47 research outputs found

    Operation, Monitoring, and Protection of Future Power Systems: Advanced Congestion Forecast and Dynamic State Estimation Applications

    Get PDF
    The electrical power systems are undergoing drastic changes such as increasing levels of renewable energy sources, energy storage, electrification of energy-efficient loads such as heat pumps and electric vehicles, demand-side resources, etc., in the last decade, and more changes will be followed in the near future. The emergence of digitalization and advanced communication in the case of distribution systems to enhance the performance of the electricity infrastructure also adds further complexities. These changes pose challenges such as increased levels of network congestion, voltage variations, protection mis-operations, increased needs for real-time monitoring, and improved planning practices of the system operators. These challenges will require the development of new paradigms to operate the power grids securely, safely, and economically. This thesis attempted to address those challenges and had the following main contributions:First, the thesis started by presenting a comprehensive assessment framework to address the distribution system operators’ future-readiness and help the distribution system operators to determine the current status of their network infrastructures, business models, and policies and thus identify the pathways for the required developments for the smooth transition towards future intelligent distribution grids.Second, the thesis presents an advanced congestion forecast tool that would support the distribution system operators to forecast and visualize network congestion and voltage variations issues for multiple forecasting horizons ranging from close-to-real time to a day-ahead. The tool is based on a probabilistic power flow that incorporates forecasts of solar photovoltaic production and electricity demand, combined with advanced load models and different operating modes of solar photovoltaic inverters. The tool has been integrated to an existing industrial graded distribution management system via an IoT platform Codex Smart Edge of Atos Worldgrid. The results from case studies demonstrated that the tool performs satisfactorily for both small and large networks and can visualise the cumulative probabilities of network congestion and voltage variations for a variety of forecast horizons as desired by the distribution system operator.Third, a dynamic state estimation-based protection scheme for the transmission lines which does not require complicated relay settings and coordination has been demonstrated using an experimental setup at Chalmers power system laboratory. The scheme makes use of the real-time measurements provided by advanced sensors which are developed by Smart State Technology, The Netherlands. The experimental validations of the scheme have been performed under different fault types and conditions, e.g., unbalanced faults, three-phase faults, high impedance faults, hidden failures, inductive load conditions, etc. The results have shown that the scheme performs adequately in both normal and fault conditions and thus the scheme would work for transmission line protection by avoiding relay coordination and settings issues.Finally, the thesis presents a decentralized dynamic state estimation method for estimating the dynamic states of a transmission line in real-time. This method utilizes the sampled measurements from the local end of a transmission line, and thereafter dynamic state estimation is performed by employing an unscented Kalman filter. The advantage of the method is that the remote end state variables of a transmission line can be estimated using only the local end variables and, hence, the need for communication infrastructure is eliminated. Furthermore, an exact nonlinear model of the transmission line is utilized and the dynamic state estimation of one transmission line is independent of the other lines. These features in turn result in reduced complexity, higher accuracy, and easier implementation of the decentralized estimator. The method is envisioned to have potential applications in transmission line monitoring, control, and protection

    The 1991 research and technology report, Goddard Space Flight Center

    Get PDF
    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test

    A Comprehensive Method For Coordinating Distributed Energy Resources In A Power Distribution System

    Get PDF
    Utilities, faced with increasingly limited resources, strive to maintain high levels of reliability in energy delivery by adopting improved methodologies in planning, operation, construction and maintenance. On the other hand, driven by steady research and development and increase in sales volume, the cost of deploying PV systems has been in constant decline since their first introduction to the market. The increased level of penetration of distributed energy resources in power distribution infrastructure presents various benefits such as loss reduction, resilience against cascading failures and access to more diversified resources. However, serious challenges and risks must be addressed to ensure continuity and reliability of service. By integrating necessary communication and control infrastructure into the distribution system, to develop a practically coordinated system of distributed resources, controllable load/generation centers will be developed which provide substantial flexibility for the operation of the distribution system. On the other hand, such a complex distributed system is prone to instability and black outs due to lack of a major infinite supply and other unpredicted variations in load and generation, which must be addressed. To devise a comprehensive method for coordination between Distributed Energy Resources in order to achieve a collective goal, is the key point to provide a fully functional and reliable power distribution system incorporating distributed energy resources. A road map to develop such comprehensive coordination system is explained and supporting scenarios and their associated simulation results are then elaborated. The proposed road map describes necessary steps to build a comprehensive solution for coordination between multiple agents in a microgrid or distribution feeder.\u2

    Factors Relevant to Utility Integration of Intermittent Renewable Technologies

    Full text link
    corecore