378 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Image Segmentation for Detection of Benign and Malignant Tumors by Using DCT and DWT Combination

    Get PDF
    Automated segmentation of image is an important need in autometed diagnosis of an brain tumour images. It is there fore important to have image processing algorithm to detect tumor from an MRI image. We have developed an novel approach using frequency domain image processing that accurately classify brain tumour from MRI image. We have used combination of DCT and DWT along with SVM to classify tumours. We could automatically classify MRI images in benign and malignant type tumors

    Passively mode-locked laser using an entirely centred erbium-doped fiber

    Get PDF
    This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train

    FCM Clustering Algorithms for Segmentation of Brain MR Images

    Get PDF
    The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR) brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF), Gray Matter (GM), and White Matter (WM), has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM) clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed

    Brain Tumor Analysis and Classification of Brain MR Images

    Get PDF

    A New Fuzzy C Means for Brain Image Segmentation Using Anisotropic Diffused Regularization

    Get PDF
    ABSTRACT Medical Imaging is the technique and a process used to create images of the human body for clinical or medical science. Magnetic Resonance (MR) Brain image segmentation plays an important role in neurosurgical planning and clinical diagnosis. MR image is segmented using Fuzzy C means (FCM) method, the objective function of FCM is modified by a regularizing function called Total Variation (TV)FCM. The proposed robust image regularization Anisotropic Diffusion Total Variation (ADTV) regularization method focuses on smoothing the images and reducing the steps by reinterpreting the traditional TV regularization. The method preserves the discontinuities and also continues to smooth along line like features in the MR images and the comparison of proposed scheme with classical TV demonstrates the performance improvement. The method shows the consistent improvement in the reconstruction of images. The method is combined with the FCM and the results of segmentation are improved

    Brain Tumor Analysis and Classification of Brain MR Images

    Get PDF

    Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model

    Get PDF
    Computed tomography (CT) imaging is an essential tool in various clinical diagnoses and radiotherapy treatment planning. Since CT image intensities are directly related to positron emission tomography (PET) attenuation coefficients, they are indispensable for attenuation correction (AC) of the PET images. However, due to the relatively high dose of radiation exposure in CT scan, it is advised to limit the acquisition of CT images. In addition, in the new PET and magnetic resonance (MR) imaging scanner, only MR images are available, which are unfortunately not directly applicable to AC. These issues greatly motivate the development of methods for reliable estimate of CT image from its corresponding MR image of the same subject. In this paper, we propose a learning-based method to tackle this challenging problem. Specifically, we first partition a given MR image into a set of patches. Then, for each patch, we use the structured random forest to directly predict a CT patch as a structured output, where a new ensemble model is also used to ensure the robust prediction. Image features are innovatively crafted to achieve multi-level sensitivity, with spatial information integrated through only rigid-body alignment to help avoiding the error-prone inter-subject deformable registration. Moreover, we use an auto-context model to iteratively refine the prediction. Finally, we combine all of the predicted CT patches to obtain the final prediction for the given MR image. We demonstrate the efficacy of our method on two datasets: human brain and prostate images. Experimental results show that our method can accurately predict CT images in various scenarios, even for the images undergoing large shape variation, and also outperforms two state-of-the-art methods
    corecore