300 research outputs found

    Integration via Meaning: Using the Semantic Web to deliver Web Services

    Get PDF
    Presented at the CRIS2002 Conference in Kassel.-- 9 pages.-- Contains: Conference paper (PDF) + PPT presentation.The major developments of the World Wide Web (WWW) in the last two years have been Web Services and the Semantic Web. The former allows the construction of distributed systems across the WWW by providing a lightweight middleware architecture. The latter provides an infrastructure for accessing resources on the WWW via their relationships with respect to conceptual descriptions. In this paper, I shall review the progress undertaken in each of these two areas. Further, I shall argue that in order for the aims of both the Semantic Web and the Web Services activities to be successful, then the Web Service architecture needs to be augmented by concepts and tools of the Semantic Web. This infrastructure will allow resource discovery, brokering and access to be enabled in a standardised, integrated and interoperable manner. Finally, I survey the CLRC Information Technology R&D programme to show how it is contributing to the development of this future infrastructure

    A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes

    Get PDF
    Cultural landscapes are regarded to be complex socioecological systems that originated as a result of the interaction between humanity and nature across time. Cultural landscapes present complex-system properties, including nonlinear dynamics among their components. There is a close relationship between socioeconomy and landscape in cultural landscapes, so that changes in the socioeconomic dynamic have an effect on the structure and functionality of the landscape. Several numerical analyses have been carried out to study this relationship, with linear regression models being widely used. However, cultural landscapes comprise a considerable amount of elements and processes, whose interactions might not be properly captured by a linear model. In recent years, machine-learning techniques have increasingly been applied to the field of ecology to solve regression tasks. These techniques provide sound methods and algorithms for dealing with complex systems under uncertainty. The term ‘machine learning’ includes a wide variety of methods to learn models from data. In this paper, we study the relationship between socioeconomy and cultural landscape (in Andalusia, Spain) at two different spatial scales aiming at comparing different regression models from a predictive-accuracy point of view, including model trees and neural or Bayesian networks

    Estudio de la radiopureza del argón subterráneo para DarkSide-20k e I+D+i en detectores basados en gases nobles para investigaciones de eventos raros

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 31-05-2021There are strong pieces of evidence suggesting that ordinary matter, composed by baryons and leptons, is only the 5 % of the energy-matter content of the Universe. It is necessary to include two new components to account for all the energy-matter density in the Universe and thus explain astrophysical observations on a cosmological scale. The first one is a new, collision-less and non-luminous type of matter, called dark matter (DM), whose interactions with ordinary matter are mainly through the gravitational force. The second one is a uniformly distributed component called dark energy, which is thought to be responsible for the accelerated expansion of the Universe. According to the latest PLANCK satellite data, the dark energy accounts for 69 % of the content of our Universe and the dark matter for the 27 % [1]. The nature of dark matter and dark energy is one of the most relevant problems incurrent physics...Hay evidencias significativas que sugieren que la materia ordinaria compuesta por bariones y leptones, representa solo el 5 % del contenido de energía-materia del Universo. Para dar cuenta de toda la densidad de energía-materia y explicar las observaciones astrofísicas a escala cosmologica es necesario incluir dos nuevos componentes. La primera es un nuevo tipo de materia, no luminosa y que no sufre colisiones, llamada materia oscura (DM), cuyas interacciones con la materia ordinaria son principalmente a traves de la fuerza gravitatoria. La segunda es una componente uniformemente distribuida llamada energía oscura, que se le atribuye ser responsable de la expansion acelerada del Universo. Segun los ultimos datos del satelite PLANCK, la energía oscura representa el 69 % del contenido de nuestro Universo y la materia oscura el 27 % [1]. La naturaleza de la materia oscura y la energía oscura es uno de los problemas mas relevantes en la física actual...Fac. de Ciencias FísicasTRUEunpu

    Radar-cross-section reduction of wind turbines. part 1.

    Get PDF
    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report

    Aircraft Numerical "Twin": A Time Series Regression Competition

    Get PDF
    International audienceThis paper presents the design and analysis of a data science competition on a problem of time series regression from aeronautics data. For the purpose of performing predictive maintenance, aviation companies seek to create aircraft "numerical twins", which are programs capable of accurately predicting strains at strategic positions in various body parts of the aircraft. Given a number of input parameters (sensor data) recorded in sequence during the flight, the competition participants had to predict output values (gauges), also recorded sequentially during test flights, but not recorded during regular flights. The competition data included hundreds of complete flights. It was a code submission competition with complete blind testing of algorithms. The results indicate that such a problem can be effectively solved with gradient boosted trees, after preprocessing and feature engineering. Deep learning methods did not prove as efficient

    Three electron dynamics of the interparticle Coulombic decay with two dimensional continuum confinement

    Get PDF
    In a pair of self assembled or gated laterally arranged quantum dots, an electronically excited state can undergo interparticle Coulombic decay. Then, an electron from a neighbor quantum dot is emitted into the electronic continuum along the two available dimensions. This study proves that the process is not only operative among two but also among three quantum dots, where a second electron emitting dot causes a rate increase by a factor of two according to the predictions from the analytical Wigner Weisskopf rate equation. The predictions hold over the complete range of conformation angles among the quantum dots and over a large range of distances. Electron dynamics was calculated by multiconfiguration time dependent Hartree and is, irrespective of the large number of discrete variable representation grid points, feasible after having developed an OpenACC graphic card compilation of the progra
    corecore