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ABSTRACT 

 

Full Name : Ghazanfar Latif 

Thesis Title : Brain Tumor Analysis and Classification of Brain MR Images 
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Date of Degree : 17/05/2014 

 

Magnetic resonance imaging (MRI) is a medical imaging modality frequently used to 

produce a pictorial view of inner body structure and functionality. Radiologists analyze 

large number of MR images for brain tumor detection. In MR images, various objects 

look similar in terms of shape, size and density. To properly deal with such similar 

objects, advanced image segmentation is required. Moreover, image segmentation, an 

important and effective tool in medical imaging, is used in the segmentation of lung, 

breast and brain images. On the other hand, brain tissues consist of cerebrospinal fluid, 

gray matter and white matter. In brain MRI, it is a difficult process to recognize and 

separate these tissue regions due to similarity, noise, and other factors.  

This thesis aims at conducting a research in the area of brain tumor segmentation and 

classification.  

The thesis findings will help medical practitioners in analyzing brain MRI scans for the 

detection of brain tumors. To achieve this goal, brain MR images are analyzed using 

segmentation and classification based on existing and proposed techniques. The proposed 

segmentation and classification techniques outperform the existing ones in terms of 

accuracy. 
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The proposed techniques extract first brain parts from MR images. Then, features are 

extracted from these parts using discrete cosine, discrete Fourier and discrete wavelet 

transforms. Features extracted using the latter transform are further reduced using the 

principle component analysis (PCA) algorithm. Finally, the extracted features are 

classified using support vector machines, naïve Bayes, multilayer perceptron and k-

nearest neighbor classifiers. Unlike existing segmentation and classification techniques, 

the proposed ones attained the highest accuracy levels using all the assessed classifiers. 
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 ملخص الرسالة

 

 
 فطيل رنفضغ  :الاسم الكامل

 
 تحليل و تصنيف صور الرنين المغناطيسي لأورام الدماغ  :عنوان الرسالة

 
 يلالآ سبم الحاولع  التخصص:

 
 ٤١٠٢ مايو :تاريخ الدرجة العلمية

 

 

 

 

للحصول على  شائعة الإستخدامهو طريقة تصوير طبي  ( MRI) التصوير بالرنين المغناطيسي

 ة. يظيفالوبنية الجسم الداخلية و لرؤية تصويرية 

م في اورأتحليل عدد كبير من صور الرنين المغناطيسي للكشف عن كما يقوم أخصائيو الأشعة ب

 المخ. 

مما مغناطيسي في صور الرنين ال شابهة من حيث الشكل والحجم و الكثافةتممتغايرة أشياء  تبدو

أداة هامة (. و لهذا أصبحت تقنيات التجزئة segmentationيستوجب إستخدام تقنيات التجزئة )

. الرئتين والثدي و الدماغكثيرا لمعالجة صور ستخدم في هي تالطبي، والتصوير  وفعالة في المجال

ة الرماديالمادة النخاعي، وثلاثة أنواع رئيسية : السائل تنقسم إلى أنسجة المخ  و من ناحية أخرى فإن 

مناطق  عرف و فصلالتبة وصعبدماغ  للالتصوير بالرنين المغناطيسي كما يتسم المادة البيضاء.  و

 .، الخ(additive noiseو متويات الإشارات المتداخلة ) هذه الأنسجة بسبب التشابه

في تحليل  ةساعدللم م المخاورأتجزئة وتصنيف ي هدف هذه الرسالة لإجراء بحث في مجالت

و لهذا كشف عن أورام الدماغ. في المساعدة الأطباء والباحثين للمخ و فحوصات الرنين المغناطيسي 
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كما تم الإستعانة بتقنيات الجمجمة والدماغ و أورام الدماغ.  تجزئة وتصنيفالمخ  قمنا بتحليل الصور

في هذه الرسالة. و ديدة مقترحة تقنيات جبلإضافة إلى ، للأورامتجزئة وتصنيف شائعة الإستخام ل

 المعروفة. مقارنة مع التقنيات تصنيفالجزئة وبالدقة العالية في الت قترحةالمتقنيات اتسمت ال

أجزاء الدماغ من صور الرنين المغناطيسي و بتحديد  قترحةالم تصنيفالجزئة والت تقنياتتقوم 

و تحويل الطيفي ، رقميجيب الالباستخدام تحويل  ةميزعلامات ملاستخراج كأساس  هامااستخد

صر امبدأ التحليل على أساس العن المعتمد على رقمي، تحويل المويجات ال(Fourierلفوريير )

كما تم إستعمال مصنفات عدة باعتكاد كل من . ةميزحجم العلامات الم ( لإختزال PCAالأساسية )

الشبكات  ساذجة،( الBayes) بايزتقنية ، (support vector machines)دعم أشعة ال تآلا

 لأقرب لتقييم تقنياتار او الج( multilayer perceptronالعصبية الصناعية المتعددة الطبقات )

باستخدام  اتمصنفالدقة مع كل التحسنا كبيرا في و أثبت هذا التقييم  .قترحةالم تصنيفالجزئة والت

 .الغير معالجةسي بالمقارنة مع صور الرنين المغناطيمخ ء الاجزأجميع أنواع 
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1. CHAPTER 1 

INTRODUCTION 

A brain tumor is an abnormal growth of brain cells, which is one of the most common 

causes of death (Singh et al., 2003). According to the International Agency for Research 

on Cancer’s report, cancer is the cause of death for more than 7.6 million people in 2008; 

this accounts for 13% of the total deaths worldwide for the same year (Ferlay et al., 

2010). This report was published in 2013, and the number of deaths is still increasing. As 

per World Health Organization’s (WHO) report, an estimated 22.2 million people will 

have developed cancer by the year 2030 (Omolara, 2011). Developing countries like 

Ghana, Kenya, Afghanistan, and similar countries would be facing the worst, where 

nearly 70% of the overall deaths worldwide are estimated to occur in these countries.  

There are two main types of brain tumors: benign and malignant. Benign tumors are 

considered harmless while malignant tumors cause brain cancer. Magnetic Resonance 

Imaging (MRI) is an advanced medical imaging modality used to diagnose and interpret 

various parts of the body. Brain MRI is an advanced image modality which requires a 

number of sequences for proper interpretation of normal brain tissues and affected brain 

tissues. Nearly 150 to 300 MRIs are normally extracted through the powerful magnetic 

field of the MRI machine. Doctors usually require 30 to 45 minutes for the interpretation 

of brain MRI scans, depending on the kind of suspected phytology. Only few radiologists 

can do proper interpretation of brain MRIs, especially in developing countries 
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(Berrington de González & Darby, 2004). It is very difficult to diagnose a tumor in its 

initial state because of the overlapping hard tissues in the brain. These tissues tend to 

appear like a tumor which mislead a radiologist.  

Our research will enable radiologists to utilize a system where they can form an opinion. 

The system’s opinion is based on the clear classification, segmentation, and 3D 

visualization. If the system is implemented on a large scale, it is going to benefit the 

masses. It would eliminate most of the problems that prevent diagnosing the tumor at an 

early stage. If the system works in a collaborative environment all over the world, we 

would be able to develop a semantic knowledge base, based on the accuracy of brain 

tumor cases. This would not only help to manage the cases but also provide assistance to 

radiologists who are new to the field. 

Image segmentation has become an important and effective tool in the medical field, as 

seen in medical tests such as lung CT-Scan image segmentation, breast MR image 

segmentation, and brain MRI segmentation (Martinez-Möller et al., 2009). The human 

brain has three major types of tissues: gray matter, white matter, and cerebrospinal fluid 

(Salat et al., 2011). In MRIs, it is a difficult process to recognize and separate these 

different brain tissue regions due to their similarity. In this research, our main focus is on 

segmenting the brain images and classifying them into healthy and tumorous. 

For segmentation, we will introduce state-of-the-art techniques, implement suitable ones, 

and probably improve them. In the classification phase, we will use machine learning, 

neural networks, and digital image processing techniques.  
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1.1 Problem Statement  

The brain is a very complex part of the human body which contains billions of neurons to 

process information and operates different body organs. The human brain has three parts: 

the cerebrum, the cerebellum, and the brainstem (Volpe, 2009). The brain is shielded by a 

protective skull which prevents direct damages and injuries to the brain. Figure 1 shows 

the complete anatomy of the human brain.    

 

Figure 1: Human Brain Structure. 

 

 The brain is protected by the skull, but it still can be affected by internal neurological 

changes or damages. The most common problem is known as tumors. These damage the 

brain cells and have become the leading cause of death across the world. Figure 2 shows 

damaged brain cells and inflammation across the tumor’s cells. 
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Figure 2: Brain Tumor. 

 

Images are important in the field of medicine. X-ray images, MR images, and CT images 

are routinely used in hospitals. The development of medical imaging is rapidly moving 

towards more advanced computer utility. Today, many radiology departments are 

switching from traditional film handling to complete medical imaging (Choong, 

Logeswaran, & Bister, 2007). 

There are several advantages to using medical imaging. First, it speeds up the analysis 

workflow where images are produced more quickly. Also, there is no need to archive 

films of medical images (Chad Stickrath, 2012). In addition, the computer provides 

possibilities to improve the usefulness of the images. 

The automated analysis of brain tumor from MR images encompasses the following 

steps.  

I. Scan object brain through MRI machine 

II. Extracting brain MR images in DICOM format  

III. Preprocessing brain MR images 

IV. Extracting of skull and brain from the MR image 
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V. Classifying of the extracted MR images into normal and abnormal images 

VI. Detecting of the brain tumor from the abnormal images 

VII. Visualizing of the brain tumor 

VIII. Decision Making  

Figure 3 shows the diagram of the automated brain tumor analysis system. 

 

 

1.2 Background and Motivation 

Brain segmentation is a very important task due to the complex anatomy of the brain’s 

structure and the skull. Most brain MR scans are highly correlated and low contrast, 

      

  

  

  

MRI Scanning through 

MRI Machine 
Brain MRI Scans in 

DICOM Format 
Preprocessing Brain 

MRI Scans 

Brain Image 

Segmentation 

Brain MRI 

Classification 
2D Brain Tumor 

Detection 

Brain Tumor Visualization 

Decision Making 

  

Figure 3: Architecture of brain tumor detection system. 
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which make segmentation more difficult. Correct segmentation of MRI plays a 

significant role for a meaningful analysis because most MR images are low contrast 

images, and brain tissue classes can easily overlap (Pichler, Kolb, Nägele, & Schlemmer, 

2010). The complexity and inconsistency of the brain anatomy makes the MR image 

segmentation more difficult.  

 Accurate brain image segmentation from MR images is a very important task for 

tumor analysis and treatment. 

 Manual segmentation by experienced radiologists is a time-consuming and 

expensive process (Barkhausen et al., 2001). 

 Manual brain and tumor segmentation is a subjective process, and the 

segmentation result varies among expert to expert.  

 Tumors can be found at any location, with varying shape and size inside the brain, 

so automatic segmentation is a very challenging task. 

1.3 Contribution 

In this thesis we conducted research on brain tumor segmentation and classification from 

Brain MRI scans. Following are the contribution of the thesis. 

1. We reviewed the state-of-art research in brain tumor segmentation and 

classification. 

2. We gathered brain MRI data from different resources available to the research 

community, along with their achieved results. 
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3. We conducted research in the area of brain tumor analysis and classification. This 

will help the doctors and researchers in analyzing brain MRI scans and detecting 

brain tumor. 

4. We analyzed and compared existing brain tumor analysis and classification 

techniques and applied new techniques/modified existing ones for brain analysis 

and classification. 

5. We build a prototype system for the automated analysis of skull, brain, and brain 

tumor, as well as classification of brain tumor images. 

 

1.4 Methodology 

Brain tumor analysis and classification of brain MR images is a multi-step process 

consisting of MRI image acquisition, preprocessing, segmentation, feature extraction, 

feature selection, and classification. The following methodology is being followed during 

the thesis in order to achieve the proposed goals.  

1. Extended the literature review of the state-of-art research in brain tumor analysis 

and classification, focusing on segmentation of the skull, the brain, and tumor, 

and classification of benign and malignant MR images.  

2. Preprocess the acquired MRI datasets to convert them from DICOM format to 

bitmap image file format and remove embedded sample metadata in the MR 

images.  

3. In the segmentation phase, we performed the following operations on the images: 
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a. Noise removal from the input MR image; 

b. Extraction of the skull from the image and background removal; 

c. Apply image enhancement and smoothing;  

d. Initial segmentation of brain part in the image; and 

e. Improve the segmented brain part. 

4. In the feature extraction phase, we extracted brain MRI features from the MR 

images. We applied popular features of brain MR images.  

5. In the classification phase, we applied statistical and machine-learning classifiers 

for brain tumor classification. 

6. Based on the classification phase we separate the tumor from the malignant MR 

images using segmentation. 

The proposed process model is illustrated in Figure 4.  
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Figure 4: Proposed model of brain tumor detection. 
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1.5 Thesis Organization 

Thesis is organized into seven chapters. The first chapter features a basic introduction on 

brain imaging issues and gives a comprehensive overview of the thesis. In the second 

chapter, we discuss the background of medical image processing and available 

techniques, while we also discuss the data acquisition that is used in latest existing 

literature. The third chapter gives a literature review about brain image segmentation and 

classification techniques. In this chapter, we discuss the latest literature and the new 

techniques used in them. The fourth chapter describes the preprocessing and brain part 

extraction techniques. In this chapter, we discuss different brain segmentation techniques 

and compare the results. In the fifth chapter, we present the feature extraction and 

reduction techniques. The sixth chapter describes the different classification methods 

used for brain MR image classification. In this chapter, we apply a number of 

classification techniques on the simulated datasets as well as real datasets, and compare 

the results. In the seventh chapter, we discuss our experimental results of proposed 

methods and conclude the dissertation with future directions. 
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2. CHAPTER 2 

BACKGROUND 

Image segmentation divides images into parts based on the properties of an image, such 

as gray level, texture, and shape of the different objects in the image. Segmentation is an 

unsupervised method which is used for extracting different regions having similar 

properties.  

Image segmentation is very important for several medical image processing applications 

that are being used for the analysis of image structure and diagnosis of different 

disorders. Different segmentation and classification techniques are presented by the 

researchers. 

 

2.1 Medical Image Modalities  

There are four techniques commonly used for medical image modalities. 

2.1.1 X-Rays  

X-Rays or X-Radiation are primarily used to produce images of the body’s internal 

structure. In this technique, electromagnetic radiation with different rates are being 

passed through the body to produce radiographic images with the help of an X-ray tube 

(He, Huda, Magill, Tavrides, & Yao, 2011). The soft parts of the body, such as the brain 

and the heart, show up as dark in the image, while bones and other dense parts of the 
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body appear as white in the images. X-Ray is commonly used for bone structure imaging, 

chest radiographs, lung cancer, brain tumor, and kidney stones identification, and skeletal 

system imaging. 

2.1.2 Computer tomography Scan (CT-Scan) 

CT-scan, also known as computed tomography, is a medical imaging technique used to 

produce two-dimensional images of the body. A CT scanner emits a series of 

electromagnetic radiation just like X-ray machines do, but the difference is that X-rays 

send only one beam while CT scan sends multiple beams (Fung Kon Jin et al., 2011). 

CT-Scan can be used for the head, brain, chest, abdomen, and cardiac images for analysis 

and identification of particular diseases. 

2.1.3 Positron Emission Tomography (PET)  

Positron emission tomography (PET) is a medical imaging method used to get 

information on how body tissues and organs are working based on three-dimensional 

images of the body. PET scan is different from other medical imaging techniques like 

MRI, X-ray, and CT-scan in terms of its feature: a PET scan is based on the cellular-level 

changes occurring in the organ or tissues, which then produces 3D images (Toma-Dasu et 

al., 2012). It can be used for the detection and monitoring of different diseases like 

cancer, brain disorders, and heart problems. 

2.1.4 Magnetic resonance imaging (MRI)  

Magnetic Resonance Imaging (MRI) is primarily a medical imaging technique most 

commonly used in radiology to visualize the internal structure and functionality of the 

body. An MRI machine contains a powerful magnet which works along with neutrons 
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and protons dipole moment. It generates detailed anatomical information of soft tissues in 

humans (Hyare et al., 2010). An MRI scan can be used for disease detection, and has 

proven successful in detecting heart abnormalities and brain tumors. 

 

2.2 Brain MRI   

Brain MRI is a test that uses magnetic field, radio waves, and a computer device to 

produce detailed images of the brain tissues and the brain stem. Three different types of 

brain MR images are produced based on the MRI signal frequency and magnet field 

strength: longitudinal relaxation time (T1) weighted, transverse relaxation time (T2) 

weighted, and proton density (PD) weighted (Foster-Gareau, Heyn, Alejski, & Rutt, 

2003). These three different types of MR images are produced by using different pulse 

orders and by altering the imaging constraints. In MR images, tissues with T1 are dark, 

tissues with T2 are bright and tissues with PD shows water and macromolecules more 

clearly (de Leeuw et al., 2001). MRI uses magnetic field instead of radiation, which 

makes it a different technique from the CT scan. The MRI can detect swelling, tissue 

inflammation, bleeding, and tumor. MR scanned images can be saved into the computer 

for further evaluation. 
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Figure 5: MR image capturing process from MRI Scanner. 
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2.3 Brain Cancer   

Brain cancer (or brain tumor) occurs when brain cells reproduce and grow in an abnormal 

and uncontrolled manner. Kohler et al. divided brain tumor into two main categories 

(Kohler et al., 2011). The first one is benign tumors which remain separate from the 

brain’s primary cells; these tumors are less serious but can still cause serious problems in 

the brain when they grow. The second type is malignant brain tumors which affect the 

primary brain cells and cause brain cancer. This type of brain tumors grow very quickly 

and damage primary brain cells. 

 

 

2.4 Data Acquisition   

For the brain biomedical information and patients' MRI data, we contacted the 

Department of Radiology, Pakistan Institute of Medical Sciences, Islamabad, and 

received the data (Zehra et al., 2003). For biomedical information and understanding of 

MRI scans, we were in touch with Dr. Shazia Faruqui Khan (MBBS, FCRS London, and 

Associate Professor), currently working as Head of the Radiology Department in Pakistan 

Healthy 

Cells 

Tumor 

Cells 

Figure 6: Normal and tumorous brain cell in MR images. 
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Institute of Medical Sciences, Islamabad. We were also in contact with Dr. Syeda Fizza 

Tauqir (MBBS, Nishter Medical College Multan and Post Graduate in Radiology, RMC 

Rawalpindi), who is a Radiologist at the Holy Family Hospital, Rawalpindi, for 

understanding the detection of brain tumor and analyzing the results. Dr. Mirza Aqeel, 

who is MRI Administrator at Abrar CT & MRI Centre, Rawalpindi helped us by 

providing Brain MRI Datasets of different patients (Abrar MRI, 2013). The acquired 8 

datasets were scanned on a Philips Achieva 1.5T SE MRI scanner (Raaymakers et al., 

2009).  

We also downloaded recognized MRI datasets available online for research purpose 

published by Harvard Medical School (Pang & Lee, 2008). We extracted another brain 

tumors database of 10 cases from the Slicer 3.6; each case contains 123 MR images 

(Kikinis & Pieper, 2011). We also downloaded available online BRAINIX brain tumor 

database, which contain 7 subjects with MR images of T1 and T2 types (Rosset, Spadola, 

& Ratib, 2004). We also downloaded simulated brain MRI dataset consisting of 187 

images from the BrainWeb online repository of simulated brain database (Ocosco, 

Ollokian, Wan, Ike, & Vans, 1996). The collected MRI data is described in Table 1.  

 

2.5 Equipment Used  

No special equipment is required for development and testing of MR images. However, 

we used a dedicated computing machine (laptop) with 12GB of memory and 2.20GHz i7 

processor for application development and processing. We used MATLAB 7.11 (2012b) 

for coding and experiments (MathWorks, 2012). For preprocessing of DICOM images, 
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we used open source applications called Slicer 3.6 (Kikinis & Pieper, 2011) and 

YAKAMI DICOM Tools (YAKAMI, 2012). 

 

Table 1: Brain MRI Dataset Description. 

Data Source 
MRI 

Type 

Slice 

Thickness 

(mm) 

Number of 

Samples 

Number of 

Images in each 

Sample 

Pakistan Institute of 

Medical Sciences 

(Zehra et al., 2003) 

T1, T2 5.0 8 
190 to 210 

Scans 

Simulated BrainWeb 

Dataset (Ocosco et al., 

1996) 

T1 5.0 1 187 Scans 

Slicer Brain MRI 

Repository (Kikinis & 

Pieper, 2011) 

T2 1.5 10 123 Scans 

BRAINIX Brain 

Tumor Dataset 

Repository (Rosset et 

al., 2004) 

T1 1.5 7 22 Scans 

Annotated Simulated 

BranWeb Dataset 

(Center, 2010) 

T1 5 20 3 Scans 

Annotated Simulated 

BranWeb Another 

Dataset (Ocosco et al., 

1996) 

T1 5 1 181 Scans 

Abrar MRI & CT Scan 

Center (Abrar MRI, 

2013) 

T1 5.0 1 90 Scans 
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3. CHAPTER 3 

LITERATURE REVIEW 

In this section, we present the literature review on brain tumor segmentation and 

classification. We discuss an overview of the most commonly used segmentation, 

features extraction, selection methods, and classification techniques for brain MRI 

classification and segmentation. In addition, we explore the characteristic of brain MR 

images. 

 

3.1 Features Extraction and Classification  

Features extraction is the transformation of an image into a set of features. Good and 

nominal features play an important role in the accuracy of the classification technique. 

These features are further reduced to get only useful features which are used for image 

classification. A number of features extraction techniques are being proposed e.g. Gabor 

features (Manjunath & Ma, 1996; Liu & Wechsler, 2002; Kong, Zhang, & Li, 2003), 

wavelet transform-based features (Materka, 2001; Ma & Manjunath, 1995), a principle 

component analysis (PCA), discriminant analysis, and texture features (Materka & 

Strzelecki, 1998; H. Zhang, Fritts, & Goldman, 2005; Kovalev, Kruggel, Gertz, & von 

Cramon, 2001) in latest researches. Chaplot, et al. proposed feature extraction method 

based on wavelet transform (Duta & Sonka, 1998). A powerful mathematical tool called 

wavelets decomposes data into various frequencies that are used for the analysis and 
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classification of composite brain MRI datasets. Duabechies-4’s wavelet approximation 

coefficients of brain MRI were extracted and used as feature vectors for classification (M. 

Flaum, M. Sonka, S. Arndt, T. Cizadlo, S. Stoneall, 1995). Principle component analysis 

is an important technique used for reduction of features into a lower dimension feature 

space. Dahshan extracted features using discrete wavelet transform and applied PCA to 

get lower dimensions of the feature space from brain MR images (El-Dahshan, Hosny, & 

Salem, 2010). 

Xu et al. extracted features based on a linear separability criterion (Xu & Song, 2008) 

which is based on the Fisher discriminant analysis. This technique extracts features from 

data with complex or normal distribution. An improved version of discrete wavelet 

transform is called Slantlet transform. Madhubanti proposed a hybrid multi-resolution 

slantlet transform technique for feature extraction of brain MR images. She applied 

different filters for each scale of MR image and extracted the features. Quratulain 

extracted brain MRI features by using texture analysis (Quratulain, Latif, Kazmi, Jaffar, 

& Mirza, 2010). She used first-order features such as mean, skewness, variance, entropy, 

energy, and kurtosis, along with second-order features like inertia, max probability, and 

correlation. First order features were obtained from the histogram of the brain MR image, 

while second order features were extracted from the gray level spatial co-occurrence 

matrix.  

Classification is a method for identification and categorization of input dataset into 

different classes. There are two basic types of classification known: the supervised 

classification and the unsupervised classification. Supervised classification is a method 

used to classify unknown samples by using samples of known identity, whereas 
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unsupervised classification is the identification of different patterns or natural groups 

without prior knowledge about the sample datasets. Numbers of supervised and 

unsupervised classification techniques are being utilized recently for brain image 

classification into benign and malignant. Zhang, et al. proposed a hybrid method for brain 

MRI classification (Yudong Zhang, Dong, Wu, & Wang, 2011). In their proposed 

method, two supervised classifiers k-nearest neighbor and feed forward back propagation 

artificial neural network have been developed. In a developed system, level-3 

decomposed 1024 features were given as input while 10 hidden neurons were used to 

classify the MR image into a normal or an abnormal image. Fuzzy c-mean (FCM) 

clustering is also an important classification technique which classifies input patterns 

based on similarity and dissimilarity in the input patterns. Alan Liew proposed FCM 

clustering based on the adaptive classification of brain MR images (Liew & Yan, 2006). 

He incorporated the local spatial context into FCM using the dissimilarity index instead 

of distance matrix, and designed cluster prototype by applying a multiplicative bias field. 

Yang, et al. enhanced the improved brain MRI classification by applying a multi-scale 

multi-block FCM method (Yang & Fei, 2011). 

 

  



20 

 

Table 2: Summery of Brain MRI classifications techniques. 

Author(s) Features Classification Data 
Accuracy 

(%) 

Kaus et al. 

(Kaus et al., 

2001) 

DWT SVM 

52 MR Images 

(6 Normal, 46 

Abnormal) 

98% 

Liew et al. 

(Liew & Yan, 

2006) 

Gradient 

Features 
FCM  217 MRI Scans - 

Maitra et al.  

(Maitra & 

Chatterjee, 

2008) 

Multi 

Resolution 

Slantlet 

FCM 

75 MR Images 

(39 Normal, 36 

Abnormal) 

100% 

El-Dahshan et 

al. (El-Dahshan 

et al., 2010) 

DWT + PCA 
Hybrid (KNN, 

FPNN) 

70 MRI Scans 

(60 Normal, 10 

Abnormal) 

98.6% 

Quratulain et al. 

(Quratulain et 

al., 2010) 

Texture based 

Features 
SVM 

90 MRI Scans 

(62 Normal, 28 

Abnormal) 

99.63% 

Abdullah et al. 

(Abdullah et al., 

2011) 

DWT SVM 

32 Patients Dataset 

(10 Normal, 22 

Abnormal) 

65% 

Zhang et al. 

(Yudong Zhang 

et al., 2011) 

DWT + PCA BPNN 

66 MRI Scans 

(18 Normal, 48 

Abnormal) 

100% 

Lahmiri et al. 

(Lahmiri, 2011) 
2nd Level DWT 

Ensemble based 

(KNN, PNN, 

SVM) 

56 T2 MR Images 

(5 Normal, 51 

Abnormal) 

98% 

Yang et al. 

(Yang & Fei, 

2011) 

Texture based 

Features 

Multi-Scale 

Multi-Block 

FCM 

21 MRI Scans - 

Zhang et al. 

(Yudong Zhang 

et al., 2011) 

DWT + PCA 
Bee Colony 

Algorithm 

55 MRI scans 

(15 Normal, 40 

Abnormal) 

100% 

Abdullah et al. 

(Abdullah et al., 

2011) 

DWT + PCA SVM 

32 Patients Dataset 

(10 Normal, 22 

Abnormal) 

85% 

Mesrob et al. 

(Mesrob et al., 

2012) 

Region of 

Interest (ROI) 

based features 

SVM 23 MRI Slices 99% 
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3.2 Brain MRI Segmentation  

Separating an image into smaller parts is called Image Segmentation, a process used to 

extract useful information for image analysis. The human brain has three major types of 

tissues: white matter, gray matter, and cerebrospinal fluid. In MR images, it is a difficult 

process to recognize and separate these different brain tissue regions due to the similarity 

among them. Anisotropic diffusion-based brain MRI segmentation was performed by 

Arfan, et al. by applying 2D anisotropic diffusion filters which degrade image gradient 

(Jaffar et al., 2012). Further results were improved by applying the active contour model 

on the resultant segmented image. Quratulain et al. proposed brain MRI segmentation 

using fuzzy c-mean clustering (FCM) (Quratulain et al., 2010).  

Nicolae Duta performed segmentation of brain MR images using active shape models 

(Duta & Sonka, 1998). He used the Euclidian plane to describe object contours, and then 

calculated brain shape statistics. He used eigenvectors on the brain structure and used 

edge cliques to determine edge strengths and gray level appearance. Fletcher-heath 

proposed automatic brain tumor segmentation based on three-step FCM clustering, and 

enhanced the results by integrating domain knowledge and image processing (Fletcher-

Heath, Hall, Goldgof, & Murtagh, 2001). In the first step, he applied FCM and extracted 

integrated tissues. In the second step, he removed the necrosis by applying T1 histogram 

and used ventricle approximation to remove pixels within the ventricles. In the final step, 

he built a 3D volume and identified the tumors for the most compact and high variance 

regions. Meritxell, et al. performed brain segmentation in five different classes by 

applying statistical classification methods on T1-weighted brain MR images (Cuadra, 
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Cammoun, Butz, Cuisenaire, & Thiran, 2005). Different unsupervised statistical methods 

such as the Finite Gaussian Mixture Model (FGMM), the Gaussian Hidden Markov 

Random Field Model (GHMRF), the Gaussian and Partial Volume Model (GPV), and the 

Error Probability Minimization Model (EP) are being discussed for brain segmentation. 

Table 3: Summery of Brain MRI Segmentation techniques. 

Author(s) Description Data Segmentation 

Duta et al. (Duta 

& Sonka, 1998) 

Segmentation by Active 

Shape Model 

27 MR Images (8 for 

Training, 19 for Testing) 

Brain, Brain 

Tissues 

Fletcher et al. 

(Fletcher-Heath 

et al., 2001) 

Non Enhancing Brain 

Tumor Segmentation 

45 MRI of 6 Patients (14 

of 2 Patients for training, 

31 of 4 Patients for 

testing) 

Brain Tumor 

Marroquin et al. 

(Marroquin et al, 

2002) 

Segmentation by 

Bayesian Method 

58 Simulated Images and 

40 Real Brain MR 

Images 

Brain 

Cuadra et al. 

(Cuadra et al., 

2005) 

Statistical 

Classification of T1 

Brain MRI 

187 Simulated Images 

and 146 Real Brain MR 

Images 

Brain Tissues 

Quratulain et al. 

(Quratulain et al., 

2010) 

Segmentation using 

Texture Analysis 
90 MRI Scans Brain Tumor 

Chen-Ping et al. 

(C. Yu, Ruppert, 

& Nguyen, 2012) 

Statistical Asymmetry 

based Segmentation 
17 MRI Slices Brain Tumor 

Arfan Jaffar et al. 

(Jaffar et al., 

2012) 

Anisotropic Diffusion 

based Segmentation 
187 MRI Scans 

Skull, Brain, 

Tumor 
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4. CHAPTER 4 

IMAGE ANALYSIS AND BRAIN PART EXTRACTION 

Brain segmentation is a very important task due to complex anatomy of the brain 

structure and the skull. Most brain MR scans are highly correlated with low contrast, 

which make segmentation more difficult. For a comprehensive study of brain MR 

images, we need to differentiate various patterns which can be done through 

segmentation of the brain from the rest of the skull part from the MRI.  

Image segmentation is used to divide an image into different segments based on specific 

criteria so useful information can be extracted for the comprehensive analysis of an 

image. Brain tissue can be classified into three main types, which are White Matter 

(WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF). Correct partitioning of these 

tissues is the most important task for brain image processing. The complexity and 

inconsistency of the brain anatomy makes the MR image segmentation more difficult. 

Another common issue when it comes to MR image segmentation is labeling voxels 

according to these three tissue types (Y. Zhang, Brady, & Smith, 2001). Correct 

segmentation of MRI plays a significant role in meaningful analysis because most MR 

images are low contrast images and brain tissue classes can easily overlap. 

In this chapter, we have applied the state-of-the-art image segmentation techniques and 

implemented suitable steps to improve the results. For brain part extraction, we first 

performed our testing on simulated brain MRI data. After getting satisfactory results, we 

did the testing on real MRI datasets and measured the results where accuracy based on 



24 

 

the manually-segmented MR images. We adopted three methodologies to distinguish the 

brain from the rest of the MR image. 

 

4.1 Segmentation using Boundary Detection and Region Growing  

Medical image segmentation is a problem and there is no uniformly-recognized method 

that accurately segments medical images. Measurement-based techniques do not provide 

closed contours, so combined region-growing-based segmentation approaches produce 

better results. In images, boundary detection acquires image geometry and the clustering 

boundary points for the seed point. The process of image segmentation through edge 

detection and region growing is shown in Figure 7. 

4.1.1 Segment Head 

In an MR gray-scaled image, there is a lot of noise in the background and similarity with 

the skull and brain parts. We cannot remove image background by using manual 

threshold to MR image (Pietka, 1994). We used a special operator which started from the 

right and left corners of the image and moved towards the center of the image, and then 

chosen the pixel class based on the average threshold value of the input image. 

Morphological operations are being used to ignore the small segments and a binary image 

is generated. The skull images removed from the background are generated from the 

binary image, which is shown in Figure 8. 
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Figure 8: (a) Original MRI, (b) Noised Binary Image, (c) Skull Mask. 
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Figure 7: Flow chart of Brain MR Part segmentation using 

edge detection adn region growing techniques. 
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4.1.2 Phase Congruency based Edge Detection 

Phase congruency is a low-level invariant attribute used to measure the significance of 

image features. The brightness and contrast of the brain MR image intensity variation 

with phase congruency is very fragile. It not only detects the large edges but also detects 

small edges in an image, along with the texture details. To extract precise edges and the 

phase congruency information of the image, we used Log Gabor filter with center 

frequency ranges from high to low. Converging square algorithm (CSA) is used to 

measure the Center of frequency based on the characteristics of the input image 

(O’Gorman & Sanderson, 1984). CSA is a method used to locate maximum density 

regions and their peaks in sampled two or more dimensional data. For example, an image 

of size k x k (in brain MRI case 256x256) is divided into four overlapping quadrangles of 

size (k-1) x (k-1) as shown in Figure 9. Comparison between the densities of the four 

quadrangles is made to choose a quadrangle with maximum density. This cycle is 

repeated until we reached a comparison of four pixels. 

 

The edges are detected on the basis of phase congruency (PC). Kovesi defined phase 

congruency in Equation 4.1(Kovesi, 2000).  

S1 S2 

S3 S4 

S1  S2  

S3  S4 

Figure 9: Dividing kxk image into 4 parts. 
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𝑃𝐶2(𝑥) =
∑ 𝑊(𝑥)𝑛 ⌊(𝐴𝑛(𝑥)𝑃𝑛(𝑥)−𝑇)⌋

∑ 𝐴𝑛(𝑥)+ 𝜀𝑛
      (4.1) 

𝑃𝑛(𝑥) = cos(∅𝑛(𝑥) −  ∅(𝑥)) − | sin(∅𝑛(𝑥) −  ∅(𝑥)) |   (4.2) 

Here W(x) is a weight factor for the frequency spread, epsilon ε is incorporated to avoid 

division by zero, 𝐴𝑛(𝑥) is the amplitude at location x and ∅𝑛(𝑥) is the phase angle. 𝑇 is 

the threshold for estimating noises. The edge information is obtained based on phase 

congruency by Log-Gabor filters. The 2D Log-Gabor filter is constructed in the 

frequency domain and has the following components: the angular filter and the radial 

filter (Fischer, Šroubek, Perrinet, Redondo, & Cristóbal, 2007). The radial filter transfer 

function and angular filter transfer function are defined in Equations 4.3 and 4.4 

respectively. 

𝐺(𝜔) = exp (
(−log (

𝑤

𝑤0
))

2

2(log (
𝑘

𝑤0
))

2)       (4.3) 

𝐺(𝜃) = exp (
−(𝜃− 𝜃0)2

2𝑇(∆𝜃 )2 )       (4.4) 

Here  w0 represents the center frequency of the filter, k refers to the filter’s bandwidth in 

the radial direction, θ0 stands for the filter’s orientation angle, T is a scaling factor, and 

∆θ is the orientation spacing between the filters.  

To avoid broken edges, we used non-maximum suppression and adaptive dual threshold 

values. Non-maximum suppression is the process of marking all the pixels whose 

intensity is not maximal within the certain local neighborhood set as zero (Neubeck & 

Van Gool, 2006). This has the effect of suppressing all image information that is not part 
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of the local maxima. Non-maximum suppression avoids single pixel broken edges; so as 

to avoid offside broken edges, adaptive high and low threshold values were used. 

4.1.3 Edge and Region Growing based Segmentation 

Region growing is a process where initially, an arbitrary small area is selected which 

iteratively grows its regions based on the similarity constraints of its neighbors. In region-

growing-based edges segmentation, the first step is to find out the seed pixels (Adams & 

Bischof, 1994). Figure 10 describes the concept of region growing.  

Fan et al. introduced an automatic edge-oriented seed generation method to automate the 

region growing algorithm (Fan, Zeng, Body, & Hacid, 2005). The proposed method is 

first executed to get the simplified geometric structures of a gray level image. Centroids 

of the adjacent labeled edges are taken as the initial input for algorithm. 

 

Seed pixels are obtained from the centers of the obtained clusters, while an appropriate 

number of clusters are obtained by using K-means clustering algorithm. K-means 

clustering is an unsupervised learning method used for partitioning data points into 

subsets of K groups (Kanungo et al., 2002). The basic idea is to outline centroids for each 

cluster by minimizing intra-cluster distance and maximizing inter-cluster distance. In the 

Figure 10: Example of Seed based Region Growing. 
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next step, each data point is assigned to its closest cluster having a minimum center from 

its center. The algorithm aims to minimize the sum of the square error function, which is 

also known as objective function. The objective function for K-means is defined in 

Equation 4.5. 

Objective Function = ∑ ∑ |𝑥𝑖
𝑗 − 𝜇𝑗|2𝑛

𝑖=1
𝑘
𝑗=1     (4.5) 

Where |xi
j − μj|

2 is a distance measure between a data point  xi
j, and the cluster center μj 

is an indicator of the distance of the n data points from their respective cluster centers. 

Seed point based region growing flow chart is given in Figure 11. 
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4.2 Segmentation using Anisotropic Diffusion and Active Contours 

For brain MRI segmentation using anisotropic diffusion and active contour models, we 

used a three-stage method to segment brain parts, which is shown in Figure 12. First of 

all, we removed the background noise and then generated the initial brain mask for the 

regions of interest. Then we refined the brain mask for a final brain mask by using active 

contour models.  

4.2.1 Head Segmentation 

In an MR gray-scaled image, there is a lot of noise in the background and similarity with 

the skull and brain parts. We cannot remove the image background by using manual 

threshold to the MR image. We used a special operator which started from the right and 

left corners of the image and moved towards the center of the image. It then chose the 

pixel, either background-or skull-based, on the gray level based on the average threshold 

value of the input image. Morphological operations are being used to ignore the small 

Figure 11: Output of the brain mask (a) input simulated MR Image (b) detected edges (c) region growing 

based segmentation. 
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segments, and the binary image is generated. The final skull images had been generated 

from the segmented binary images as shown in Figure 12. For skull boundary detection, 

we applied morphological operations on generated binary image which allowed us to 

produce an image that clearly shows the boundary of the brain.  

 

 

4.2.2 Initial Brain Mask Generation 

After removing the background noise, the brain mask needed to generate, which would 

help us to differentiate the brain parts from the whole MR image. The image is dispersed 

Brain MR Image 

Segment Head 

Head Boundary 

Brain Boundary Brain Mask 

Generate Initial 

Brain Mask 

Generate Final 

Brain Mask 

Anisotropic Diffusion 

Region Based Active Contours 

Figure 12: Process of MR segmenation based on anisotrophic diffusion and 

region growing. 
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by using the anisotropic diffusion technique on the background noise removed image of 

the head. Image centroid and origins of all the segments in the image helped us to remove 

non-brain parts and detect the brain parts only.  

To make the edges of the images fuzzier and smoother, non-Linear anisotropic diffusion 

filter was used on the images (Y. Yu & Acton, 2002). Also, to degrade the gradient 

monotonically, diffusion function was applied to the image. This required updating each 

of the image’s pixels using a number equal to the flow supplied by its four neighboring 

pixels. 2D anisotropic diffusion is used to offset the non-brain part. The diffused image 

was divided into different segments by using simple average threshold.  

The anisotropic diffusion filter is a process of diffusion formulated by Perona et al. 

(Perona & Malik, 1990). It is used to strengthen integration smoothing simultaneously 

with inhabiting integration smoothing. 

𝜕

𝜕𝑡
𝐼(𝑥′, 𝑡) = ∇. (𝑐(𝑥′, 𝑡)∇𝐼(𝑥′, 𝑡))      (4.6) 

In the case of brain images, 𝐼(𝑥′, 𝑡), 𝑥′ stands for the axes (x and y) of the image, t 

describes how many iterations there are, and 𝑐(𝑥′, 𝑡) points to the diffusion function 

which is represented in Equation 4.7. 

c(x′, t) = exp (− (
∇I(x,t)

√2K
)

2

)       (4.7) 

The diffusion constant, represented in the equation as K, has a value that affects the 

filter’s behavior. In Figure 13(c), we can see the image produced after utilizing 

anisotropic diffusion. 
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Parts of the brain have been segmented using an automated threshold value; this is done 

by taking the histogram of the diffused image and fitting the Gaussian curve into it 

(Wells, Grimson, Kikinis, & Jolesz, 1996). The Gaussian filter was first applied (please 

refer to Figure 13(d) for the image), followed by the automatic threshold technique, 

which was used to convert the gray level image into a binary level image (please see 

Figure 13(e) for the result). Binary segments were generated using automatic threshold 

have holes, which were further filled using morphological operations. Figure 13(g) shows 

the resulting image. After all gaps and spaces were filled, the image underwent erosion, a 

process which cut non-brain parts, such as the eyes, out of the image. The final outcome, 

shown in Figure 13(f), features a distinctive image of the brain. 

The non-brain parts that were separated from the image underwent spatial information to 

make them less dense and disappear from the image. Afterwards, we picked a center 

point of the brain image and used it as our reference point; from there, all areas that were 

considered irrelevant to the study (i.e., non-brain parts) were removed from the image, as 

shown in Figure 13(h) (i.e., the brain image has been isolated). The next step involved 

dilating the image. To do this, we subtracted the isolated brain image from the original 

eroded image. This resulted to an image of the brain with clear boundary as shown in 

Figure 13(i). As a final step, we followed the original image’s boundary and mapped it 

before extracting the boundary on the initial brain region. The final image is shown in 

Figure 13(j). 

4.2.3 Generate Final Brain Mask 

Sometimes, the generated mask does not completely fit the original brain mask, and some 

brain parts fall outside the boundary. To solve this problem and enhance the results, we 



34 

 

used the active contour model algorithm introduced by Kass, et al. (Palo & Alto, 1988). 

The extracted final brain mask is shown in Figure 14. 

  

Figure 13: (a) Noised Removed Image, (b) Head Mask 

Boundary, (c) Applied Anisotropic Diffusion, (d) Applied 

Gaussian Filter, (e) Binary Conversion, (f) Applied 

Erosion, (g) Region Filled, (h) Removed non brain parts, (i) 

Applied Dilation, (j) Initial Brain Part. 
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4.3 Segmentation using Gaussian Smoothing and Edge Detection 

For brain part segmentation by using Gaussian smoothing and edge detection technique, 

we used 4 steps procedure. In first step we applied Gaussian low pass filter to smooth the 

image. In next step we binarize the smoothed image and applied morphological 

operations. In final step we detected the edges by using the Edge Detection by Laplacian 

of Gaussian and enhanced the results by using morphological operations. 

4.3.1 Gaussian Smoothing 

Brain MR Images contains sharp and irregular contours so image is dispersed by using 

Gaussian low pass filter. Low pass filter removes the high frequencies and enhances low 

frequencies which results the smooth MR image as shown in the Figure 15. 

 

 

 

Figure 14: (a) Initial Brain Part, (b) Enhanced Brain Part, (c) Brain Part Boundary. 
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4.3.2 Binarization of the Image 

After Gaussian smoothing, we converted the gray image to binary image by apply 2 way 

threshold. The threshold values calculated based on global image threshold using Otsu's 

method which chooses the threshold based on two classes of pixels to minimize the intra-

class variance and maximize inter-class variance. 

𝜎𝑤
2 (𝑡) = 𝑞1(𝑡) 𝜎1

2(𝑡) + 𝑞2(𝑡) 𝜎2
2(𝑡)     (4.8) 

Where 𝑤 =1, 2 are the probabilities of two classes disjointed by threshold 𝑡 and 

𝜎𝑖variance of these classes. 

𝑞1(𝑡)  =  ∑ 𝑃(𝑖)𝑡
𝑖=1        (4.9) 

Original Image Gaussian Smoothed Image 

Figure 15: Gaussian Smoothed Image. 
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𝑞2(𝑡) =  ∑ 𝑃(𝑖)𝐼
𝑖= 𝑡+1         (4.10) 

4.3.3 Morphological Operations 

Morphological operations are applied to remove the small non brain objects from the 

binary image. We first applied erosion on the binary image and filled the wholes. After 

filling the whole, applied back dilation to bring it to the original size.      

4.3.4 Edge Detection by Laplacian of Gaussian 

Laplacian of an image point out regions with high intensity change so it is being used for 

the edge detection. Laplacian L(x,y) of image with pixel intensity values I(x,y) can be 

represented in the form of second derivate measurement. 

L(x, y) =  
∂2I

∂x2 + 
∂2I

∂y2        (4.11) 

Second derivate based Laplacian kernels are very sensitive to the noise. To reduce noise 

and improve edges detection results, image is being smoothed Gaussian filter before 

applying Laplacian filter which is also known as Laplacian of Gaussian (LoG). Larger 

value of the sigma in Gaussian filter increases the smoothing. Two dimensional Gaussian 

distribution is the product of two one dimensional Gaussian distribution G(x) and G(y). 

𝐺(𝑥) =
1

√2𝜋 .𝜎
. 𝑒

− 
𝑥2

2𝜎2        (4.12) 

𝐺(𝑥, 𝑦) =  𝐺(𝑥). 𝐺(𝑦) =  (
1

√2𝜋 .𝜎
. 𝑒

− 
𝑥2

2𝜎2) . (
1

√2𝜋 .𝜎
. 𝑒

− 
𝑥2

2𝜎2)   (4.13) 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 . 𝑒
−

𝑥2+𝑦2

2𝜎2        (4.14) 
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LoG equation can be formulated for the second derivate of the 2D Gaussian Function 

equation. 

𝐿𝑜𝐺(𝑥, 𝑦) = − 
1

𝜋𝜎4  [1 − 
𝑥2−𝑦2

2𝜎2 ] 𝑒
−

𝑥2+𝑦2

2𝜎2     (4.15) 

Where x and y are distance from the origin in horizontal and vertical axis respectively 

while 𝜎 is the standard deviation of the Gaussian distribution. MR image segmentation 

results are shown in Figure 16. 

 

4.4 Performance Measures 

The developed prototypes of the all three methods are evaluated on the simulated MRI 

datasets and the real datasets and we measure the performance by means of Receiver 

Operating Characteristic (ROC), Mutual Information (MI) and Dice Similarity 

Coefficient (DSC). 

 

Original MRI Binaried MRI Segmented MRI 

Figure 16: Segmentation by using Gaussian Filters and Edge Detection. 
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4.4.1 Receiver Operating Characteristic 

ROC is used to measure the performance of the binary classifier based on the True 

Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN). 

 

Accuracy, Sensitivity and Specificity of the test is measured based on the ROC outcome 

table as shown in the Equation 4.16, 4.17, 4.18. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑃+𝑁)
        (4.16) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
       (4.17) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝐹𝑃+𝑇𝑁)
       (4.18) 

FN TN 

FP TP Actual 

(P) 

Actual 

(N) 

Predicted  

(P’) 

Predicted  

(N’) 

Total   P’        N’  

Total

 

 

 P

 

 

  

 

 

 N

  

Figure 17: ROC based binary classification outcome table. 
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From the ROC outcome table, we calculated different performance matrices which 

includes Accuracy, Sensitivity and Specificity of the simulated and real MRI datasets 

outcomes and compare the results. 

4.4.2 Mutual Information 

Mutual information is used to measure the performance of the outcome based on the joint 

probability distribution.  It is a qualitative measure that how much a random variable 

correlates with the other random variable. We can measure the mutual information two 

class problems by considering them as random variable X, Y and by using joint 

probability distribution equation. 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) × log (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑦 ∈𝑌𝑥 ∈𝑋     (4.19) 

Where 𝑝(𝑥, 𝑦) is joint probability distribution of X and Y. 

4.4.3 Dice Similarity Coefficient 

5. Dice similarity coefficient is statistical method used to measure similarity in between 

two classes. The equation is used to measures the dice similarity coefficient of two 

class problem.  

𝐷𝑆𝐶(𝑋, 𝑌) =
2|𝐴∩𝐵|

|𝐴|+ |𝐵|+ 2|𝐴∩𝐵|
       (4.20) 

Results of the Region growing based, anisotropic diffusion based and Laplacian of 

Gaussian based method are described in Table 4. Graph describes the comparison 

different performance measures of simulated and real dataset. 
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Table 4: Performance Measures of Brain Part Extraction. 

Source 

Simulated Dataset Real Dataset 

BrainWeb: Simulated Brain 

Database 
PIMS Real Benchmarked Dataset 

# of Scans 30 MRI Scans 164 MRI Scans 

Method RG Anisotropic RG Anisotropic 

Accuracy 98.31% 97.92% 96.48% 96.41% 

Specificity 98.42% 98.22% 96.49% 96.36% 

Sensitivity 98.37% 98.29% 96.47% 96.52% 

DSC 99.22% 98.86% 98.19% 98.15% 

MI 98.28% 98.25% 96.48% 96.41% 
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CHAPTER 5 

FEATURE EXTRACTION 

Feature extraction is a technique in which an image is transformed into its basic set of 

features. In brain tumor analysis, the first step is the classification of the image and for 

this purpose, useful features are extracted. It is very important to extract good features, 

but it is a very challenging task. There are many different methods to extract a feature 

from an image. Some famous methods are Gabor features, texture features, principal 

component analysis, feature based on wavelet transform, discriminant analysis, decision 

boundary feature extraction, and minimum noise fraction transform. 

 

5.1 Feature Extraction Methods  

One important task before image feature extraction is image feature selection. Selection 

of a feature will define the performance of the image extraction and eventually will affect 

the classification. By using optimum feature set, the classifier can achieve higher 

accuracy. One method which is given in the related literature is based on Fisher 

discriminant analysis extracts features using normal distribution or complex distribution. 

Another method uses enhanced stochastic learning, while a third method is designed for 

face recognition and uses multi-resolution metric and dominant frequency features. This 

technique improves the performance of object recognition to a great extent. Another 

technique uses reference images to extract the features directly by checking the similarity 
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among different images. In this method, the feature vector is calculated by using the 

correlation between the original image and the reference image, which enhances the 

performance. 

5.2 Discrete Cosine Transform 

Discrete cosine transform (DCT) is used to isolate images into parts depending upon the 

image visual features. The discrete cosine transform shares a similarity to the discrete 

Fourier transform (DFT) being used to transform images from a spatial domain to a low-

frequency domain. 2D-DCT is most commonly used for image and signal processing due 

to its strong compaction property. One dimensional DCT of N data points is defined in 

Equation 5.1, where F is the linear combination of the basis vectors. 

𝐹(𝜇) = (
2

𝑁
)

1

2 ∑ 𝐴(𝑖). cos [
𝜋.𝜇

2.𝑁
(2𝑖 + 1)]𝑁−1

𝑖=0 𝑓(𝑖)    (5.1) 

One dimensional DCT is applied to each row and column of F to get two dimensional 

DCTs. 2 dimensional discrete cosine transform of nxm image is defined in Equation 5.2. 

𝐹(𝜇, 𝑣) =  (
2

𝑁
)

1

2
(

2

𝑀
)

1

2 ∑ ∑ ∆(𝑖). ∆(𝑗). cos [
𝜋.𝜇

2.𝑁
(2𝑖 + 1)]𝑀−1

𝑗=0
𝑁−1
𝑖=0 cos [

𝜋.𝜇

2.𝑀
(2𝑗 + 1)] . 𝑓(𝑖, 𝑗) 

           (5.2) 

Where 0≤ u ≤ N, & 0≤ v ≤ N while Inverse 2D DCT transform is simple F-I(u,v). 

∆(𝜀) =  {
1

√2
𝑓𝑜𝑟 𝜀 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       (5.3) 
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5.2.1 Brain MRI Features Extraction based on DCT 

We used 2D discrete cosine transform to calculate the DCT features of the brain MR 

image. We applied the natural logarithm on each absolute element value of corresponding 

element. We calculated the two dimensional discrete cosine transform of the image by 

using the proposed system, which is shown in Figure 18. 

 

 

5.3 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) is a process to transform finite time based data into 

discretized frequency based data. The input dataset to the DFT consists to the complex 

and produces complex number within particular range of frequencies. The DFT is defined 

in equation which transformed  𝑁 sized complex time domain numbers 𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . .,

𝑥𝑛 into 𝑁 frequency domain complex numbers. 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒
−𝑖2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0        (5.4) 

Figure 18: 2D DCT (Log abs) of the MR Image. 
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Fast Fourier Transform (FFT) algorithm is being used to calculate DFT and inverse DFT 

in an efficient way. Magnitude of the DFT computed complex numbers is being 

computed by using the real and imaginary parts. 

𝐴 = √𝑅2 + 𝐼2         (5.5) 

where 𝐴 is the absolute magnitude value of the real part 𝑅 and imaginary part 𝐼 of the 

complex number. 

5.3.1 Brain MRI Features Extraction based on DFT 

We used 2D fast Fourier transform to calculate the DFT features of the brain MR image. 

We rearranged the DFT output by moving the zero frequency component to the center of 

the array. We applied the natural logarithm on each absolute element value of 

corresponding element. We calculated the two dimensional discrete Fourier transform of 

the image by using the proposed system, which is shown in Figure 19. 

 

Figure 19:  2D FFT of MR Image. 
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5.4 Discrete Wavelet Transform 

Through wavelet transform, a signal can decompose into some basic functions, which are 

called wavelets. A wavelet is used in image processing as a multi-resolution technique to 

analyze an image’s texture.  For purposes of classification, wavelet coefficients are 

utilized as features vector. One technique used for extracting features is the Discrete 

Wavelet Transform. DWT is considered to be more efficient and less expensive in terms 

of computation (Sun, Dong, & Xu, 2006). As such, our proposed system used discrete 

wavelet transform the extract an image’s features.  

Continuous wavelet transform (CWT), on the other hand, is an extension of DWT which 

uses basic mother wavelet. CWT is a version of the mother wavelet transform that is 

shifted and scaled.  CWT in relation to real valued wavelet, ψ(x) for continuous, square-

integrable function f(x), is defined as: 

𝑊𝜓(𝑝, 𝑞) = ∫ 𝑓(𝑥)𝜓𝑝,𝑞(𝑥)𝑑𝑥
∞

−∞
    (5.6) 

𝜓𝑝,𝑞(𝑥) =   1/√𝑝 𝜓(
𝑥−𝑞

𝑝
)     (5.7) 

Where p is a scaled parameter and q is a translation parameter (R.C. Gonzalez, 2008). 

As a function of linear transformation, an image’s data undergoes DWT and breaks it 

down, resulting to frequencies. These detailed frequency components have been shown to 

be in-depth calculated components. 

These components are comprised of an image’s horizontal, diagonal, and vertical sub-

bands. A high pass filter is applied to the image, followed by a low pass filter, in order to 
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arrive at these components. The equations below illustrate how these components are 

obtained. 

𝑎𝑗+1[𝑝] = ∑ 𝑙[𝑛 − 2𝑝]𝑎𝑗[𝑛]+∞
𝑛=−∞    (5.8) 

𝑑𝑗+1[𝑝] = ∑ ℎ[𝑛 − 2𝑝]𝑎𝑗[𝑛]+∞
𝑛=−∞    (5.9) 

Where aj, is the wavelet function’s approximation coefficient and dj is its detail 

coefficient. The l[n-2p] function represents the low pass filter coefficient while h[n-2p] is 

a function that pertains to the high pass filter. Four sub-bands – HH, HL, LL, and LH – 

are derived from an image after DWT is applied to it.  HH, LH, and HL all represent 

detail coefficients, while LL stands for approximate coefficients. 

5.4.1 Brain MRI Features Extraction based on DWT 

We extracted brain MRI features by using level 3 discrete wavelet transform. Figure 19 

show the process of 3 level discrete wavelet transform approximation and details 

coefficients. 
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Figure 20: DWT Schematically. 

 

5.5 Principal Component Analysis 

One of the most common forms of dimensionality reduction is principal components 

analysis. PCA find the linear lower-dimensional representation of the data. The main idea 

behind using PCA in this approach is to reduce the dimensionality of the wavelet 

coefficients. This leads to more efficient and accurate classifier. As there is 300 to 400 

images for each patient and we have to analyze most of them. Thus by extracting useful 

information from image we can make our system fast (Daniel X. Le, George R. Thoma, 

1995).  

In PCA, data points are represented as vectors in multidimensional space and projection 

of vector x onto an axis u is u.x. Direction of greatest variability calculated based on 

average square of the projection is having greatest i.e. u such that over all x is maximized 

which are illustrated in Figure 21. This direction of u is the direction of the first Principal 

and similarly next components are calculated.  
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Figure 21: Interpretation of PCA. 

We applied PCA on the extracted DWT frequency components which convert them into 

linear lower dimensions. 

 

Figure 22: Schematic diagram for the PCA based features reduction. 
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CHAPTER 6 

CLASSIFICATION AND TUMOR SEGMENTATION 

Classification entails identifying input patterns and transforming them into corresponding 

classes. Image classification is being performed on the extracted features of the images. 

Classification process normally consists to three phases; training phase, validation phase 

and testing phase. In training phase, the models are trained based on the input features 

and the target values. In validation phase, the trained model is being tested to estimate 

best model parameters. In testing phase, test data is being applied to classify it.  

Many factors need to be considered when selecting a suitable classifier. These factors 

include: 

 Accuracy of the classification  

 Performance of the algorithms 

 Computational resources 

Classification can be grouped into the supervised classification and the unsupervised 

classification (Lu & Weng, 2007). For this type of classification, the following are its 

most common traits: 

 It does not require prior extensive knowledge of the region 

 There is less opportunity for errors to happen since many detailed decisions 

under supervised classification are not strictly required to unsupervised 

classification.  
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 In order for distinct units to be identified as unique classes, they must undergo 

unsupervised classification. 

Overall, supervised classification involves using known samples to classify unknown 

samples (Maria-Luiza Antonie, Osmar R. Zaıane, 2006). On the other hand, the following 

characteristics describe supervised classification: 

 Extensive knowledge of the area is required. 

 Labels also include input patters  

 A close examination of the training data allows for the detection of possible 

errors and their classification, as well as proper classification. 

In this chapter, we address the classification techniques used to classify brain MR images 

into malignant or benign. 

 

6.1 Classification Techniques  

6.1.1 Support Vector Machine 

A supervised learning method and efficient classification algorithm used extensively in 

regression analysis and classification is the support vector machine or SVM, which 

operates by analyzing data and deriving trends. SVM uses kernel techniques to transform 

non-linearly separable data into higher-dimensional space. Its special capability, called 

structural error minimization, makes SVM useful and well-known across fields. It also 

takes a margin and computes it in order to separate classes maximally in the space. 
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As a classification approach, the Support Vector Machine uses hyper planes as basis 

(hyper planes act as segregators when it comes to common binary classification). SVM is 

also founded on the principle of minimizing structural errors. This allows SVM to be 

more accurate in predicting properly-selected parameters compared to other algorithms 

used for statistical classification, such as Linear Discriminant Analysis and KNN. 

In Figure 19, the margin is shown, as well as the hyper plane. In the following equation, n 

stands for the classes’ training data {(x1,y1), (x2,y2),…, (xn,yn)}, 𝑖 = 1, 2, 3, … … , 𝑛 in 

which , w stands for weight vector, b stands for bias weight, and 𝑥𝑖  ∈ 𝑅𝑛 is an n 

dimensional  space and yi =±1. With this in mind, the first two equations now show how 

the hyperplane can be divided into two. This separation can be described as a linear 

separation, while the last equation defines the hyperplane. 

(𝑤 . 𝑥𝑖 + 𝑏) > 1   𝑖𝑓 𝑦𝑖 = 1     (6.1) 

(𝑤 . 𝑥𝑖 + 𝑏) < 1   𝑖𝑓 𝑦𝑖 = −1     (6.2) 

(𝑤 . 𝑥𝑖 + 𝑏) = 0 𝑒𝑙𝑠𝑒 𝑐𝑎𝑠𝑒     (6.3) 

Minimizing ||w|| has been shown to increase the gap between these two classes – 

something that SVM aims to accomplish. Training points xi can be properly identified 

using quadratic optimization algorithms, with non-zero Lagrangian multipliers αi acting 

as support vectors. The equation below best illustrates this optimization issue. 

𝐿𝑑 = ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1      (6.4) 

To determine decision functions, these vectors are used and the rest of the data are 

discarded. Since in the real world, not everything is linear, we decided to use non-linear 
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classification – a technique that SVM also does to separate the classes. SVM does this by 

adding a penalty parameter, C.  A slack variable represents the frequency of errors made 

in classification. In the above-mentioned variables, the penalty parameter is applied on all 

instances in which an error occurs in the margin between classes. 

 

Figure 23: Support Vector Machine (Finding the optimal Line Separator). 

 

6.1.2 Artificial Neural Network 

A simulation of the human biological system, the artificial neural network (ANN) is a 

system based on how our biological neural networks operate. In 1943, this neural system 

was successfully replicated by neurophysiologist Warren McCulloch and logician Walter 

Pits when they introduced to the world the first artificial neuron.  
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A neural network can absorb and analyze information in a manner similar to how experts 

gain their expertise. This is because neural networks can analyze and identify patterns 

and trends from complex data, including ones that are incomplete, imprecise, or too 

complicated for humans and some basic computers to understand. Using neural networks 

has its benefits, including the following: 

 Adaptive learning: Even with only minimal initial experience or training, 

neural networks can learn tasks based on the data given. 

 Self-Organization: During the learning phase, the ANN can organize and 

represent its own information. 

 Real Time Operation: Hardware devices are now being designed and 

manufactured specifically to capitalize on the ANN’s capacity to conduct 

parallel computations. 

 Fault Tolerance via Redundant Information Coding: Network performance 

degrades due to partial damage to the network. However, even with major 

damage to the network, some network capabilities can still be accessed and 

used. 

The ANN is made up of layers of neuron. These neurons are assigned with weights, and 

then receive input and, after the activation function of the weighted sum has been 

determined, they produce an output. The weighted sum can be computed as the total 

product of an incoming input, including extra associated weight, into the overall sum.  

Sometimes the network contains hidden layers; these are internal layers with neurons.  

The ANN’s last layer can also contain neurons, either single or multiple, and this layer is 
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known as the output layer.  When the output layer contains multiple neurons, the ANN 

implements multiple classifications, while single neuron in the output layer requires a 

simple binary classification (Haykin, 1999). 

A feed forward back propagation artificial neural network (FP-ANN) has three minimum 

layers and is utilized as a supervised classifier (see Figure 18). The network’s first layer 

contains input neurons, followed by the hidden layer, so-called because of the hidden 

neurons that form this layer in the network. Some programs contain more than one of 

these hidden layers. The last layer, on the other hand, contains the output neuron.  Those 

who would handle classification are required by the FP-ANN to train before doing any 

classification work.  This training has three stages: first, the training input pattern is fed 

forward. Second, the error that was identified will undergo back propagation and 

calculation. In the third stage, the weights are adjusted in order to minimize errors in 

classification. The network will only be suitable for testing after the network has been 

trained for this purpose (Fausett, 1994). 
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Figure 24: Architecture of the FP-ANN. 

 

6.1.3 Bayesian Classifier 

One method to compute for the features’ conditional probabilities is Baye’s Theory, a 

mathematical calculation that follows these processes (Tom M. Mitchell, 1997). 

 Let X be a data sample/Object. 

 Let H be some hypothesis.  

 P(H) is the prior probability, which calculates the chances that a data sample 

is part of a specific class.  

 The chances that H will be proven when compared against the observed data 

sample is symbolized here as P(X|H).  
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 The posterior probability, P(H|X), is based on data that is larger compared to 

the initial probability P(H), independent of X. 

The equation below shows a way to calculate the posterior probability using Baye’s 

Theorem. 

P(H|X) =
P(X|H)P(H)

P(X)
        (6.5) 

P(X|H) is the posterior probability of X conditioned on H. P(X) is the prior probability of 

X. To achieve higher accuracy, the class density estimate must also be accurate (R.O. 

Duda, P.E. Hart, 2001). Accuracy is dependent on the classifier, and is very dependent on 

class density estimates or posterior probabilities. 

6.1.4 K-Nearest Neighbor 

Another type of classifier is the K-nearest neighbor which is characterized by being 

instance-based learning and supervised classifier. New instance queries result to the 

classification of the majority of K-nearest neighbor category. It uses training samples and 

attributes to classify a new object, and it then determines which are the nearest neighbors 

of any instance through ‘correlation’ ‘cosine’, ‘hamming’, ‘city block distance’, or 

‘Euclidean’ distance. The K-nearest neighbor does this on a ‘random’, ‘nearest’, or 

‘consensus’ rule, with ties broken randomly (T. Mitchell, 1997). 

What makes K-nearest neighbor important is that since its process of classification 

involves analyzing a small group of objects that are similar, it is found to be very useful 

for multi-modal classes wherein several objects with independent variables possess 

varying characteristics on various subsets. It has a record of being accurate even when 
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targeting a class that is multi-modal. On the other hand, this ability to quickly compute 

for similarities means the K-nearest neighbor treats all features as equal when it computes 

for similarities. This leads to classification errors and poor measures of similarity, 

especially when it involves only a small subset of features for classification. It is 

illustrated in Figure 20 where instance for black-colored objects ɷ=3 results to grouping 

together the black-colored objects with red-colored objects and classifying them as 

belonging into the same class. 

 

Figure 25: K-Nearest Neighbor ɷ=3. 
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6.2 Experimental Results for Classification  

For classification, we performed several experiments on the acquired datasets from both 

online resources and from the medical hospitals. Performance of each classifier is 

measured by calculating accuracy from the confusion matrix by using unprocessed MRI 

images and by using the only brain part extracted MR images as input.  

Table 1 describes summery of the results of comparison of the classification performance 

by using purposed method along with the other recent work. We applied different 

classification methods with different number of features along with the different 

experimental and testing percentage of the data distributions. We used 128 MR images 

dataset for the classification of normal and tumorous images. Out of 128 MR images, 44 

images are tumorous and 84 images are normal. We perform tests with 5, 7, 10, 15 and 

25 features dataset of DCT, DWT, DWT+PCA, DFT and calculated the average of the 

overall results.  

We used different distribution of training, validation and testing percentages for the 

feature sets. We used 70% versus 30%, 50% versus 50% and 66% versus 34% for 

training and testing respectively. Based on the computational power required for the 

experiments and the performance measures, we finalized that 70% for training and 30% 

for testing is most suitable for the classification. Table 5 describes the performance 

comparison of the different classifiers along with the different feature sets. The results 

shows that we achieved significant increment in performance by using brain part 

extracted MR images features as compared to the normal MR images features.  
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Table 5: Comparison of different classification methods along with different type of MR image features. 

Features/Classification 

Methods 

Normal Real Data 

(Accuracy %) 

Brain Part Extracted Data 

(Accuracy %) 

SVM + DCT 81.58% 94.73% 

SVM + DWT 92.18% 93.75% 

SVM + DWT + PCA 71.05% 86.84% 

SVM + DFT 67.19% 67.18% 

Naïve Bayes + DCT 87.50% 82.81% 

Naïve Bayes + DWT 87.50% 89.06% 

Naïve Bayes + DWT + PCA 73.68% 94.74% 

Naïve Bayes + DFT 42.16% 70.31% 

KNN + DCT 97.37% 100% 

KNN + DWT 93.75% 100% 

KNN + DWT + PCA 86.84% 96.87% 

KNN + DFT 68.42% 65.62% 

MLP + DCT 92.10% 92.10% 

MLP + DWT 93.75% 100% 

MLP + DWT + PCA 81.58% 95.31% 

MLP + DFT 67.19% 67.19% 

 

We measured the accuracy based on the confusion matrix and also measured the TP Rate, 

FP Rate, Precision and Recall. Figure 25 describes the graph of performance for SVM 

classifier for both normal MR images and brain part extracted MR images by using 
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different feature sets. The results shows that we got better results with brain part 

extracted features as compare to the normal MR images. 

 

Figure 26: Graph of SVM performance for different feature sets. 

 

We tested our proposed method on Naïve Bayes classifier which is based on the Bayes 

algorithm. Figure 26 describes the graph of Naïve Bayes classifier with different feature 

sets. The graph shows that we achieved best results by using brain part extracted DWT 

and PCA features. 

 

Figure 27: Naïve Bayes performance measure for different feature sets. 
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Figure 27 describes the graph of the Multilayer Perceptron performance by using 

different feature set. The results shows that brain extracted MR image features produce 

better results as compared to the normal MRI images. 

 

Figure 28: Graph of MLP performance for different feature sets. 

 

Figure 28 shows the comparison graph of the KNN classifier along with the different 

feature sets. KNN classification result shows that achieved better results when we used 

features of the only brain part in the MR image as compared to the complete MR images. 

 

Figure 29: Graph of KNN performance for different feature sets. 
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Figure 29 show the comparison of all our selected classifiers along with different feature 

vectors.  Results show that we achieved maximum performance by using features 

extracted from the background and skull removed image. The graph shows that KNN 

classifier with DCT features and MLP classifier with DWT features produces 100% 

accuracy rates. 

 

Figure 30: Comparison of different classifier performance. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

This chapter summarizes our major contributions in this thesis. The goal of this research 

is to analyze brain tumors and classification of brain MR images. This chapter also 

discusses the limitations of our work with possible enhancements and future research 

directions. 

 

7.1 Conclusion  

In this thesis we picked up one of the most complicated death causing issue. We tried to 

enhance results for accurate skull, brain and tumor segmentation, and brain MRI 

classification by using machine learning techniques. Manual classification and detection 

of tumors is time consuming task and there are a fewer number of radiologist for proper 

interpretation of Brain MR Images especially in under developed countries. 

Brain segmentation is a very important task due to the complex anatomy of the brain 

structure and the skull. Most brain MR scans are highly correlated with low contrast, 

which make segmentation more difficult. Background noise is removed by using special 

operator which starts from the right and left corners of the image and moved towards the 

center of the image and choose the pixel belongings based on the threshold value. For 

brain part extraction, we first performed our testing on simulated brain MRI data and 

after getting satisfactory results, we did the testing on real MRI datasets. We applied 
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three different image segmentation techniques on brain MR images and segmented skull 

and brain parts from the MR images. The results show that we achieved high accuracy by 

using phase congruency based edge detection and region growing method. 

We extracted features and applied different classification techniques on both unprocessed 

brain MR image and brain part extracted image for classification of normal and abnormal 

images. The experimental result shows that our proposed method got high accuracy on all 

type of features and all classifier along with different feature sets of brain part extracted 

MR image.  

7.2 Future Work   

In this dissertation we segmented skull, brain from the MR image and classified the brain 

MR image into benign and malignant. We provided first step towards the fully computer 

aided device for the brain tumor detection and visualization. In future, further we can 

improve the system by finding out the tumor location, size and growth rate which will 

help to the radiologist. 

In future, we can measure the size and location of tumor in the brain which will be 

helpful for the neurosurgeons for analysis and detecting the tumor from MRI scans.  They 

can check the position, size and type of the tumor and make decisions which will help to 

give suggestions about treatment and further tests for patient. 

In computer graphics, 3D modeling is the process of developing a mathematical 

representation of any three dimensional object via specialized software and programming 

languages. The final product is called a 3D model. It can be displayed as a two-
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dimensional image through a process called 3D rendering or used in a computer 

simulation of physical phenomena. 

Today, 3D models are used in a wide variety of fields. For example, the movie industries 

use them as characters and objects for animated and real-life motion pictures. The video 

game industry uses them as assets for computer and video games. The science sectors use 

them as highly detailed models of chemical compounds. 3D modeling is also used in 

medical science for detailed models of organs. 

Due to the importance of 3D modeling we can make the brain 3D model which help to 

analyze the patient tumor detected through the segmentation of MRI scans. The extracted 

boundaries of the skull, brain and tumor can be used to construct 3D model.  

Clinical decision support systems help the medical experts in making decisions to 

diagnose the diseases. Semantic web plays an important role in decision making. So it 

can also be used in brain tumor treatment decision making. Semantic Web Technologies 

(SWT) is gathering more and more attention within the sphere of clinical decision 

support.  
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APPENDIX A 

WORLD HEALTH ORGANIZATON BRAIN TUMOR 

CLASSIFICATION 

More than 120 types of brain tumors have been discovered. Today, World Health 

Organization (WHO) brain tumor classification system is being adopted by most of the 

medical institutions (Kleihues & Sobin, 2000). Tumor classification and level of tumor 

helps to predict its likely behavior like its growth rate and effects on the subject. There 

are number of ways to classify the brain tumor but following three methods of 

classification are more common. 

I. Classification on the Basis of Brain Cells Behavior 

The WHO classifies brain tumors in to two classes on the basis of cell origin and how the 

cells behave. 

a. Benign Brain Tumors 

Benign tumors remain separate from the brain primary cells and these tumors are less 

serious but these tumors still cause serious problems in brain when they grow. These 

tumors do not consist of cancer cells. The borders of benign tumors are easily identifiable 

and are possible to remove without effecting brain cells (Gerhardt, W., J. Clausen, E. 

Christensen, 1967). Benign tumor cells do not spread easily to other parts of brain but 

still there is a chance that a benign brain tumor may become malignant. 
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b. Malignant Brain Tumors 

Malignant brain tumors which affect to the primary brain cells and become cause of brain 

cancer. This type of brain tumors grow very quickly and damage primary brain cells. 

Malignant tumors are more severe and death causing as compared to benign tumors. 

Sometimes malignant tumors spread to other parts of the brain like spinal cord and also 

damage its cells. 

II. Classification on the Basis of Brain Cells Behavior 

Brain tumors are divided to different grades from low to high based on tumors type and 

its effects. These grades of an individual tumor help predict its likely behavior. Brain 

tumors are grouped in to four grades on the basis of Astrocytoma. 

 Grade-I Pilocytic 

 Grade-II Low Grade 

 Grade-III Anaplastic 

 Grade-IV Glioblastoma 

III. Classification based on Tumor Categories  

a. Primary brain Tumors 

Brain tumors that take place in brain tissue are known as primary brain tumor. These 

tumor cells can directly damage brain cells and become cause of death (Knopp et al., 

2004).  
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b. Secondary brain Tumors 

The brain tumor with same grade and same type of abnormal cells but are shifted from its 

central position to some other part of the body then it is said to be secondary brain tumor. 

Secondary brain tumor is different from primary as it spread to other part of the body. 

Doctors call secondary brain tumor as metastatic tumor. Secondary tumor is found in 

large quantity as compared to primary brain tumor.  
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APPENDIX B 

METHODS FOR TUMOR TREATMENT 

I. Surgery 

The most usual method for treatment is surgery but before doing surgery there are some 

operations that should be performed. Patients with age more than 40 years should have 

their X-Rays and ECG tests. The process craniotomy in which surgeon open the skull and 

remove the tumor from the brain. Surgery is basically for the removal of tumor. 

II. Radiation Therapy 

It uses energy rays to destroy brain tumorous cells and also known as radio therapy. It is 

used to remove hidden tumor of the brain that are left sometimes during surgery or not 

possible in surgery. Radio therapy involves particular process patient have to visit doctor 

daily basis for a specific period of time. The period depends on the type, size and age of 

the patient. 

III. Chemotherapy 

The process in which drugs are used to kill tumor cells is called chemotherapy. The drugs 

are normally given in different rounds based on recovery period and treatment period. 

Chemotherapy is used for children for the delay of radiotherapy (Ausman, James I., 

Victor A. Levin, Willis E. Brown, David P. Rall, 1977). 
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