2,673 research outputs found

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Use of HAND terrain descriptor for estimating flood-prone areas in river basins

    Get PDF
    O mapeamento de áreas inundáveis em uma bacia hidrográfica é fundamental para o gerenciamento do risco de inundações, estratégias mitigadoras e sistemas de previsão e alerta, entre outros benefícios. Uma abordagem para esse mapeamento é com base no descritor do terreno HAND (Height Above Nearest Drainage), derivado diretamente do Modelo Digital de Elevação (MDE), no qual cada pixel apresenta a diferença de elevação desse ponto em relação ao ponto da rede de drenagem ao qual ele se conecta. Considerando a bacia do rio Mamanguape (3.522,7 km²; Paraíba) como área de estudo, esta pesquisa adotou esse método e verificou sua aplicabilidade quanto a cinco aspectos: consideração de uma Ã¡rea mínima variável espacialmente para denotar o início da drenagem; impacto de considerar o MDE sem depressões; avaliação da condiçãohidrostática; efeito de incorporação de uma rede vetorial existente; análise comparativa à morfologia da bacia em termos do perfil longitudinal dos rios. Os resultados indicaram que adotar um valor uniforme de Ã¡rea mínima de contribuição para início da rede de drenagem é uma simplificação que deveria ser evitada, adotando-se a variação espacial de tal parâmetro, que influi no total e na distribuição espacial das áreas inundadas. Além disso, considerar o MDE sem depressões leva a maiores valores do HAND e menor área inundada (diferença variou de 3% a 99%), comparativamente ao MDE com depressões, embora apenas 3,1% dos pixels representem depressões. É recomendado considerar o MDE sem depressões, ao passo que o pré-processamento por incorporação de rede vetorial (stream burning) gera resultados incoerentes quanto à relação do HAND com o padrão morfológico representado no MDE. Concluiuse, ainda, que a estimativa de áreas inundáveis pelo HAND não garante a condição hidrostática, mas esse desacordo abrange uma região de extensão desprezível para fins práticos.The flood hazard mapping in a river basin is crucial for flooding risk management, mitigation strategies, and flood forecasting and warning systems, among other benefits. One approach for this mapping is based on the HAND (Height Above Nearest Drainage) terrain descriptor, directly derived from the Digital Elevation Model (DEM), in which each pixel represents the elevation difference of this point in relation to the river drainage network to which it is connected. Considering the Mamanguape river basin (3,522.7 km²; state of Paraíba, Brazil) as the study location, the present research applied this method and verified it as for five aspects: consideration of a spatially variable minimum drainage area for denoting the river drainage initiation; the impact of considering a depressionless DEM; evaluation of hydrostatic condition; effect of incorporating an existing river vector network; and comparative analysis of basin morphology regarding longitudinal river profiles. According to the results, adopting a uniform minimum drainage area for the river network initiation is a simplification that should be avoided, using a spatially variable approach, which influences the amount and spatial distribution of flooded areas. Additionally, considering the depressionless DEM leads to higher values of HAND and to a smaller flooded area (difference ranging between 3% and 99%), when compared with the use of DEM with depression, despite 3.1% of the pixels representing depressions. The use of the depressionless DEM is recommended, whereas the DEM pre-processing by incorporating a vector network (stream burning) generates dubious results regarding the relation between HAND and the morphological pattern presented in the DEM. Moreover, the estimation of flooded areas based on HAND does not guarantee the hydrostatic condition, but this disagreement comprises a negligible area for practical purposes

    Spatial Audio and Individualized HRTFs using a Convolutional Neural Network (CNN)

    Full text link
    Spatial audio and 3-Dimensional sound rendering techniques play a pivotal and essential role in immersive audio experiences. Head-Related Transfer Functions (HRTFs) are acoustic filters which represent how sound interacts with an individual's unique head and ears anatomy. The use of HRTFs compliant to the subjects anatomical traits is crucial to ensure a personalized and unique spatial experience. This work proposes the implementation of an HRTF individualization method based on anthropometric features automatically extracted from ear images using a Convolutional Neural Network (CNN). Firstly, a CNN is implemented and tested to assess the performance of machine learning on positioning landmarks on ear images. The I-BUG dataset, containing ear images with corresponding 55 landmarks, was used to train and test the neural network. Subsequently, 12 relevant landmarks were selected to correspond to 7 specific anthropometric measurements established by the HUTUBS database. These landmarks serve as a reference for distance computation in pixels in order to retrieve the anthropometric measurements from the ear images. Once the 7 distances in pixels are extracted from the ear image, they are converted in centimetres using conversion factors, a best match method vector is implemented computing the Euclidean distance for each set in a database of 116 ears with their corresponding 7 anthropometric measurements provided by the HUTUBS database. The closest match of anthropometry can be identified and the corresponding set of HRTFs can be obtained for personnalized use. The method is evaluated in its validity instead of the accuracy of the results. The conceptual scope of each stage has been verified and substantiated to function correctly. The various steps and the available elements in the process are reviewed and challenged to define a greater algorithm entity designed for the desired task

    Thalweg and Ridge Network Extraction From Unaltered Topographic Data as a Basis for Terrain Partitioning

    Get PDF
    High-resolution grid digital elevation models (DEMs) are increasingly used by scientists and engineers to describe the current state and evolution of Earth and planetary topography. These data, however, are commonly altered by depression filling and grid coarsening procedures. Alteration of observed topographic data may cause significant information loss and limit the capabilities of models. This study shows that physically meaningful thalweg and ridge networks can be extracted automatically from any unaltered high-resolution grid DEM, and that these networks can be used as bases for terrain partitioning. The slopeline network connecting grid cell centers is used to identify ridge points as those grid cell border midpoints and vertices that are not crossed by slopelines. From each ridge point, the average length of the two slopelines extending on the opposite slopes of the ridge until they rejoin is then computed. Based on these lengths, exorheic and endorheic basins are identified. Thalwegs of exorheic and endorheic basins are finally connected through spilling saddles to form the thalweg network. The related ridge network is identified based on neighboring relationships between ridge points. Thalweg and ridge networks are hierarchized using the well-known concept of drainage area and an extended concept of dispersal area to inform terrain partitioning at any level of detail. Observed topographic features are well reproduced by extracted networks. The impact of preserving depressions over mountain areas is evaluated, and the benefits from unstructured terrain partitioning based on thalweg and ridge networks in the description of flood plain inundation are illustrated

    Predictive Modeling of Envelope Flood Extents Using Geomorphic and Climatic-Hydrologic Catchment Characteristics

    Get PDF
    A topographic index (flood descriptor) that combines the scaling of bankfull depth with morphology was shown to describe the tendency of an area to be flooded. However, this approach depends on the quality and availability of flood maps and assumes that outcomes can be directly extrapolated and downscaled. This work attempts to relax these problems and answer two questions: (1) Can functional relationships be established between a flood descriptor and geomorphic and climatic-hydrologic catchment characteristics? (2) If so, can they be used for low-complexity predictive modeling of envelope flood extents? Linear stepwise and random forest regressions are developed based on classification outcomes of a flood descriptor, using high-resolution flood modeling results as training benchmarks, and on catchment characteristics. Elementary catchments of four river basins in Europe (Thames, Weser, Rhine, and Danube) serve as training data set, while those of the Rh\uf4ne river basin in Europe serve as testing data set. Two return periods are considered, the 10- and 10,000-year. Prediction of envelope flood extents and flood-prone areas show that both models achieve high hit rates with respect to testing benchmarks. Average values were found to be above 60% and 80% for the 10- and the 10,000-year return periods, respectively. In spite of a moderate to high false discovery rate, the critical success index value was also found to be moderate to high. It is shown that by relating classification outcomes to catchment characteristics, the prediction of envelope flood extents may be achieved for a given region, including ungauged basins

    Advanced Information Processing Methods and Their Applications

    Get PDF
    This Special Issue has collected and presented breakthrough research on information processing methods and their applications. Particular attention is paid to the study of the mathematical foundations of information processing methods, quantum computing, artificial intelligence, digital image processing, and the use of information technologies in medicine

    Cortical Dynamics of Navigation and Steering in Natural Scenes: Motion-Based Object Segmentation, Heading, and Obstacle Avoidance

    Full text link
    Visually guided navigation through a cluttered natural scene is a challenging problem that animals and humans accomplish with ease. The ViSTARS neural model proposes how primates use motion information to segment objects and determine heading for purposes of goal approach and obstacle avoidance in response to video inputs from real and virtual environments. The model produces trajectories similar to those of human navigators. It does so by predicting how computationally complementary processes in cortical areas MT-/MSTv and MT+/MSTd compute object motion for tracking and self-motion for navigation, respectively. The model retina responds to transients in the input stream. Model V1 generates a local speed and direction estimate. This local motion estimate is ambiguous due to the neural aperture problem. Model MT+ interacts with MSTd via an attentive feedback loop to compute accurate heading estimates in MSTd that quantitatively simulate properties of human heading estimation data. Model MT interacts with MSTv via an attentive feedback loop to compute accurate estimates of speed, direction and position of moving objects. This object information is combined with heading information to produce steering decisions wherein goals behave like attractors and obstacles behave like repellers. These steering decisions lead to navigational trajectories that closely match human performance.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National Geospatial Intelligence Agency (NMA201-01-1-2016

    Tools for single cell proteomics

    No full text
    Despite recent advances that offer control of single cells, in terms of manipulation and sorting and the ability to measure gene expression, the need to measure protein copy number remains unmet. Measuring protein copy number in single cells and related quantities such as levels of phosphorylation and protein-protein interaction is the basis of single cell proteomics. A technology platform to undertake the analysis of protein copy number from single cells has been developed. The approach described is ‘all-optical’ whereby single cells are manipulated into separate analysis chambers using an optical trap; single cells are lysed by mechanical shearing caused by laser-induced microcavitation; and the protein released from a single cell is measured by total internal reflection microscopy as it is bound to micro-printed antibody spots within the device. The platform was tested using GFP transfected cells and the relative precision of the measurement method was determined to be 88%. Single cell measurements were also made on a breast cancer cell line to measure the relative levels of unlabelled human tumour suppressor protein p53 using a chip incorporating an antibody sandwich assay format. This demonstrates the ability count protein copy number from single cells in a manner which could be applied in principle to any set of proteins and for any cell type without the need for genetic engineering. Metabolism can undergo alteration in diseases such as cancer and heart failure and also as cells differentiate during development. In order to assess how it may inform a proteomic measurement, multidimensional two-photon fluorescence metabolic imaging is conducted on a cultured cancer cell line, primary adult rat cardiomyocytes and human embryonic stem cells. By measuring the parameters of fluorescence such as intensity and lifetime of the autofluorescent metabolic co-factors NADH and FAD, it was found to be possible to contrast cells under various conditions and metabolic stimuli. In particular, human embryonic stem cells were able to be contrasted at 3 stages of development as they underwent differentiation into embryonic stem cell derived cardiomyocytes. Metabolic imaging provides a non-destructive method to monitor cellular metabolic activity with high resolution. This is complimentary to the single cell proteomic platform and the convergence of both techniques holds promise in future investigations into how metabolism influences cell function and the proteome in development and disease

    Public service user terminus study compendium of terminus equipment

    Get PDF
    General descriptions and specifications are given for equipments which facilitate satellite and terrestrial communications delivery by acting as interfaces between a human, mechanical, or electrical information generator (or source) and the communication system. Manufactures and suppliers are given as well as the purchase, service, or lease costs of various products listed under the following cateories: voice/telephony/facsimile equipment; data/graphics terminals; full motion and processes video equipment; and multiple access equipment

    Conceptual design study for an advanced cab and visual system, volume 2

    Get PDF
    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation
    • …
    corecore