy defined in

(4.6) with parameter t* as in (4.7). We observe that the cost of the online safe policy

is almost proportional to that of the off-line policy, where the cost ratio of the off-line

policy to that of the online safe policy is given by

Ro(R1 - 1) R1 (Ro - 1) 1.= 1+ >1
R1 - Ro R1 - Ro

Note that the structure of both policies is the same, i.e, both policies use the costly

server for a certain period of time and then switch back to the free server. As suggested

here, the advantage of observing the buffer size allows the online policies to avoid

excessive use of the costly server when there are sufficiently large number of arrivals

from the free server. In the following, we present another class of online policies.

4.2.3 Online Risky Policy

In this part, we study a class of online policies where the costly server is used only if

the buffer size is below a certain threshold. We call such policies "risky" as the risk

of interruption is spread out across the whole trajectory unlike the "safe" policies.

Further, we constrain risky policies to possess the property that the action at a

particular time should only depend on the buffer size at that time, i.e., such policies



are stationary Markov with respect to buffer size as the state of the system. The

risky policy is formally defined below.

Definition 4.2.2. The online risky policy -rT parameterized by the threshold value

T is given by

r T (ht) = irT (Qt) = 1 if 0 < Qt < T (4.10)
0, otherwise.

Theorem 4.2.4. Let 7rT be the risky policy defined in Definition 4.2.2. For any

(D, e) E R, the policy -rT is feasible if the threshold T satisfies

( [log(j) -aoD], if D > D,
T > T* = a1-a Q (4.1-

a - allog C 0cje--jD), if D < D,

where 3 =and D = log (n).

Theorem 4.2.4 facilitates the design of risky policies with a single-threshold struc-

ture, for any desired initial buffer size D and interruption probability e. For a fixed

e, when D increases, T* (the design given by Theorem 4.2.4) decreases to zero. On

the other hand, if D decreases to 11 log (1) (the boundary of R), the threshold T*

quickly increases to infinity, i.e., the policy does not switch back to the free server

unless a sufficiently large number of packets is buffered. Figure 4-3 plots T* and D

as a function of D for a fixed e. Observe that for large range of D, T* < D, i.e., the

costly server is not initially used. In this range, owing to the positive drift of Qt, the

probability of ever using the costly server exponentially decreases in (D - T*).

Next we compute relatively tight bounds on the expected cost of the online risky

policy and compare with the previously proposed policies.

Theorem 4.2.5. For any (D, e) E R, consider an online risky policy 7rT* defined in

Definition 4.2.2, where the threshold T* is given by (4.11) as function of D and c. If

D > D then

J1) (DE) < e-ao(D-T*) (4.12)
a(Ri -1)
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Figure 4-3: The switching threshold of the online risky policy as a function of the
initial buffer size for e = 10-3 (See Theorem 4.2.4).

and if D < D

-(D, e) < (T* + + (4.13)
- (R 1 - 1)(1 - e-alT*) ai R1 - 1'

where 3 = and D = -log (log

In the following, we compare the expected cost of the presented policies using

numerical methods, and illustrate that the bounds derived in Theorems 4.2.2, 4.2.3

and 4.2.5 on the expected cost function are close to the exact value.

4.2.4 Performance Comparison

Figure 4-4 compares the expected cost functions of the off-line, online safe and online

risky policies as a function of the initial buffer size D, when the interruption proba-

bility is fixed to c = 10-, the arrival rate from the free server is Ro = 1.05, and the

arrival rate from the costly server is Re = R1 - Ro = 0.15. We plot the bounds on

the expected cost given by Theorems 4.2.2, 4.2.3 and 4.2.5 as well as the expected

cost function numerically computed by the Monte-Carlo method.

Observe that the expected cost of the risky policy is significantly smaller that both



Figure 4-4: Expected cost (units of time) of the presented control policies as a function

of the initial buffer size for interruption probability c = 10-. The analytical bounds
are given by Theorems 4.2.2, 4.2.3 and 4.2.5.

online safe and off-line policies. For example, the risky policy allows us to decrease

the initial buffer size from 70 to 20 with an average of 70 x 0.15 ~ 10 extra packets

from the costly server. The expected cost in terms of the number packets received

from the costly server is 43 and 61 for the online safe and off-line policy, respectively.

Moreover, note that it is merely the existence of the costly server as a backup that

allows us to improve the user's quality of experience without actually using too many

packets from the costly server. For example, observe that the risky policy satisfies

QoE metrics of D = 35 and c = 10-, by only using on average about one extra packet

from the costly server. However, without the costly server, in order to decrease the

initial buffer size from 70 to 35, the interruption probability has to increase from 10-3

to about 0.03 (see Corollary 2.2.2).

4.3 Dynamic Programming Approach

In this section, we present a characterization of the optimal association policy in

terms of the Hamilton-Jacobi-Bellman (HJB) equation. Note that because of the

probabilistic constraint over the space of sample paths of the buffer size, the optimal

policy is not necessarily Markov with respect to the buffer size as the state of the



system. We take a similar approach as in [5] where by expanding the state space, a

Bellman equation is provided as the optimality condition of an MDP with probabilistic

constraint. In particular, consider the pair (Qt, Pt) as the state variable, where Qt

denotes the buffer size and pt represents the desired level of interruption probability

given the information at time t. Note that pt is a martingale by definition [44]. The

evolution of Qt is governed by the following stochastic differential equation

dQt = -dt + dNU, Qo = D, (4.14)

where Nu is a Poisson counter with rate Ru = Ro + ut -Rc. For any (D, e) E R and

any optimal policy T, the constraint p'(D) < e is active. Hence, we consider the

sample paths of pt such that po = E. Moreover, we have E[pt] = c for all t, where the

expectation is with respect to the Poisson jumps. Let dpt = Pt - pt be the change in

state p, if a Poisson jump occurs in an infinitesimal interval of length dt. Also, let

dpt = dpo be the change in state p if no jump occurs. Therefore,

0 = E[dpt] = Rudt(ft - pt) + (1 - Rudt)dpo.

By solving the above equation for dpo, we obtain the evolution of p as a function of

the control process Pt and ut:

dpt = (Pt - Pt)(Rudt - dNu) , po = e. (4.15)

Similarly to the arguments of Theorem 2 of [5], by principle of optimality we can

write the following dynamic programming equation

V(Q,p) = min {udt + E[V(Q+dQ,p+dp)]}. (4.16)
ue{O,1}6e[O,1]

If V is continuously differentiable, by Ito's Lemma for jump processes, we have

V(V QV uV(Q +dQ, p+dp) -V(Q,p) = (-dt) + -. (p - P)Rudt + (V(Q + 1, P) - V(Ql p)) dN"IaQ op



which implies the following HJB equation after dividing (4.16) by dt and taking the

limit as t goes to zero:

OV(Qp) = min {u+ (p-fP)Ru+RU(V(Q+1,$)-V(Q,p))}
OQ uE{O,1},PE[o,1] op

The optimal policy 7r is obtained by characterizing the optimal solution of the

partial differential equation in (4.17) together with the boundary condition V(Q, 1) =

0. Since such equations are in general difficult to solve analytically, we use the guess

and check approach, where we propose a candidate for the value function and verify

that it nearly satisfies the HJB equation almost everywhere. Moreover, we show

that the trajectories of (Qt,pt) steered by the optimal actions (u*,f*) lie in a one-

dimensional invariant manifold, leading to the risky policy defined in Definition 4.2.2.

For any (Q, p) E 7R define

I [log() aoQ], if Q > - log( ),T(Q, p) = "I-" - " (4.17)
1 log pO(1-e otherwise,

where 0 = . The candidate solution for HJB equation (4.17) is given by

V(QIp) = cao(R - 0 -)pe (4.18)
'ao(1 - 2L)(R1 - 1)'

when Q > log (2), and

V(Qp) = +0(1 1 (T(Q, p) + 1- (4.19)
(R1 - 1)(0 - 1) ai R1 - 1

when Q < -log (2). Note that the candidate solution is derived from the structure

of the expected cost of the risky policy (cf. Theorem 4.2.5). We may verify that

V satisfies the HJB equation (4.17) for all (Q, p) such that Q > -L log (2) or Q <

y log ( ) -1, but for other (Q, p) the HJB equation is only approximately satisfied.

This is due to the discontinuity of the queue-length process which does not allow us

to exactly match the expected cost starting from below the threshold with the one



starting from above the threshold. Therefore, due to approximate characterization of

the cost of the risky policy, we may not prove or disprove optimality of this policy.

In order to provide further intuition behind this formulation and the risky policy,

we consider the sample paths of the state process. We expect that for the initial

condition (Qo, po) = (D, E), the trajectory of (Qt, pt) steered by the optimal actions

(ut, p*) is limited to a one-dimensional invariant manifold M(D, c), where

M(D, e) = {(Q, P) : p = Oe-aoQ-(a1-ao)T(D,) ' I{Q>T(D,E)}

(6 - 1)e-a1T(DE) + e-a'Q(1 e 1T(DE) e ) {Q<T(D)}} (4.20)1 _ e-a1T(D,,E) QTDe},(-0

where T(D, E) is given by (4.17). Figure 4-5 plots these one-dimensional manifolds for

different initial conditions (D, E). The system state crossing from the region with u* =

0 to the region with u* = 1, is equivalent to the queue-length crossing a threshold.

Since the system state is limited to a one-dimensional space, this threshold remains

constant over time.
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Figure 4-5: Trajectory of the optimal policy lies on a one-dimensional manifold.

In the following, we use a fluid model to provide an

optimal control policy using appropriate HJB equation.

exact characterization of the



4.4 Optimal Association Policy for a Fluid Model

Thus far, we concentrated on design and analysis of various network association poli-

cies in an uncertain environment, where network uncertainties are modeled using a

Poisson arrival process. We provided closed-form approximations of the cost of dif-

ferent policies. However, an exact analytical solution is required to prove optimality

of the risky policy. This is particularly challenging since an exact distribution of

threshold over-shoots is desired due to discontinuous nature of the Poisson process.

In this part, we exploit a second-order approximation of the Poisson process [51] and

model the receiver's buffer size using a controlled Brownian motion with drift.

Consider the system model as in Figure 4-1, with following queue-length dynamics

at the receiver:

dQt = (Rut - 1)dt + dWt, Qo = D, (4.21)

where Wt is the Wiener process, ut E {0, 1} is the receiver's decision at time t on

using the free or costly server. As in the preceding part, we assume that the media

file size F is infinite and R1 > Ro > 1.

Define the control policy (network association policy) as in Definition 4.1.1. The

goal is to find a feasible policy that minimizes the usage cost defined in (4.3) such that

the interruption probability p'(D) defined in (4.2) is at most e. As in the previous

part, the set of feasible policies and the value function is given by Definition 4.1.2

and (4.4), respectively. The following lemma is the counterpart of Corollary 2.2.2 for

the fluid model.

Lemma 4.4.1. Let 7i = i denote a degenerate policy, where i E {0,1}. The inter-

ruption probability for such policy is given by

p -(D) = e- iD, for all D > 0, (4.22)

where 64 = 2(Ri - 1), for i E {0, 1}.

Proof. See Appendix 4.6 at the end of this chapter. El



First, we provide a characterization of the optimal policy via Hamilton-Jacobi-

Bellman equation. As in Section 4.3, we expand the state variables to (Q, p), where

Q is the queue-length with dynamics given by 4.21, and p is the desired interruption

probability. Using Martingale representation theorem [44], we may write the dynamics

of p as follows:

dp = Pt dWt, poe, (4.23)

where Pt is a predictable process which is adapted with respect to natural filtration

of the history process. Using the principal of optimality, we may write the following

dynamic programming equation:

V(Q,p) = min {udt+E[V(Q +dQ,p-+dp)]}, (4.24)
(u,fi)E{O,1}XR

where (u, P) are the control actions. For a twice differentiable function V, we may

exploit Ito's Lemma to get

av av 1 2V 182 v 2 + 2v
dV(Q,p) = dQ+ dp+ Q(dQ)2+ (dp)2+ dQdp

8Q ap 2 aQ2 2 op2 g g g
(a) aV aV
= ((Ru-1)dt+dW)+ (P dW)aQ OP

I a2 I v2 1 2  02v
+- dt + - ()2dt +2 aQ2  2 p 0 Pdt

where (a) follows from state dynamics in (4.21) and (4.23). Replacing the above

equation back in (4.24), and taking the expectation with respect to dW, and limit as

dt tends to zero, we obtain the following HJB equation

( V 1 892V I a2y a2y
min + (RU - 1+ + _V(p) 2 + Q p . (4.25)

(u,p)E{0,1}XR aQ 2 g 2 a g2 gg

Note that we require the following boundary conditions for the value function:

V(Q, 1) = V(0,p) = 0, for all Q ;> 0, 0 < p 1 (4.26)

Providing an analytical solution for the partial differential equation in (4.25) is



often challenging or impossible. However, we may take a guess and check approach

and use a threshold policy as the basis of our guess. Note that we need to verify

the HJB equation for the set of state variables that reachable by a feasible policy. In

particular, in light of Lemma 4.4.1, it is clear that for p < e-01Q, there is no feasible

policy and the value function V(Q, p) = oc. Moreover, for all p > e-oQ, observe that

the degenerate policy o = 0 is optimal, V(Q, p) = 0 which also satisfies the HJB

equation and the boundary conditions. Therefore, we focus on the non-degenerate

region

R= {(Q, p) : e- 0' < p < e-OoQ, Q > 0}. (4.27)

Figure 4-2 illustrates a conceptual example of this non-degenerate region. In the

following, we first define a threshold policy similar to the risky policy of Definition

4.2.2, and present a closed-form characterization of its cost function. Then, we show

that for a proper choice of the threshold the associated cost function satisfies the

HJB equation in (4.25) and the optimal solution of the minimization problem in

(4.25) coincides with the threshold policy. Hence, we establish the optimality of the

proposed policy.

Theorem 4.4.1. Let 7T be the threshold policy as in Definition 4.2.2, parameterized

with threshold value T. Also, let the queue-length dynamics be governed by (4.21).

Then, the interruption probability for this policy is given by

pT(D o=1 -0D
e-01 +p 1 --1D , 0 < D < T

p T(D) p(T je-O0(D-T), 0 D ;> T, 4.8

where

p (T) = 00 + 1T e-01V'01 (1
and64 = 2(Ri - 1), for i E {0, 1.

Proof. See Appendix 4.6 at the end of this chapter. El

Corollary 4.4.1. Let 7T be the threshold policy as in Definition 4.2.2. Then, the pol-

icy 7rT is (D, e)-feasible (cf. Definition 4.1.2) for the following choices of the threshold



1. For all e > e-OoD let T = 0.

2. For all e-01D < C 0D e, let T = T(D, c) be the unique solution of pT(D) = e,

where pT(D) is given by (4.28).

3. For all other e, there exists no such T.

Proof. The proof directly follows from the characterization of the interruption prob-

ability in Theorem 4.4.1, noting the fact that pT(D) E [e-1D e-OoD] is monotonically

decreasing in T.

Next, we provide a exact characterization of the expected cost of the threshold

policy 7rT for a given threshold T. This allows us to obtain a proper candidate solution

for the HJB equation.

Theorem 4.4.2. Let 7rT be the threshold policy as in Definition 4.2.2. Define JT (D)

as the expected cost associated with policy 7T given the initial condition D for queue-

length dynamics (4.21) and threshold T. The cost-to-go function JT (D) is given

by

JT(D){ (J(o(D-T) J(T), D > T (4.29)
(J(T) + 2T) _-e_"l' - (D, D < T,

where
2 [1 - (1 + OT)e-01T]

J (T) = 07 +L -1 (4.30)
01 01)

Proof. See Appendix 4.6 at the end of this chapter. l

The following theorem provide a candidate for value function and verify the opti-

mality condition given by HJB equation in (4.25).

Theorem 4.4.3. For all (Q, p) E R, define

V(Qp) = jT(Qp)(Q), (4.31)



where JT(.) is defined in (4.29), R is defined in (4.27), and T(Q,p) is the unique

solution of

pT (Q) = p.

Then, the HJB equation (4.25) and boundary condition (4.26) hold for all (Q, p) E R.

Proof. See Appendix 4.6 at the end of this chapter.

Theorem 4.4.3 verifies that the value function V(Q, p) given by (4.31) is indeed

the optimal cost function defined in (4.4). Furthermore, we can conclude that the

policy 7r*(Q, p) achieving the minimum in the HJB equation (4.25) is optimal. In

general, the optimal policy depends on both state variables (Q, p) and is not Markov

with respect to Q. In the following, we show that the state trajectory steered by the

optimal policy is limited to a one-dimensional manifold and the threshold policy r T

is optimal for all (Q,p) E 7Z. Recall the policy ,rT boils down to the optimal policy

0ro = 0 for all other admissible states, by using threshold value T = 0.

Theorem 4.4.4. Let ,r*(Q,p) attain the minimum in the HJB equation (4.25) for

any (Q,p) E R. Let (Q*,p*) denote the state trajectory given the initial condition

(D, e), under the control trajectory (u*, p*) = ,r*(Q*, p*). Then, the state trajectory is

limited to a one-dimensional invariant manifold M(D, e), where

M(D, E) = {(Q, p) : p = pT(DE)(Q)} (4.32)

where T(D, e) is the solution of pT (D) = c, and pT(.) is defined in (4.28). Moreover,

the optimal policy ,7*(Qp) coincides with the threshold policy wrT(DE)(Q).

Proof. See Appendix 4.6 at the end of this chapter. l

Corollary 4.4.2. The optimal policy 7r*(Q, p) is Markovian with respect to the queue-

length process Qt conditioned on the initial condition (QO, Po) = (D, c).

Figure 4-5 illustrates a conceptual figure of the one-dimensional invariant mani-

folds for different initial conditions, which contain the optimal state trajectory and

lead to optimality of the threshold policy.



4.5 Appendix to Chapter 4 - Analysis of the Con-

trol Policies for the Poisson Arrival Model

Proof of Theorem 4.2.2. By Definition 4.1.2, we need to show that p(D) < E.

By a union bound on the interruption probability, it is sufficient to verify

Pr min Qt
\0!<tt

< OQo = D) + Pr min Qt <0|Qo = D) .\ t>t s

In the interval [0, t,], Qt behaves as in a single-server system with rate R 1. Hence,

by Corollary 2.2.2 we get

Pr min
\ o<t<ts

Qt < O|Qo = D) < ea1D (4.34)

For the second term in (4.33), we have

Pr( min Qt 0Qo\ t>ts
= D)

00

q=D-t,

Pr minQt < 0|Qts
(t>ts

= q) Pr(Qs = q)

(a) 00

< : e~oPr(Qts = q)
q=D-t,

00

SZeao(D+k-ts) Pr(Nts + Nt, = k)
k=O

(b) '7 --ao(D+k-ts) e Rits (Rit)k
k0k!
k=O

= -ao(D-ts)+Rits(e-ao_1)

00 e-Ritse-O (R1 tse-ao)k

k=O

= exp (- ao(D - t,) + Rit,(e~ " - 1))

Wexp -a0(D - t,) + Rits(- ))

E - ea1D

where (a) follows from Corollary 2.2.2 and the fact that ut = 0, for t > ts.

(4.33)

(b) is



true because Nt, + N' is a Poisson random variable with mean Rit. (c) holds since

ao = I(Ro) is the root of -y(r) = r + Ro(e-r - 1). Finally, (d) follows from the

hypothesis of the theorem.

By combining the above bounds, we may verify (4.33) which in turns proves

feasibility of the proposed control policy. U

Proof of Theorem 4.2.3. Similarly to the proof of Theorem 4.2.2, we need to

show that the total probability of interruption before and after crossing the threshold

S is bounded from above by c. Observe that for any realization of Ts the bound

in (4.34) still holds. Further, since the costly server is not used after crossing the

threshold and Q,, 2 S, Corollary 2.2.2 implies

Prr min Qt 0 Qo = D) < -0s < c - e-alD (4.35)

where the second inequality follows from (4.9). Finally, combining (4.34) and (4.35)

gives p' (D) < c, which is the desired feasibility result.

For the second part, first observe that Jrs(D, e) = E[Ts]. In order to cross a

threshold S > S*, the threshold S* must be crossed earlier, because Qo = D < S*.

Hence, TS stochastically dominates rs, implying

J7rs(D, E) = E[rs] > E[Ts.] = J's (D, E), for all S > S*.

It only remains to compute E[rs*]. It follows from Wald's identity or Doob's

optional stopping theorem [44] that

D + (R 1 - 1)E[Ts*] = E[QTs*] = S* + (, (4.36)

where E [0, 1) because the jumps of a Poisson process are of units size, and

hence the overshoot size when crossing a threshold is bounded by one, i.e., S* <

Qs. < S* + 1. Rearranging the terms in (4.36) and plugging the value of S* from

(4.9) immediately gives the result.



Lemma 4.5.1. Let Qt be the buffer size of a single-server system with arrival rate

R > 1. Let the initial buffer size be D and for any T > D > 0 define the following

stopping times

TT = inf{t > 0 : Qt > T}, Te = inf{t > 0 : Qt < 0}. (4.37)

Pr( e > TT) =
1 - e-I(R)D

1 - E[e-I(R)QT Te > -T ]'

where I(R) is defined in (2.5).

Proof. Let Y(t) = e-I(R)Q. We may verify that Y(t) is a martingale and uniformly

integrable. Also, define the stopping time T = min{TT, Te}. Since R > 1, we have

Pr(T > t) < Pr(0 < Qt < T) -+ 0, as t -+ o. Hence, T < oc almost surely.

Therefore, we can employ Doob's optional stopping theorem [44] to write

e-I(R)D = E[Y(0)] = E[Y(T)]

= Pr(Te < TT) - 1

+Pr(Te > TT)E [e-I(R)QT I|e > TT].

The claim immediately follows from the above relation after rearranging the terms.

Proof of Theorem 4.2.4. Let us first characterize the interruption probability of

the policy 7rT when the initial buffer size is D = T. In this case, by definition of 7rT

the behavior of Qt is initially the same as a single-server system with rate R1 until

Then

(4.38)



the threshold T is crossed. Hence, by Lemma 4.5.1 we have

pT (T) = Pr (minQt OQo=T)

= Pr(re < TT) - 1

+Pr(TT < Te)Pr minQt 0TT < Te,QO = T)
( >TT

e-"1T - E [e-1Q'T ITe > TT]

1 - E[e-10QT Tre > TT]

(1 - e-1T)Pr (mint>, Qi < 0TT < Te, Qo = T)

1 - E[e-1'QT|Te > rT|

Further,

Pr min Qt 0 TT <Te,QO = T = T(1Pr min Qt < 0|QT dy(QrT

(/) 
T+1

Pr inQt 0 Qo)dt(Qo)

Pr minQt 50 minQt T,Qo Pr(minQt TIQo)dp(Qo)/T+1( t>o t>o t>o

W p T+ 1  (T) e-ao(Qo-T)dp(Qo)

= E [e-"(Q T -T) |TT < e ]p(T),

where y denotes the conditional distribution of QT given TT < Te. Note that QT E

[T, T + 1] because the size of the overshoot is bounded by one. Further, (a) follows

from stationarity of the arrival processes and the control policy, (b) holds because a

necessary condition for the interruption event is to cross the threshold T when starting

from a point Qo > T. Finally (c) follows from Corollary 2.2.2 and the definition of

the risky policy. The relations (4.39) and (4.40) together result in

Se-1T (1 - E [e-1(Q1T-T)])
1 - E p[e-"eO(QT-TT)] + r

93

(4.41)

(4.39)

(4.40)



where K - E_[e-aoQT(ai-a)T] - E,1 [e-C1Q-T] > 0. Therefore, using the fact that

x 2
1- x < e- 1 - x + -2

for all x > 0, (4.42)

we can provide the following bound

(4.43)

where the last inequality holds, since 0 < QD - D < 1.

Now we prove feasibility of the risky policy 7rT* when D > D. Observe that by

(4.11), D > T*, hence the behavior of the buffer size Qt is the same as the one in a

single-server system with rate Ro until the threshold T* is crossed. Thus

pr (D) = Pr minQt OQo=D)
(t>0

= Pr min Qt < 0 min Qt < T*, Qo = D Pr (min Qt < T* \Q = D)
(t>0 t>0 t>0

= p" (T*)e-ao(D-T*)

< #e-(a1-ao)T*-aoD _

where the inequality follows from (4.43), and the last equality holds by (4.11).

Next we verify the feasibility of the policy irT* for D < D. In this case, D < T*

and by definition of the risky policy the system behaves as a single-server system

until the threshold T* is crossed or the buffer size hits zero

e--lT (a1Et[Q7 - T])

a0E 1 _ao .Ei,[(QT -T)
2

]
aoE [Q - T - T 11 - 2 E [QT -T]

< 0 e-c 1 T

ao(1 - y)
= #e-a1Tj

with arrival rate R1,



(interruption). Hence, we can bound the interruption probability as follows

p 7r(D) = Pr(Te < -T*) - 1 + Pr(TT* < re)Pr (min Qt < 0|TT* < -e, Qo = D
\ t>,TT*

(1 - Pr(TT* < T) (1 - E[e-o (QT* -T*)]pr T (T*))

(b) (3 - 11 - eaD)- D)

1- E,[e- QTr* ]

(c) (# - 1)(1 - ea1D) +-aD (d)
< -_ e-aiT* + (1

where (a) follows from (4.40), (b) can be verified after some manipulations by com-

bining the result of Lemma 4.5.1 and (4.41), and (c) holds since # > 1 and QT* > T*.

Finally, (d) immediately follows from plugging in the definition of T* from (4.11).

Therefore, the risky policy rT* is feasible by Definition 4.1.2. Observe that the

buffer size under any policy -rT of the form (4.10) with T > T* stochastically domi-

nates that of policy rT*, because 7tT switches to the costly server earlier, and stays

in that state longer. Hence, 7rT is feasible for all T > T*. U

Proof of Theorem 4.2.5. Similarly to the proof of Theorem 4.2.4, we first

consider the risky policy 7rT with the initial buffer size T. By definition of -Tr, the

costly server is used until the threshold T is crossed. Thus the expected cost of this

policy is bounded by the expected time until crossing the threshold plus the expected

cost given that the threshold is crossed, i.e.,

JT (TjE) < E[QT] - T + E[e-"O(Q-T)]7r (T,e),R 1 -1

where TT is defined in (4.37). The above relation implies

T 1 E[QT -T]
R1 - 1 1 - E[eo(Qr-T)]

1 1
R1 - -I [(QT-T)2]

- 2 EP [QTT-T]

1 ~
< 0 (4.44)

ao(Ri - 1)(1 - g) a1(Ri - 1)'
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where the second inequality follows from the fact in (4.42). Now for any D > D we

can write

= Pr (min Qt < T* Qo = D) J7T* (T* E)

= e-ao(D-T*)jrT* (T*Ic)

where the inequality holds by Corollary 2.2.2. Combining this with (4.44) gives the

result in (4.12).

If D < D, the risky policy uses the costly server until the threshold T* is crossed

at TT* or the interruption event (Te), whichever happens first. Afterwards, no extra

cost is incurred if an interruption has occurred. Otherwise, by (4.44) an extra cost of

at most 3 is incurred, i.e.,
al(Rl-1)

J'r (D, e) < E [ min{Te, T*] + Pr(TT* < Te)
a1(Ri - 1)

By Doob's optional stopping theorem applied to the martingale Zt = Qt -(R1-1)t,

we obtain

D = Pr(rT* < Te)E[Q.T* TT* < Te] - (R 1 - 1)E [ min{Te,rT* ],

which implies

E[ min{Te,7T*] <
Pr(TT < Te)(T* + 1) - D

R1 - 1

By combining the preceding relations we conclude that

YT* DIE Pr(TT* <e) T* +
J' (DRe)< T* 1+ , R - 1

a1 R1-1V

which immediately implies (4.13) by employing Lemma 4.5.1.

J (D, c)



4.6 Appendix to Chapter 4 - Analysis of the Thresh-

old Policy and HJB equation for the Fluid Ap-

proximation Model

Proof of Lemma 4.4.1. There are multiple approaches to prove the claim. We

prove a more general case using Doob's optional stopping theorem that would be

useful in the later arguments. We only consider i = 0; the other case is the same.

Let Y = e-OoQt. It is straightforward to show that Y is a martingale with respect

to Wt. Now consider the boundary crossing problem, where we are interested in the

probability of hitting zero before a boundary b > D. Let T denote the hitting time of

either boundaries. For any n > 0, we may apply Doob's optional stopping theorem

[44] to the stopped martingale YrAn to write

E[YAb] = E[e-OOQAn] eOoD for all n.

Now, we take the limit as n -+ oc and exploit the dominant convergence theorem

to establish:

E[Yr] = E[e~8 0Q] = lim E[e-OQorAn] = e-OoD. (4.45)
n-+oo

Finally, using Borel-Cantelli Lemma we can show T is finite with probability one,

which allows us to decompose (4.45) and characterize the boundary crossing proba-

bilities as

Pr(Q.T=0) -1+ Pr(Qr = b) e- Oob = eOOD

Pr(Q, = 0) + Pr(Q, =b) = 1.

Solving the above equations gives

Pr(Q, =0) =eOoD e ,Oob (4.46)1 - e-0b

PrOQ b) = -O (.7
1-e-o0



Taking the limit as b -+ oc proves the claim.

Proof of Theorem 4.4.1. We first characterize the interruption probability for

the cases D > T and D < T given p(T), which is the interruption probability starting

from D = T.

For any x > 0, define rx as the first hitting time of boundary x, i.e.,

rx = inf{t > 0: Qt = x}. (4.48)

For the case D > T, using path-continuity of Qt, strong Markov property and

Lemma 4.4.1, we have

p(D) = Pr(To < oo|Qo = D)

= Pr(ro < oo|Qo = T) - Pr(TT < oolQo = D)

= e-Oo(D-T)p(T).

For the case D < T, we use the boundary crossing probabilities (4.46) and (4.47)

that we derived in the proof of Lemma 4.4.1. Note that for the threshold policy when

D < T, the drift is set to R1 - 1 = 201. Hence, by total probability theorem and

strong Markov property, we obtain

p(D) = Pr(To < ocQo = D)

= 1 - Pr(ro < TrQo = D) + Pr(To < oolQo = T) - Pr(TT < ToIQo = D)

e-1D - Bib -1 e1D
+p(T ).

1 - e-01b 1 - e-01b

We may obtain the desired result after simple manipulations of the above relation,

once we compute p(T).

In order to characterize p(T), we use an analogue of one-step deviation analysis

for Markov chains. Let Qo = T, and consider a small deviation Qh, where h is a small

time-step. Since Qt is a Brownian motion with drift, Qh has a normal distribution

with variance h, and mean of T + ah, where a C [Ro - 1, R1 - 1]. Therefore, the



probability of Qh 2 T is (I +6) + o(h), where 6 is a small constant of the same order

of h, and h --+ 0 as h -+ 0. By strong Markov property of the Brownian motion,h

(4.46) and (4.47), we have

p(T) = Pr(ro < oolQo = T)

1
= Pr(ro < oolQh > T)(- + 6) + Pr(ro < oCQh <2

1
T)( - 6) + o(h)

2

= [0 + p(T)EQ, [Pr(TT < oo)|Qh

+1 - EQh [Pr(To <TT) Qh < T] + p(T)EQh [Pr(TT

+o(h)

= 0+ p(T)E[e-00Z Z 0] ( +6)

+e-01T(ez - 1)
- e t

0] ( -6)

+p(T)E 11 -
e-01T(e-

0 1Z -

1 - e-01T

where Z = Qh - T is a Gaussian random variable with mean ah and variance h. In

order to obtain p(T), we need to compute E[e-0oZZ > 0] and E[e-OizlZ < 0]. We

may compute these expressions exactly, but it is simpler to compute upper and lower

bounds and then take the limit as h -± 0. By (4.42), we have

E[e-ooZ|Z > 0]

E[e-oozZ > 0]

< E[1 -9oZ +I Z 0] = 1 - 00h +0(V)
2

(4.50)

where 3 is a constant. Similarly, we get

1 + 01#vh5+ o(v/-) < E[e-oizlZ < 0] < 1 + 010/h5+ o(Vh).

Plugging these relations back in (4.49), dividing by #v/ and taking the limit as

h goes to zero, we obtain the following equation

p(T) [o + 1 e01T 0 1
1e-e1TO11

1 -e01,

-6)

(4.49)

< rFokQ h < T ]]

(4.51)

> T] -I (I +2

Z < 0]( 6) + o(h),



which gives the desired resul

Proof of Theorem 4.4.2.

t for p(T) after rearranging the terms. U

The proof technique for this theorem is analogue to that

of Theorem 4.4.1. First, we consider the cases D > T and D < T and characterize

the expected cost in terms of J(T). Let r2 be defined as in (4.48).

For the case D > T, note that no cost is incurred until the threshold T is reached.

Hence

J(D)
' TeJutdt Q0o D

utdt T = oo, Q

+E[jutdt TT < 00,

o = DI Pr(TT= ocQo = D)

Qo = DI Pr(TT < ocQo = D)

- 0+E[0+f utdt TT < oc,Qo = D Pr(TT < oc|QO = D)

SE[ utdt Qo=T]Pr(T< oQo =D)

- J(T)Pr(T < ocoQ_ = D) L J(T)e-o(D-T)

where (a) follows from the memoryless property of Brownian motion and (b) is a

consequence of Lemma 4.4.1.

For the case D < T, we can use a strong Markov property to write the following

for a small time-step h:

J(D) = J(Q 0 ) =1 - h + Ew[J(Qh)]

DJ 1= h+ Ew J(D) + OD ((R1 - 1)h+Wh) +
OD 2

aJ 1 82 J
-h+ 2 hD2 +o(h),

, 2j
OD2 -h] + o(h)

which gives the following ordinary differential equation after dividing by h and taking

the limit as h -+ 0
0 2j +
09D 2 ±OD+=0

0 < D < T. (4.52)
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It is straightforward to solve the differential equation in (4.52) with the boundary

condition J(0) = 0, and J(T) as a parameter. This result completes the character-

ization of J(D) described in (4.29) as a function of J(T). Also, note that if we set

the boundary condition J(T) = 0, J(D) gives the expected time to hit either of the

boundaries at 0 or T, i.e., we get

E [min{ro,TT} Qo = D] = T - - D (4.53)
____1 - DI01

Now, we use a similar technique as in the proof of Theorem 4.4.1 to compute

J(T). Consider a small time step deviation h > 0 from the initial condition Qo = T.

Similarly to (4.49), we have

J(T) = -yh + [J(T)EQh[Pr(TT < oo)|Qh > T]] Pr(Qh > T Qo = T)

+ [I - E [min{ro, TT} Qh < T + 0 - EQh[Pr(o < TT)|Qh < T]

+J(T)EQh[Pr(T < o) Qh < T] Pr(Qh < oTQ0 = T) + o(h)

1
= yh+ J(T)E[e-oz Z 0](- +6)

2

+E [min{ro, TT} Q < T ( - 6)
i2

+J(T)E 1 - elT (e 0 1Z - Z < 0 ( - 6) + o(h),
1 - e-- 1 2

where y is a constant bounded by 1, 6 = 6(h), and Z = Qh - T is a Gaussian random

variable with mean ah and variance h for some constant a. The second inequality

in the preceding relations follows from (4.47) and Lemma 4.4.1. By (4.53), applying

the bounds in (4.50) and (4.51), dividing by fv h and taking the limit at h -+ 0, we

obtain the following equation

J(T) [0 1 e-01T 1 0 2 [1 I e-1T1
e-01 T o 2 e-01o]~
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which gives us the desired expression in (4.30) after some manipulations.

Proof of Theorem 4.4.3. In order to facilitate verification of the HJB equation

(4.25), we rewrite and slightly manipulate the candidate solution V(Q, p) given by

(4.31). Recall that

Vo(Q, p), Q > T(Q, p)
V(Q, p) =(4.54)

V (Q, p), Q < T (Q, p),

where

V(Q, p) = -BO(Q~T(Q'p)) J(T(Q, p)), (4.55)

2 1-- e-01Q 2
Vi(Q, p) = [J(T(Q, p)) + 2 T(Q, p)] 1 - e-TQ~ Q (4.56)

01 1- e01T(~p) 01

2 [1 - (1 + 01T(Qp))e-01T(Qp)]
J(T(Qp))= + (- )e-0jT(Qp) . (4.57)

+0 1 - )01 T ,)

Note that pT(Qp) (Q) = p; and by definition of pT(-) in (4.28) we may verify that

the condition Q Z T(Q, p) is equivalent to p > o,,) .Q Therefore, we can

partition the feasible region R into two sub-regions 7Zo and R 1, such that

7Zo = {(Q,p) :> e ;> } n 7z,Lo + (1- g)e-01Q
e- 010

21= {(Qp): p< }_1 n 7z.
L+ (1- )e-01Q

Hence, we need to verify HJB for two regions separately, using the proper expression

in (4.54).

In order to verify the H JB equation for the candidate solution (4.31), we also

need to characterize the optimal value of the minimization problem in (4.25). First,

we characterize the optimal solution pair (U*, p*) for any feasible state (Q, p) E 7Z.
Observe that the optimization problem in (4.25) can be decomposed into two smaller
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problems:

u* (Q, p)

p*(Q, p)

= argminuag 0 } U +
DVav(RU -

-1 
82yargminp 2 p2 +

1) , (4.58)

(4.59)
2V

NQp

The minimization problem in (4.59) is quadratic and hence convex in P. So we

can use first order optimality condition to get

02yV
p*(Qp) - (Q,

NQap

A2V
ap 2

(4.60)

For the problem in (4.58), u*(Q, p) = 0 is and only if

DV DV
0+ -(Ro - 1) < 1I + (Ri - 1),OQ OQ

or equivalently
OV 1

Q , p)- Ri - Ro'.
(4.61)

Using chain rule and implicit function theorem, we can analytically calculate !

from (4.54) to conclude that the condition in (4.61) holds if and only if (Q,p) E Ro.

In other words, U*(Q, p) = 0 for all (Q, p) E Ro and u*(Q, p) = 1 for all (Q, p) c R1.

In summary, the HJB equation in (4.25) boils down to the following equations:

00 V 1
0 = 2Q 2

0= 61 8Vi
0 = 1 + - 8Q

20aQ

02V0
OQ2 2

182y/11(02y)

2Q 2

2 02y

2/8op

for all (Q, p) c Ro,

1, for all (Q, p) E Ri,

where Vo(Q,p) and V(Q,p) are given by (4.55) and (4.56), respectively. The veri-

fication of (4.62) and (4.63) is straightforward but tedious. We omit the details for

brevity. We may simply use symbolic analysis tools such as Mathematica for this

part.

Proof of Theorem 4.4.4. From the proof of Theorem 4.4.3, we have characterized
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2Vo 2Vy

8aQp) I p2 ,



the optimal policy r* : R x [0, 1] -+ {0, 1} x R as

r*(Qp) = (u*(QP)1p*(QP)),

where u*(Q, p) = 0 if and only if (Q, p) E Ro and 1*(Q, p) given by (4.60) can be

explicitly computed as follows:

*(Q, p) - 0 op, for all (Q, p) E Ro,
(1 - p)eQ 11 /(1 - p)(e 201Q - e0'Q) 2(eO1Q - 1)

*[(1 -pe 0Q) 2 - _ peoiQ O1(1 -pe01Q) 2 0Q, (1 -peOiQ)

01
(1 +p)e1Q - 2' for all (Q, p) E 1. (4.64)

Moreover, the dynamics of the state process under the optimal control policy is

given by:

dQ* = (RU.(Q.,P ) - 1)dt + dWt,

dp* = *(Q*, p*dW.

For the proof of the first claim, observe that for a given manifold M(D, e), we

have

T(Q, p) = T(D, E), for all (Q, p) E M(D, c). (4.65)

This claim holds by definition of M(D, E) in (4.32), and the fact that T(Q, p) is the

unique solution of pT(Q) = p. Next, we show that if (Q*, p*) E M(D, c) for any

t > 0, then after executing the optimal policy 7r*, the state process stays on the

manifold M(D,c). First, consider the case where Q* > T(Q*,p*) = T(D,E). In

this case, U*(Q pt* = 0 and P*(Q*,p*) = - 6Op*. We would like to show that the

solution of the SDE dp* = - 0 p*dW coincides with the invariant manifold given

by Pt = e-0(Q*T(D E))p(T(D, c)). By employing Ito's Lemma we can check that

e-(Q*-T(DE))p(T(D, c)) is indeed the desired solution. In particular, using the proper
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evolution of the queue-length process Q*, we can write

dj, = -60e-Oo(Q*-T(DE)) , ))(dQ*

+02-6Oo(Q*-T(DE))p(T(D,e))dt

= e-Q*T())p(T(D, c))L - 00(-dt + dW,) + _0

= - 0 0e6 0(Q* -T (Dp))(T(D, ) )dWt

= -p*dWt.

Next, consider the case where Q* < T(Q*,p*) = T(D, e). In this case, u*(Q*,p*) =

1 and f*(Q*, p*) is given by (4.64). Similarly to the previous case, we may use Ito's

Lemma to verify that the state process stays on the invariant manifold given by

P = pT(D) *_ -1Q* + p(T(D, ))(1- )( I - e-OQ)

By Ito's Lemma we have

OpT(D,6) Q*) 1 2 PT(D,e) Q*)
dpt = Q* + - dt

aQ t 2 aQ2

= -O1e-Oi0* 1 - p(T(D, e))(1 - ) ( dt + dWt)
1 02 20

+ -e- 0 * 1 - p(T(D, E))(1 - -) dt
2 16 1

= -p*dWt = dp*,

which completes the proof of the first claim.

Now that we have established that the state process starting from (D, 6) under

optimal control stays on a one-dimensional invariant manifold M (D, 6), the opti-

mality of the threshold policy 7rT(D,e)(Q) is immediate. Recall that the decision

process of importance is u* E {0, 1}, and we know that u*(Q,p) = 0 if and only

if Q > T(Q, p). Moreover, since the optimal state process stays on M(D, 6), we

have T(Q*, p*) = T(D, 6). Hence, the optimal control policy (given the initial con-

dition) chooses the action u*(Q, p) = 0 if and only if Q > T(D, 6). Therefore, the
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optimal policy r* (Q, p) coincides with the threshold policy 7rT(D,e) (Q). We may also

verify that the interruption probability under the threshold policy conditioned on the

history up to time t is given by p*.
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Chapter 5

Reliability Value of Energy Storage

in Volatile Environments

In the last three chapters, we focused on systems motivated by media streaming

applications in volatile environments such as wireless channels. We designed various

control policies to optimize the quality, reliability or cost of media streaming for the

end-user, while paying special attention to transient metrics.

In this chapter, we extend the analytical tools developed for media streaming

applications to the context of power distribution systems in a volatile environment.

Even though the system setup in power systems may appear vastly different than

communication systems, there are many common elements. In the context of com-

munication systems, packet delivery is negatively affected by channel unreliability and

jitter, while in power systems supply and demand are subject to exogenous shocks.

Untimely delivery of packets to a client results in playback interruption and degrades

quality of experience. Similarly, late response to supply or demand shocks in power

systems leads to a blackout event and degrades user experience. Packet buffering

seems effective in reducing the effect of channel volatility in the context of media

streaming applications. There is a simple but fundamental trade-off between the

buffer size and playback interruptions. In an analogous manner, fast-response energy

storages may be useful in reducing the negative effect of supply/demand volatility

by masking some of the shocks to avoid blackouts. The goal of this part is to un-

107



derstand the effect of energy storage on the cost and distribution of blackouts in

a volatile environments, and design proper control policies for management of the

energy storage.

5.1 System Model

We examine an abstract model of system consisting of a single consumer, a single fully

controllable supplier, a supplier with stochastic output (e.g., wind), and a storage

system with finite capacity (Figure 5-1). These agents each represent an aggregate of

several small consumers and producers. The details of the model are outlined below.

S
G !\j

R

D7

Figure 5-1: Layout of the physical layer of a power supply network with conventional
and renewable generation, storage, and demand.

5.1.1 Supply

Controllable Supply

The controllable supply process is denoted by G = {Gt : t 2 0}, where Gt is the power

output at time t > 0. It is assumed that the supplier's production is subject to an

upward ramp constraint, in the sense that its output cannot increase instantaneously,

Gt - Gti
t - t'

Vt : 0 < t < t'.

We do not assume a downward ramp constraint or a maximum capacity constraint

on Gt. Thus, production can shut down instantaneously, and can meet any large
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demand sufficiently far in the future.

Renewable Supply

The renewable supply process is denoted by R = {Rt : t > 0}. It is assumed that

R can be modeled as a process with two components: R = R + AR, where R =

{Rt : t > 0} is a deterministic process representing the predicted renewable supply,

and AR = {ARt : t > 0} is the residual supply assumed to be a random arrival

process. Thus, at any given time t > 0, the total forecast supply from the renewable

and controllable generators is given by Gt + R.

5.1.2 Demand

The demand process is denoted by D {Dt : t 2 0}, where Dt is the total power

demand at time t, assumed to be exogenous and inelastic. Similar to the renewable

supply, D has two components: D = D + AD, where D = {Dt : t > 0} is the

predicted demand process (deterministic), and AD = {ADt : t > 0} is the residual

demand, again, assumed to be a random arrival process.

Definition 5.1.1. The power imbalance is defined as the residual demand minus the

residual supply.

Pt = ADt - ARt (5.1)

The normalized energy imbalance is defined as:

P 2
W p = 2  (5.2)

w2 (
5.1.3 Storage

The storage process is denoted by s = {st E [0, -] : t > 0}, where st is the amount of

stored energy at time t, and - < oc is the storage capacity. The storage technology

is subject to an upward ramp constraint:

St-St< r Vt : 0 < t < t'.
t-t' -
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Thus, storage cannot be filled up instantaneously, though, it can be drained (to supply

power) instantaneously. Let U = {Ut : t > 0}, be the power withdrawal process from

storage. The dynamics of storage is then given by:

t t
st = so + 10\s,<§Irds - 0Urds (5.3)

It is desired to design a causal controller K such that the control law Ut = K(st, Gt +

Rt - Dt) maximizes the system reliability objectives.

Figure 5-2:

DI

The control layer of the power supply network in Figure 5-1.

5.1.4 Reliability Metric

We refer to the event of not meeting the demand as a blackout. The cost of blackouts

(COB) metric is defined as the expected long-term discounted cost of blackouts:

Cbo = E [J 69 Th ([P.,]+) dTl (5.4)

where P(.) is the power imbalance process, h : R+ -4 R+ is an increasing function,

and 0 > 0 is the discount rate.

5.1.5 Problem Formulation

In this section, we present the problem formulation. Before we proceed, we pose the

following assumptions.

Assumption 5.1.1. The normalized energy imbalance process (5.2) is the jump pro-

cess in a compound poisson process with arrival rate Q and jump size distribution fw,
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where the support of fw lies within a bounded interval [0, B]. The maximum jump size

is thus upperbounded by B.

Assumption 5.1.2. The forecast supply is equal to the forecast demand. That is:

Dt = Gt + Rt, Vt > 0

Under Assumption 5.1.2, the energy from storage will be used only to compensate

for the power imbalance, since in the absence of an energy shock, supply is equal to

demand, and storage provides no additional utility. Under Assumptions 5.1.1 and

5.1.2, the dynamics of the storage process can be written as:

ft t

st = SO +10o ll{8'<}rdT -] f tt (si-, WT) dNT (5.5)

where Nt is a Poisson process of rate Q, and Wt is the jump size (energy imbal-

ance) process, drawn independently and identically from a distribution fw. Further,

y denotes a control policy. We focus on stationary Markov policies since the energy

imbalance modeled as a compound Poisson process is stationary and memoryless. We

denote the set of all such feasible policies by II.

We are now ready to state the problem formulation. Let C,(s) denote the expected

long-term discounted cost of blackouts starting from an initial state s and under

control policy p,

Ca(s) = E e-Otk g (Wk - A(st-, Wk)) so = s], (5.6)
k=1-

where tk is the k-th Poission arrival time, and Wk = Wk is size of the k-th jump.

Moreover, g : [0, B] -+ R is the stage cost as a function of energy imbalance (blackout

size). In this work, we assume the following assumptions hold.

Assumption 5.1.3. The stage cost function g(.) is bounded, strictly increasing and

continuously differentiable. Moreover, Ew[g(W)] > 0, and g(0) = 0.

The system reliability problem can now be formulated as an infinite horizon
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stochastic optimal control problem

Ca(s) -+ min (5.7)
pEU

where the optimization problem (5.7) is subject to the state dynamics (5.5). A policy

E II is defined to be optimal if

p* E arg min Cp(s).

The associated value function or optimal cost function is denoted by C(s), where

C(s) = min C,(s), 0 < s < 9. (5.8)
,EUl

5.2 Main Results

5.2.1 Characterizations of the Value Function

We first provide several characterizations for the value function defined in (5.8) and

establish specific properties that are useful in characterization of the optimal policy.

Let J,(s, w) be the expected long-term discounted cost under policy y conditioned

on the first jump arriving at time ti = 0, and being of size w. Here, s is the state

of the system before executing the action dictated by the policy. By the memoryless

property of the Poisson process, we have

J,(s, w) = g(w - p(s,'w))

+ E[ e-Otkg(Wk - p(s-, Wk)) SO = s - P(s, w)] (5.9)
k=1

We may relate J,(s, W) to the total expected cost C.(s) defined in (5.6) as follows:

C,(s) = E [e-Oto J,(min{s + rto, s}, W)] , (5.10)

where to is an exponential random variable with mean 1/Q, and is independent of
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W, drawn from distribution fw.

From (5.10), it is clear that from the minimization of J,, across all admissible

policies 11, we may obtain the optimal solution to the original problem in (5.8).

The discrete-time formulation of J,, given by (5.9), facilitates deriving the Bellman

equation as the necessary and sufficient optimality condition, as well as development

of efficient numerical methods. We summarize these results in the following theorem.

Theorem 5.2.1. Given an admissible control policy p C El, let J1, : [0, -] x [0, B] F-+ R

be the function defined as in (5.9). A function J : [0, -] x [0, B] -+ R satisfies

defJ(s, w) = J*(s, w) = min J (s, w), V(s, w),

if and only if it satisfies the following fixed-point equation:

J(s, w) = (T J)(s, w) min g(w - u)
UE [0,min s'W}I]

+ ELe-OtJ(min{s - u + rto, s}, W)1 , (5.11)

Moreover, a stationary policy pt*(s, w) is optimal if and only if u = pt*(s, w) achieves

the minimum in (5.11) for J = J*. Finally, the value iteration algorithm

Jk+1 = TJk, (5.12)

converges to J* for any initial condition Jo.

Proof. The result follows from establishing the contraction property of T, which is

standard for discounted problems with bounded stage cost. See [52] for more details.

An alternative approach to characterization of the optimal cost function is based

on continuous-time analysis of problem (5.8), which leads to Hamilton-Jacobi-Bellman

(HJB) equation. In the following theorem we present some basic properties of the

optimal cost function as well as the HJB equation.
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Theorem 5.2.2. Let C(s) be the optimal cost function defined in (5.8). The following

statements hold:

(i) C(s) is strictly decreasing in s.

(ii) If the stage cost g(-) is convex, the optimal cost function C(s) is also convex in

S.

(iii) If C is continuously differentiable, then for all s 6 [0, §], it satisfies the following

HJB equation

dO = Q+6 C(s) - -E min g(W - u) + C(s - u)], (5.13)ds r r .UC-o,minfs,wJ]

with the boundary condition
dC

dss = 0. (5.14)

Moreover, the optimal policy [t*(s, w) achieves the optimal solution of the minimiza-

tion problem in (5.13). Furthermore, for a given policy p, if the cost function Ca(s)

is differentiable, it satisfies the following delay differential equation

dC, Q +O Q F
dsi, r C,1(s) - -E jg(W - p(s, W)) + C,1(s - p(s, W))], (5.15)

ds rr L

with the boundary condition given by (5.14).

Proof. See the Appendix. [

The result of Theorem 5.2.2 part (iii) requires continuous differentiability of the

optimal cost function, which can be established under some mild conditions such as

differentiability of the stage cost function g and the probability density function fw(-)

of Poisson jumps (cf. Benveniste and Scheinkman [53]). Throughout this chapter,
we assume that C(s) is in fact continuously differentiable and the results of Theorem

5.2.2 are applicable.
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5.2.2 Characterizations of the Optimal Policy

In this part, we derive some structural properties of the optimal policy using the

optimal cost characterizations given in Theorems 5.2.1 and 5.2.2. First, we show

that the myopic policy of allocating reserve energy from storage to cover as much of

every shock as possible is optimal for linear stage cost functions. Then, we partially

characterize the structure of optimal policy for strictly convex stage cost functions.

Theorem 5.2.3. If the stage cost is linear, i.e., g(x) = Ox for some 0 > 0, then the

myopic policy

p*(s, w) = min{s, w}, (5.16)

is optimal for problem (5.8).

Proof. See the Appendix. El

Next, we focus on nonlinear but convex stage cost functions. In this case, the

myopic policy defined in (5.16) is no longer optimal. Intuitively, the myopic policy

greedily consumes the reserve and thereby increases the chance of a large blackout.

In the linear stage cost case, the penalty for a large blackout is equivalent to the

total penalty of many small blackouts. This is contrary to the strictly convex case.

Therefore, the optimal policy in this case tends to be more conservative in consuming

the reserve. Nevertheless, the structure of the optimal policy shows some similarities

with the myopic policy. In the following we present some characterizations of the

structural properties of the optimal policy using the results from Section 5.2.1.

Assumption 5.2.1. The storage process has a positive drift in the sense that the rate

of the compound Poisson process is less than the ramp constraint, i.e.,

QE[W] < r.

Theorem 5.2.4. Let p*(s, w) be the optimal policy associated with problem (5.8). If

Assumption 5.2.1 holds, then p*(s,w) is monotonically nondecreasing in both s and

W.
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Proof. See the Appendix.

Theorem 5.2.5. Let p* denote the optimal policy associated with problem (5.8) with

strictly convex stage cost g(.). There exist a unique kernel function # : [-B, 9] -+ R

such that

p*(s, W)= W - #(s - w) , V(s, w) E [0, 9] x [0, B], (5.17)

where,

4 (p) = arg min g (x) + C (x + p) (5.18)

s.t. x < min{B, -p}

x > max {0, -p}

Moreover, under Assumption 5.2.1, we can represent the kernel function #(p) as

follows:

-p, -B<p <bo

O(P) = (p) bo < p < bi (5.19)

0, b1 < p < H,

where 0 (p) is the unique solution of

g'(x) + C'(x + p) = 0, (5.20)

and bo and b1 are the break-points, where

bo = -(g')(-- (c'(o)) > -(g')( (2 E[g(W)]) > -B, (5.21)

b1 = -(C')(- g'(0)) < (5.22)

Proof. See Appendix. E

Theorem 5.2.5 demonstrates a very special structure for the optimal policy. In

fact, it shows that the two dimensional policy can be represented using a single dimen-

sional kernel function. This result allows us to significantly reduce the computational
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complexity of numerical methods for computing the optimal policy. In addition, using

Theorem 5.2.5, we can provide a qualitative picture of the structure of the optimal

policy. Figures 5-3 and 5-4 illustrate a conceptual plot of the kernel function, and the

optimal policy, respectively.

~(p)

-BB

- B bo b1 S

Figure 5-3: Structure of the kernel function #(p) defined in (5.18).

pi*(s, w)

W 2 - - - - - ----

Figure 5-4: Structure of the optimal policy p*(s, w) for a convex stage cost, for
W = W1, w 2 .

In particular, we can summarize the characterization of the optimal policy as

follows. If w > -bo, we have

p*(S, w) = w -Io(s -W),
W,1

0 < s < s0 (w)

SO(W) S < si(w)

s 1 (w) S < §,

(5.23)
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where si(w) = w + bi for i = 0, 1. In the case where w < -- bo, we have

a*(s, W) =
0,

w - 40(s - w),

W,)

0 < s < qo(w)

qo(w) < S 5 s1(W)

s1 (w) S < 9,

where qo(w) is the unique solution of 0 (s - w) = w.

5.3 Numerical Simulations

In this part, we present numerical characterizations of the optimal cost function and

optimal policy in different scenarios. Moreover, we study the effect of storage size

and volatility on system performance, for various control policies.

We use the value iteration algorithm (5.12) to compute the optimal policy and cost

function for nonlinear stage costs. Figures 5-5 and 5-6 illustrate the optimal policy

and cost function in a scenario with uniformly distributed random jumps, quadratic

stage cost, and the following parameters: 6 = 0.1, r = 1, Q = 0.8, 9 = 2. Observe

that the optimal policy complies with the conceptual Figure 5-4.

1 W=1

0, -- w =0.9

08 w =0.8

0 -7 - =0.7

0,6 - w =0.6

0.5 - W = 0.5

0.4 --... ... - ... .. ...... .... w = 0.4

0.3 --- w =0.3

0.2 - w =0.2
W = 0.15

0.1 W=0 0.1

__________________________________________________ iW = 0.05

Figure 5-5: Optimal policy computed by value iteration algorithm
stage cost and uniform shock distribution.

(5.12) for quadratic

Figure 5-7 shows the value of storage, defined as the normalized improvement
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
S

Figure 5-6: Optimal cost function computed by value iteration algorithm (5.12) for
quadratic stage cost and uniform shock distribution.

of energy storage in expected cost, for different Poisson arrival rates. In this case

9 = 0.01, g(x) = x 3 , r = 1, W = 1. Note that the storage process has a negative drift

if and only if Q > 1. Observe that in the positive or zero drift cases, even a small

value of storage yields a significant effect in reducing the blackout cost. However, in

the negative drift case, the value of storage is significantly lower. Observe that for

the negative drift case, there is a critical storage size that yields a sharp improvement

in the value of storage.

5.3.1 Blackout Statistics

We discussed in Section 5.2.2 that the myopic policy given by (5.16) is not necessary

optimal for nonlinear stage cost functions. In this part, we study the effect of different

optimal policies, in the sense of (5.7), for different stage costs on the distribution

of large blackouts. Figure 5-8 shows the blackout distribution in a scenario with

deterministic jumps of size one, for both myopic policy and the optimal policy for

a cubic cost function. Note that, the stage cost for the non-myopic policy assigns

a significantly higher weight to larger blackouts. Therefore, as we can see in Figure

5-8, the non-myopic policy results in less frequent large blackouts at the price of more

frequent small blackouts.
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Figure 5-7: Value of energy storage as a function of the storage capacity for different
Poisson arrival rates. c(s; 9) denotes the optimal cost function (5.8) when the storage
capacity is given by §.

Next, we study the effect of storage size on probability of large blackouts. Figure

5-9 plots this metric for different policies that are all optimal for different stage cost

functions. Similarly to Figure 5-7, we observe a sharp improvement of the reliability

metric at a critical storage size. It is worth mentioning that given a target reliability

metric, the storage size required by the optimal policy with cubic stage cost is about

half of what is required by the myopic policy.

Finally, we compare the reliability of myopic and non-myopic policies in terms of

probability of large blackouts as a function of the volatility of the demand/supply

process. We define volatility as the energy of the shock process, i.e.,

volatility = QE [W2],

which depends both on the mean and variance of the compound arrival process.

Figure 5-10 demonstrates large blackout probabilities as a function of volatility, for

a system with uniformly distributed jumps with constant mean RE[W] = 1. As

shown in Figure 5-10, higher volatility increases the probability of large blackouts in

an almost linear fashion.
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Figure 5-8: Blackout distribution comparison of myopic and non-myopic policies (de-
terministic jumps with rate Q = 0.8).

5.4 Appendix to Chapter 5 - Proofs

Proof of Theorem 5.2.2: Part (i): The monotonicity property of the value function

follows almost immediately from the definition. Let 0 < si < S2 9, and assume

C(s) = C,(s) for some policy p. Given the initial state si, let u(' be the control

process under policy p. Note that for every realization w of the compound Poisson

process, the sample path ut (w) is admissible for initial condition s2 > si. Therefore,

by definitions (5.6) and (5.8), we have C(s2) C(si).

In order to show the strict monotonicity, consider the controlled process starting

from si. Let r be the first arrival time such that g(W, - u, ) > 0. By Assumption

5.1.3, we have Pr(T E [0, T]) > 0 for some T < oo. For every sample path w, define

the control process

( (W) = uM (W) + 6 -

for some 6 > 0 such that 6 < min{s 2 - Si, Wr(w) - ()

It is clear that ut(w) is admissible for the controlled process starting from S2.
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Figure 5-9: Probability of large blackouts as a function of storage size for different
policies (deterministic jumps with rate Q = 1.0).
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5-10: Probability of large blackouts vs. volatility for different
distributed random jumps with Q = 1.0 and E[W] = 1).

policies (uni-

Using the definition of the expected cost function in (5.6), we can write

C(si) - C(82) = Eo[e-Or(w)g(Wrt( -) U))E,,e--r-u (1) -~)

- Or~w)()-e--r g(W,-(Wg - Urw - 6)]

> E[Ee-O-r()], for some E > 0

> Ee-'Pr(T E [0, T]) > 0,

where the first inequality holds by strict monotonicity of g.

Part (ii): We first prove convexity of J*(s, w) defined in Theorem 5.2.1, and use
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it to establish convexity of C(s).

In order to show convexity of J*(s, w), we need to show that the operator T

defined in (5.11) preserves convexity. Then the claim would be immediate using the

convergence of value iteration algorithm (5.12) to optimal cost J*, where the initial

condition is an arbitrary convex function such as Jo = 0.

Next we show that the operator T preserves convexity for this particular problem.

Define the objective function in (5.11) as Q(s, w, u). We have

Q(s, w, u) =g(w - u) + E e-Oto J( min{s - u + rto, 9}, W)

= g(w - u) + I e-OtOE[J(9, W)|Re-Qtodto

+ j e-OtoE[J(s - u + rto, W)]Re-Qtodto.

Using the fact that J is convex, linearity of expectation and basic definition of a

convex function, it is straightforward but tedious to show that Q(s, w, u) is a convex

function. We omit the details for brevity. Given the convexity of Q, the convexity of

(TJ) (s, w) is immediate, since we are minimizing a multidimensional convex function

over one of its dimensions. Hence, we have established convexity of J* (s, w) in (s, w).

Finally, we can express C(s) in terms of J*(s, w) as in (5.10). This results in convexity

of C(s) using the above argument for proving convexity of Q(s, w, u).

Part (iii): The derivation of Hamilton-Jacobi-Bellman is relatively standard. We

present a proof sketch based on principle of optimality. For a more detailed treatment,

please refer to [52], [54] and [55].

Let st be the state process under the optimal policy governed by the SDE in (),

and so = s < 9. By principle of optimality, going from time 0 to time h, we have

C(s) = C(so) = min{ E eoTg(Wr - uw7)dNI + e-Oh E [C(sh) ,UtEU 0

where the expectation is with respect to the compound Poisson process. Note that

in this particular model, we assume that the control process ut is progressively mea-
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surable with respect to the jump process.

Let Nh be the number of Poisson arrivals in [0, h], where h is positive but small.

There are three cases to consider: First, there are no arrivals in [0, h], in which case

the decision function is trivially zero, and no penalty occurs. Second, there is a single

arrival in this interval. In this case, the control function ut is reduced to a scalar

decision u that is measurable w.r.t jump size W. Third, there are more than one

arrivals in [0, h], which occurs with probability o(h). Since, the stage cost is bounded,

the expected cost under this condition remains o(h). Hence, for every s < s,

C(s) = Ew min 0 -Pr(Nh = 0)
Io<n<S,w

+ g(W - u)Pr(N = 1)

+ e-OhC(s + rdh)Pr(Nh = 0)

+ eOhC(s - u + rdh)Pr(N = 1) + o(h)}

= e- hC(s) + Ew min Rh g(W - u)o<u<s,w

+ e-Oh(1 - Rh)(C(s + rdh) - C(s))

+ e-Oh Rh C(s - u) + o(h) 1. (5.25)

Using the fact that C is differentiable on [0, ,), we may verify the result in (5.13),

by dividing the above relation by h and taking the limit as h tends to zero.

The derivation of the boundary condition in (5.14) is similar. Note that for s =

when no Poisson arrival occurs in interval [0, h], the state of the system stays at 9.

Therefore, we can modify (5.25) as follows:

C(g)= Ew min 0 - Pr(Nh = 0)
Io< U< S,w 

- h+ g(W - u)Pr(Nh = 1) + e~ C(s)Pr(N = 0)

+ e~OhC(g - u)Pr(Nh = 1) + o(h) 1. (5.26)
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Again, dividing by h and taking the limit as h goes to zero, we have

Q+ 'C(s) - -Ew min g(W -u) +C(s -u) =0,
r r .O<u<sw

which is the same as (5.14) in light of (5.13).

The derivation of the differential equation (5.15) for a particular policy is similar,

noting the memoryless property of Poisson process and stationarity of the controlled

state process. U

Proof of Theorem 5.2.3: We establish optimality of p* by showing that it

achieves an expected cost no higher than any other admissible policy. Consider an

admissible policy A such that A(s, w) < min{s, w} for some (s, w) E [0, s] x [0, B].

For every sample path of the controlled process, let T (w) be the first Poisson arrival

time such that

minf s'r, Wr} - (sT-,I Wr) = E > 0.

Therefore, by applying policy A instead of p*, we pay an extra penalty of #ee-n(w).

The reward for this extra penalty is that the state process is now biased by at most

E, which allows us to avoid later penalties. However, since the stage cost is linear,

the penalty reduction by this bias for any time T2 (w) > ri(w) is at most /ee-T(w).

Hence, for this sample path w, the policy A does worse than the myopic policy p* at

least by /3e(e- 0 (w) - e -O(w)) > 0. Therefore, by taking the expectation for all sample

paths, the myopic policy cannot do worse than any other admissible policy. Note that

this argument does not prove the uniqueness of p* as the optimal policy. In fact, we

may construct optimal policies that are different from p* on a set A C [0, ] x [0, B],

where Pr((st-, Wt) E A) = 0. M

We delay the proof of Theorem 5.2.4 until after proof of Theorem 5.2.5. Let us

start with some useful lemmas on the structure of the kernel function.

Lemma 5.4.1. Let #(p) be defined as in (5.18). We have
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1. If p(po) = -Po for some po, then

#(p) = -p, for all p < po.

2. If #(pi) = 0 for some p1, then

(p) = 0, for all p > p1 .

Proof. By convexity of the stage cost function and Theorem 5.2.2(ii), #(p) is the

optimal solution of a convex program. Therefore, if #(po) = -po for some po < 0, we

have

g'(-po) + C'(0) > 0.

Thus, by convexity of stage cost, g(-p) > g(-po), for any p < po. Therefore, by

convexity of C(-) and g(-),

g'(x) + C'(x + p) > g'(-p) + C'(0) > 0, for all x > -p,

which immediately implies optimality of (-p), for p < po.

Similarly, for the case where #(pi) = 0, we have g'(0) + C'(pi) > 0, which implies

g'(x) + C'(x + p) > g'(0) + C'(p) > 0, for all p > pi,

hence, the objective is nondecreasing for all feasible x and #(p) = 0. El

Lemma 5.4.2. Let C(s) be defined as in (5.8), and assume that the stage cost g(-)

is convex. Then
dC Q- (s) >2 Ew[g(W)],
ds r

0 < s < 9. (5.27)

Proof. By Theorem 5.2.2(ii), the optimal cost function C(s) is convex. Hence, f (s) >

dC(0). On the other hand, by Theorem 5.2.2(iii), we can write

dC
ds

_Q+O Q [1= C(0) - -Ew ming(W -0)+C(0)i.
r r Iu=0I
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Combining the two preceding relations proves the claim.

Lemma 5.4.3. If Assumption 5.2.1 holds, then the first constraint in (5.18) is never

active, i.e., <p(p) < min{B, 9 - p}.

Proof. We show that under Assumption 5.2.1, the slope of the objective function is

always non-negative at x = min{B, 9 - p}. In the case where s - p < B, we have

, (g(x) +OX
C(x + p) )

where the inequality follows from monotonicity of g and (5.14). For the case where

9 - p > B, we employ Lemma 5.4.2 and Assumption 5.2.1 to write

C(x + p)) x=B = g'(B) + C'(B + p)

> g'(B) - -Ew[g(W)]
r

> g'(B) -Ew[g(W)] > 0
E[W]

where the last inequality holds because g(w) < wg'(B), for all w < B, which is a

convexity result. l

Proof of Theorem 5.2.5: By Theorem 5.2.2(iii), we can characterize the optimal

policy as

p*(s, w) = argmin g(w - u) + C(s - u) (5.28)

s.t. 0 < u < min{s, w}.

Note that the optimization problem in (5.28) is convex, because g(.) and hence,

C(-) is convex (cf. Theorem 5.2.2(ii)). Using the change of variables

x = w - U, p = s -w
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we can rewrite (5.28) as pu*(s, w) = w - x*(p, w), where

x*(p, w) = argmin g(x) + C(p + x) (5.29)

s.t. x > max{0, -p}

x < w.

The optimization problem in (5.29) depends on both parameters p and w. We

may remove the dependency on w as follows. Since w < B, 9 - p, we may relax the

last constraint, x < w, by replacing it with x < min{B, § - p} The optimal solution

of the relaxed problem is the same as #(p) defined in (5.18). If #(p) < w, then the

relaxed constraint is not active, and #(p) is also the solution of (5.29). Otherwise,

since we have a convex problem, the constraint x < w must be active, which uniquely

identifies the optimal solution as w. Therefore, the optimal solution of the problem

in (5.29) is given by x*(p, w) = min{#(p), w}. Combining the preceding relations, we

obtain

p*(s, w) = w - min{#5(s - w), w} = w - #(s - w)].

The representation in (5.19) is a direct consequence of Lemmas 5.4.1 and 5.4.3.

Between some break-points bo and bi, the optimal solution of (5.18) can only be an

interior solution, which is given by (5.20). The uniqueness of #0 (p) follows from strict

convexity of g. Finally, by continuous differentiability of the cost function, equation

(5.20) should hold at the break-points as well. Therefore,

g'(bo) + C'(bo + (-bo)) = 0, g'(0) + C'(0 + bi) = 0,

which is equivalent to the characterizations in (5.21) and (5.22). The first inequality

in (5.21) holds by Lemma 5.27 and convexity of g(.), and the second inequality holds

by Assumption 5.2.1 and applying convexity of g(.) again. U

Lemma 5.4.4. Let #(p) be defined as in (5.18), and assume that Assumption 5.2.1
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holds and the stage cost g(-) is strictly convex. Then for all p1 P2,

-(P2 - pi) O(p 2 ) - #(Pi) < 0. (5.30)

Proof. We first establish the monotonicity of #(p). Let pi < P2. Given the structure

of the kernel function in (5.19), there are multiple cases to consider, for most of which

the claim is immediate using (5.19). We only present the case where -B < pi < bi

and bo < P2 < b1. A necessary optimality condition at pi is given by

g'(1P)) + C'(1 + 4(p1)) > 0. (5.31)

Similarly, for P2, we must have

(5.32)g'(#(P2)) + C'(p2 + #(p2)) = 0,

Now, assume #(p 2 ) > #(pi). By convexity of C(-)

strict convexity of g(.), we obtain

(cf. Theorem 5.2.2(ii)) and

g'(#(p2)) + C'(p 2 + 4(P2 )) > g'(#(pi)) + C'(p1 + #(p1)) > 0,

which is a contradiction to (5.32).

For the second part of the claim, again, we should consider several cases depending

on the interval to which pi and P2 belong. Here, we present the case where bo < pi < b2

and bo < P2 < 9. The remaining cases are straightforward using (5.19). In this case,

we have

g'(#(pi)) + C'(pi + #(pi)) = 0,

g'(#(p2)) + C'(p2 + 4(P2)) > 0.

Combine the optimality conditions in (5.33) and (5.34) to get

g'(#(p2)) + C'(p 2 + (P2)) g'(#(pi)) + C'(P1 + 1(pi))

(5.33)

(5.34)

(5.35)
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Assume #(p 2 ) < #(pi); otherwise, the claim is trivial. By strict convexity of g(.),
we have g'(#(P2 )) < g'(#(p1)). Therefore by (5.35), it is true that

C'(P2 + #(p 2 )) > C'(pi + 4(Pi)). (5.36)

Now assume #(p2) - #(pi) < -(P2 - pi). By rearranging the terms of this inequality

and invoking the convexity of C(.), we get C'(p2 + #(p 2)) < C'(pi + #(p1)), which is

in contradiction to (5.36). Therefore, the claim holds. El

Proof of Theorem 5.2.4: First, note that by Lemma 5.4.4, we get

#(s2 - w) - #(S1 - w), for all w, si < s2

which implies (cf. Theorem 5.2.5)

p*(s 2, W)= [w - #(S2 - w)]+ [W - /(S1  W)]+= P*(si, w).

Moreover, for all s and wi < w2, we can use the second part of Lemma 5.4.4 to

conclude

By rearranging the terms, it follows that

p*(s, w2)= [W2 - 4(s - W2)]+> [W1 - O(S - w1)] + *(S, WI),

which completes the proof.
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Chapter 6

Conclusions and Future Research

Directions

6.1 Summary

We presented a new framework for studying media streaming systems in volatile

environments, with focus on quality of user experience. We proposed two intuitive

metrics that essentially capture the notion of delay from the end-user's point of view.

The proposed metrics in the context of media streaming are initial buffering delay,

and probability of interruption in media playback. These metrics are tractable enough

to be used as a benchmark for system design.

We first characterized the optimal trade-off curves between these metrics in a

single-server single-receiver configuration. These trade-offs are in analogy with the

information theoretic rate-delay-reliability trade-offs for reliable communication over

a noisy channel. We modeled volatility of the environment by assuming that the

packet delivery from the server to the receiver is governed by a stochastic process.

Under Poisson arrival process, characterized the minimum initial buffering needed to

meet certain requirement in terms of interruption probability. We further generalized

the results to processes with memory such as a Markov modulated Poisson process,

and provided similar characterizations.

We extended the QoE trade-off characterizations to a technology-heterogeneous
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multi-server system. The main challenge in multi-server systems is inefficiencies in

multi-path streaming due to duplicate packet reception. This issue also significantly

complicates the analysis. We proposed Network Coding as the solution to this chal-

lenge. By sending random linear combination of packets, we remove the notion of

identity from packets, and hence, guarantee that no packet is redundant. Using this

approach allows us to significantly simplify the flow control of multi-path streaming

scenarios, and model heterogeneous multi-server systems as a single-server system.

Equipped with tools provided by network coding, we added another level of com-

plexity to the multi-server system. We used our framework to study multi-server

systems when the access cost varies across different servers. We designed various

control policies to minimize the access cost while satisfying the QoE requirements

in terms of buffering delay and interruption probability. We formulated the problem

as a Markov decision problem with probabilistic constraints, and characterized the

optimal policy by the HJB equation. In particular, we demonstrated that a simple

threshold policy performs the best. The threshold policy uses the costly server if and

only if the receiver's buffer is below a certain threshold. Moreover, we observed that

even rare but properly timed usage of alternative access technologies may significantly

improve user experience.

The tools and techniques developed in this work essentially address the tran-

sient behavior of the system. We may employ these tools in the context of other

delay-sensitive applications, insurance and financial industries, and inventory control

problems. In particular, we examined an analogous problem in the context of power

supply networks with uncertainty in supply/demand and upward ramp constraints

on both supply and storage. The uncertainty was modeled as a compound poisson

arrival of energy deficit shocks. We formulated the problem of optimal control of stor-

age for maximizing system reliability as minimization over all stationary Markovian

control policies, of the infinite horizon expected discounted cost of blackouts. We

showed that for a linear stage cost, a myopic policy which uses storage to compensate

for all shocks regardless of their size is optimal. However, for strictly convex stage

costs the myopic policy is not optimal. We provided a characterization of the optimal
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policy strict convex stage cost functions. Our results suggest that for high ratios of

the average rate of shock size to storage ramp rate, there is a critical level of storage

size above which, the value of additional capacity quickly diminishes. Moreover, for

all control policies, there seems to be a critical level of storage size, above which the

probability of suffering large blackouts diminishes quickly.

In the following, we discuss several promising research directions with focus on

media streaming applications.

6.2 Multi-user Streaming and P2P Networks

In this thesis, we discussed various scenarios of streaming a media file to a single

receiver in an unreliable and volatile environment. An important extension of this

problem is the problem of dynamic resource allocation in a network when streaming

to multiple users. Here, allocating resources to each user can affect the quality of

experience of other users. Our goal is to design resource allocation policies when

taking into account such coupling effects. There are two fundamentally different

scenarios to study.

U1 (D1, Ei)

U2(D2, E2)
Server

Un (Dn, En)

Figure 6-1: Multiple unicast streaming to multiple users with different QoE require-
ments.

The first case is the multiple unicast scenario. The simplest form of this setup

consists of a single server streaming n different media files to n receivers (see Figure 6-

1). Each user i has a QoE requirement V = (Di, ei), where Di denotes the initial buffer

size of user i, and ei is his/her desired interruption probability. The total resource at
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the server is limited, so that it can push at most R packets per unit of time to different

users. At any point in time, the server should decide which user to serve next. The

question of interest is whether all of the QoE requirements (V1, . . . , V) can be achieved

by any control policy at the server. The first step is to characterize the largest set

of achievable QoE metrics given the servers limited resources. We refer to this set as

the QoE region. Moreover, we would like to design a QoE optimal control policy that

satisfies every user's QoE requirement for any point in the QoE region. This plan is

in analogy of the queueing theory literature, where throughput optimal policies are

designed to stabilize the queues for any set of admissible (achievable) arrival rates.

Once this step is accomplished, we may distribute the resources among different

users in a fair manner, by picking a set of QoE requirements from the QoE region

that maximizes some global utility function. Owing to different channel conditions,

fair streaming to different users may not be accomplished by equally dividing the

available resources among the users. It is worth mentioning that we may incorporate

more complicated resource constraints, e.g. interference and broadcast constraints

in a multi-hop network, into our model. However, the problem formulation needs to

capture the transient behavior of the system and hence, conventional network flow

models are not adequate analysis tools.

U1

Server U

U3

Figure 6-2: Multicast streaming with user cooperation (P2P streaming).

The second scenario of interest is Multicast/Broadcast streaming. In this setup,

the same content is being streamed to multiple users. Moreover, the users can help

each other in a P2P fashion (See Figure 6-2). There are multiple interesting questions
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that arise in this setup. First, consider the case where users are fully cooperative. The

server can decide how to allocate the resources (push packets), so that the users can

achieve the largest set of QoE requirements. In this case, the users that are leading

(in packet reception) due to better channel conditions, etc, should help the lagging

users. Our goal is to understand whether the sever should boost the lagging users so

that they can keep up, or continue helping the leading users and rely on them helping

the lagging users. The solution, of course, heavily depends on system parameters such

as the channel condition between the server and the users as well as the links among

the users. Now, consider a pull mechanism where the users are requesting packets

from the server and can act selfishly. In this scenario, a free-riding problem arises.

Even though, the users should help others if they are leading in packet reception,

they might have an incentive to not request the packets from the main server. This

way, they will be lagging with respect to most of the other peers, and hence, they

can receive most the packets from other peers at no charge. In such a situation,

the delay-sensitive information may propagate throughout the network very slowly.

Therefore, the same users may get very close to an interruption in playback, and

decide to request the packets from the main server. But at this point, the server

cannot support all of the requests. The goal is to characterize the dynamic behavior

of the users in such a scenario.

6.3 Streaming with Imperfect Feedback

Consider the problem of streaming to a single user over an unreliable channel. One of

the important underlying assumptions in our model has been the fact that the server

knows which (coded or uncoded) packets have been received at any point. Therefore,

it can decide whether to move to the next packet or block of packets, and hence, it

always operate at maximum throughput without incurring any additional decoding

delay. This can be achieved using an ARQ mechanism over a perfect feedback channel

with no delay. From a more practical point of view, we need to relax this assumption.

It is well-known that using random linear network coding across packets in a larger
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block increases the throughput as well as decoding delay. However, when decoding

delay becomes important and perfect feedback is not available, we need to code within

a smaller block of packets. Clearly, there is a trade-off between the throughput and the

decoding delay. We would like to address this problem in a dynamic setting. Observe

that by dynamically changing the coding block size, we may operate at different

points of the optimal throughput-delay trade-off curve. In our streaming framework,

as the receiver's queue-length changes, the urgency for decoding packets also changes.

For example, as the queue length approaches zero (close to interruption), we need the

received packets to be immediately decodable, because they need to be consumed

immediately by the application layer. On the other hand, if there are enough packets

buffered at the receiver, the decoding delay of the current block does not play an

important role, and we may increase the block size to maximize the throughput. An

interesting problem is to design optimal block size selection policies that dynamically

choose an appropriate set of packets to code and transmit. Such policies need to be

robust againts imperfect queue-length information received from the end-user.
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