1,940 research outputs found

    Revealing the Vicious Circle of Disengaged User Acceptance: A SaaS Provider's Perspective

    Get PDF
    User acceptance tests (UAT) are an integral part of many different software engineering methodologies. In this paper, we examine the influence of UATs on the relationship between users and Software-as-a-Service (SaaS) applications, which are continuously delivered rather than rolled out during a one-off signoff process. Based on an exploratory qualitative field study at a multinational SaaS provider in Denmark, we show that UATs often address the wrong problem in that positive user acceptance may actually indicate a negative user experience. Hence, SaaS providers should be careful not to rest on what we term disengaged user acceptance. Instead, we outline an approach that purposefully queries users for ambivalent emotions that evoke constructive criticism, in order to facilitate a discourse that favors the continuous innovation of a SaaS system. We discuss theoretical and practical implications of our approach for the study of user engagement in testing SaaS applications

    Computing at massive scale: Scalability and dependability challenges

    Get PDF
    Large-scale Cloud systems and big data analytics frameworks are now widely used for practical services and applications. However, with the increase of data volume, together with the heterogeneity of workloads and resources, and the dynamic nature of massive user requests, the uncertainties and complexity of resource management and service provisioning increase dramatically, often resulting in poor resource utilization, vulnerable system dependability, and user-perceived performance degradations. In this paper we report our latest understanding of the current and future challenges in this particular area, and discuss both existing and potential solutions to the problems, especially those concerned with system efficiency, scalability and dependability. We first introduce a data-driven analysis methodology for characterizing the resource and workload patterns and tracing performance bottlenecks in a massive-scale distributed computing environment. We then examine and analyze several fundamental challenges and the solutions we are developing to tackle them, including for example incremental but decentralized resource scheduling, incremental messaging communication, rapid system failover, and request handling parallelism. We integrate these solutions with our data analysis methodology in order to establish an engineering approach that facilitates the optimization, tuning and verification of massive-scale distributed systems. We aim to develop and offer innovative methods and mechanisms for future computing platforms that will provide strong support for new big data and IoE (Internet of Everything) applications

    D3M: automated data-driven decision making

    Get PDF
    Data has an undoubtedly impact on society. Storing, processing and analyzing large amounts of available data is currently one of the key success factors for an organization. Nonetheless, we are recently witnessing a change represented by huge and heterogeneous amounts of data. Thus, in order to carry on these data exploitation tasks, organizations must first perform data integration combining data from multiple sources to yield a unified view over them. In this paper, we report on the Automated Data-Driven Decision Making (D3M) project, whose main objective is to provide a mature software solution for automatic data integration with advanced decision making capabilities.This paper has been funded by the Spanish Agencia Estatal de Investigación (AEI) under project / funding scheme PDC2021-121195-I00.Peer ReviewedPostprint (published version

    Scalable Architecture for Integrated Batch and Streaming Analysis of Big Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2015As Big Data processing problems evolve, many modern applications demonstrate special characteristics. Data exists in the form of both large historical datasets and high-speed real-time streams, and many analysis pipelines require integrated parallel batch processing and stream processing. Despite the large size of the whole dataset, most analyses focus on specific subsets according to certain criteria. Correspondingly, integrated support for efficient queries and post- query analysis is required. To address the system-level requirements brought by such characteristics, this dissertation proposes a scalable architecture for integrated queries, batch analysis, and streaming analysis of Big Data in the cloud. We verify its effectiveness using a representative application domain - social media data analysis - and tackle related research challenges emerging from each module of the architecture by integrating and extending multiple state-of-the-art Big Data storage and processing systems. In the storage layer, we reveal that existing text indexing techniques do not work well for the unique queries of social data, which put constraints on both textual content and social context. To address this issue, we propose a flexible indexing framework over NoSQL databases to support fully customizable index structures, which can embed necessary social context information for efficient queries. The batch analysis module demonstrates that analysis workflows consist of multiple algorithms with different computation and communication patterns, which are suitable for different processing frameworks. To achieve efficient workflows, we build an integrated analysis stack based on YARN, and make novel use of customized indices in developing sophisticated analysis algorithms. In the streaming analysis module, the high-dimensional data representation of social media streams poses special challenges to the problem of parallel stream clustering. Due to the sparsity of the high-dimensional data, traditional synchronization method becomes expensive and severely impacts the scalability of the algorithm. Therefore, we design a novel strategy that broadcasts the incremental changes rather than the whole centroids of the clusters to achieve scalable parallel stream clustering algorithms. Performance tests using real applications show that our solutions for parallel data loading/indexing, queries, analysis tasks, and stream clustering all significantly outperform implementations using current state-of-the-art technologies

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Digital transformation: implementation of business intelligence solution for the pharmaceutical sector

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementMertens describes the term Business Intelligence as the integration of all activities evolving around the company, starting from IT procedures up to management methods and analytical processes, with the aim of providing information and new insights as a decision-making basis for the management. Already in the 1960s, information systems attempted to support decision making for the management. Over time, the umbrella term Management Support Systems (MSS) evolved, reemphasizing the importance of information and communication technology. In the present project report, the aim is to establish and enhance these decision-making processes for the company Janssen Pharmaceutical. The objectives, therefore, are to establish a single source of truth with all data sources feeding one data lake and on top of that data lake building various reports, dashboards and visualizations in both a web-based solution and standalone app solution
    • …
    corecore