3,131 research outputs found

    Stigmergic epistemology, stigmergic cognition

    Get PDF
    To know is to cognize, to cognize is to be a culturally bounded, rationality-bounded and environmentally located agent. Knowledge and cognition are thus dual aspects of human sociality. If social epistemology has the formation, acquisition, mediation, transmission and dissemination of knowledge in complex communities of knowers as its subject matter, then its third party character is essentially stigmergic. In its most generic formulation, stigmergy is the phenomenon of indirect communication mediated by modifications of the environment. Extending this notion one might conceive of social stigmergy as the extra-cranial analog of an artificial neural network providing epistemic structure. This paper recommends a stigmergic framework for social epistemology to account for the supposed tension between individual action, wants and beliefs and the social corpora. We also propose that the so-called "extended mind" thesis offers the requisite stigmergic cognitive analog to stigmergic knowledge. Stigmergy as a theory of interaction within complex systems theory is illustrated through an example that runs on a particle swarm optimization algorithm

    An "All Hands" Call to the Social Science Community: Establishing a Community Framework for Complexity Modeling Using Agent Based Models and Cyberinfrastructure

    Get PDF
    To date, many communities of practice (COP) in the social sciences have been struggling with how to deal with rapidly growing bodies of information. Many CoPs across broad disciplines have turned to community frameworks for complexity modeling (CFCMs) but this strategy has been slow to be discussed let alone adopted by the social sciences communities of practice (SS-CoPs). In this paper we urge the SS-CoPs that it is timely to develop and establish a CBCF for the social sciences for two major reasons: the rapid acquisition of data and the emergence of critical cybertools which can facilitate agent-based, spatially-explicit models. The goal of this paper is not to prescribe how a CFCM might be set up but to suggest of what components it might consist and what its advantages would be. Agent based models serve the establishment of a CFCM because they allow robust and diverse inputs and are amenable to output-driven modifications. In other words, as phenomena are resolved by a SS-CoP it is possible to adjust and refine ABMs (and their predictive ability) as a recursive and collective process. Existing and emerging cybertools such as computer networks, digital data collections and advances in programming languages mean the SS-CoP must now carefully consider committing the human organization to enabling a cyberinfrastructure tool. The combination of technologies with human interfaces can allow scenarios to be incorporated through 'if' 'then' rules and provide a powerful basis for addressing the dynamics of coupled and complex social ecological systems (cSESs). The need for social scientists to be more engaged participants in the growing challenges of characterizing chaotic, self-organizing social systems and predicting emergent patterns makes the application of ABMs timely. The enabling of a SS-CoP CFCM human-cyberinfrastructure represents an unprecedented opportunity to synthesize, compare and evaluate diverse sociological phenomena as a cohesive and recursive community-driven process.Community-Based Complex Models, Mathematics, Social Sciences

    Stigmergic epistemology, stigmergic cognition

    Get PDF
    To know is to cognize, to cognize is to be a culturally bounded, rationality-bounded and environmentally located agent. Knowledge and cognition are thus dual aspects of human sociality. If social epistemology has the formation, acquisition, mediation, transmission and dissemination of knowledge in complex communities of knowers as its subject matter, then its third party character is essentially stigmergic. In its most generic formulation, stigmergy is the phenomenon of indirect communication mediated by modifications of the environment. Extending this notion one might conceive of social stigmergy as the extra-cranial analog of an artificial neural network providing epistemic structure. This paper recommends a stigmergic framework for social epistemology to account for the supposed tension between individual action, wants and beliefs and the social corpora. We also propose that the so-called ‘‘extended mind’’ thesis offers the requisite stigmergic cognitive analog to stigmergic knowledge. Stigmergy as a theory of interaction within complex systems theory is illustrated through an example that runs on a particle swarm optimization algorithm.Social epistemology; Extended mind; Social cognition; Particle swarm optimization

    On Resilient Behaviors in Computational Systems and Environments

    Full text link
    The present article introduces a reference framework for discussing resilience of computational systems. Rather than a property that may or may not be exhibited by a system, resilience is interpreted here as the emerging result of a dynamic process. Said process represents the dynamic interplay between the behaviors exercised by a system and those of the environment it is set to operate in. As a result of this interpretation, coherent definitions of several aspects of resilience can be derived and proposed, including elasticity, change tolerance, and antifragility. Definitions are also provided for measures of the risk of unresilience as well as for the optimal match of a given resilient design with respect to the current environmental conditions. Finally, a resilience strategy based on our model is exemplified through a simple scenario.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s40860-015-0002-6 The paper considerably extends the results of two conference papers that are available at http://ow.ly/KWfkj and http://ow.ly/KWfgO. Text and formalism in those papers has been used or adapted in the herewith submitted pape

    Agent Based Modeling and Simulation: An Informatics Perspective

    Get PDF
    The term computer simulation is related to the usage of a computational model in order to improve the understanding of a system's behavior and/or to evaluate strategies for its operation, in explanatory or predictive schemes. There are cases in which practical or ethical reasons make it impossible to realize direct observations: in these cases, the possibility of realizing 'in-machina' experiments may represent the only way to study, analyze and evaluate models of those realities. Different situations and systems are characterized by the presence of autonomous entities whose local behaviors (actions and interactions) determine the evolution of the overall system; agent-based models are particularly suited to support the definition of models of such systems, but also to support the design and implementation of simulators. Agent-Based models and Multi-Agent Systems (MAS) have been adopted to simulate very different kinds of complex systems, from the simulation of socio-economic systems to the elaboration of scenarios for logistics optimization, from biological systems to urban planning. This paper discusses the specific aspects of this approach to modeling and simulation from the perspective of Informatics, describing the typical elements of an agent-based simulation model and the relevant research.Multi-Agent Systems, Agent-Based Modeling and Simulation

    Methodology of structural stability management for industrial enterprises

    Get PDF
    The article looks into the formation of a new methodology to provide company stability under growing influence of the external factors which raise the level of management uncertainty. Modern approach to management based on intellectualization which increases requirements to tools for assessment and forecasting all systems of the industrial enterprise, containing the methodological drawbacks statistic and mathematical nature which cause the information loss. Equilibrium state of the enterprise as a system is proposed to be used as a target objective and it means application of cenology theory tools Cenological approach to assessment and to management of equilibrium of systems of an industrial enterprise which allows solving problems of complexity and stochasticity of systems using relevant mathematical research apparatus and system of constraints is grounded in the article. The significant part of the enterprise systems belongs to cenotic type because they are a complex structure of its elements where classical statistic assessment to describe the system “as a whole” is not applicable. The results of economic and technical structures of a number of industrial enterprises which demonstrate the high results of coenoses theory application in company stability management are given in the conclusion.peer-reviewe
    • …
    corecore