650 research outputs found

    A Survey on the Application of Evolutionary Algorithms for Mobile Multihop Ad Hoc Network Optimization Problems

    Get PDF
    Evolutionary algorithms are metaheuristic algorithms that provide quasioptimal solutions in a reasonable time. They have been applied to many optimization problems in a high number of scientific areas. In this survey paper, we focus on the application of evolutionary algorithms to solve optimization problems related to a type of complex network likemobilemultihop ad hoc networks. Since its origin, mobile multihop ad hoc network has evolved causing new types of multihop networks to appear such as vehicular ad hoc networks and delay tolerant networks, leading to the solution of new issues and optimization problems. In this survey, we review the main work presented for each type of mobile multihop ad hoc network and we also present some innovative ideas and open challenges to guide further research in this topic

    QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm

    Get PDF
    The human intervention in the network management and maintenance should be reduced to alleviate the ever-increasing spatial and temporal complexity. By mimicking the cognitive behaviors of human being, the cognitive network improves the scalability, self-adaptation, self-organization, and self-protection in the network. To implement the cognitive network, the cognitive behaviors for the network nodes need to be carefully designed. Quality of service (QoS) multicast is an important network problem. Therefore, it is appealing to develop an effective QoS multicast routing protocol oriented to cognitive network. In this paper, we design the cognitive behaviors summarized in the cognitive science for the network nodes. Based on the cognitive behaviors, we propose a QoS multicast routing protocol oriented to cognitive network, named as CogMRT. It is a distributed protocol where each node only maintains local information. The routing search is in a hop by hop way. Inspired by the small-world phenomenon, the cognitive behaviors help to accumulate the experiential route information. Since the QoS multicast routing is a typical combinatorial optimization problem and it is proved to be NP-Complete, we have applied the competitive coevolutionary algorithm (CCA) for the multicast tree construction. The CCA adopts novel encoding method and genetic operations which leverage the characteristics of the problem. We implement and evaluate CogMRT and other two promising alternative protocols in NS2 platform. The results show that CogMRT has remarkable advantages over the counterpart traditional protocols by exploiting the cognitive favors

    Topology Control, Routing Protocols and Performance Evaluation for Mobile Wireless Ad Hoc Networks

    Get PDF
    A mobile ad-hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the support of any established infrastructure or centralized administration. There are many potential applications based the techniques of MANETs, such as disaster rescue, personal area networking, wireless conference, military applications, etc. MANETs face a number of challenges for designing a scalable routing protocol due to their natural characteristics. Guaranteeing delivery and the capability to handle dynamic connectivity are the most important issues for routing protocols in MANETs. In this dissertation, we will propose four algorithms that address different aspects of routing problems in MANETs. Firstly, in position based routing protocols to design a scalable location management scheme is inherently difficult. Enhanced Scalable Location management Service (EnSLS) is proposed to improve the scalability of existing location management services, and a mathematical model is proposed to compare the performance of the classical location service, GLS, and our protocol, EnSLS. The analytical model shows that EnSLS has better scalability compared with that of GLS. Secondly, virtual backbone routing can reduce communication overhead and speedup the routing process compared with many existing on-demand routing protocols for routing detection. In many studies, Minimum Connected Dominating Set (MCDS) is used to approximate virtual backbones in a unit-disk graph. However finding a MCDS is an NP-hard problem. In the dissertation, we develop two new pure localized protocols for calculating the CDS. One emphasizes forming a small size initial near-optimal CDS via marking process, and the other uses an iterative synchronized method to avoid illegal simultaneously removal of dominating nodes. Our new protocols largely reduce the number of nodes in CDS compared with existing methods. We show the efficiency of our approach through both theoretical analysis and simulation experiments. Finally, using multiple redundant paths for routing is a promising solution. However, selecting an optimal path set is an NP hard problem. We propose the Genetic Fuzzy Multi-path Routing Protocol (GFMRP), which is a multi-path routing protocol based on fuzzy set theory and evolutionary computing

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Hybridisation of genetic algorithm with simulated annealing for vertical-handover in heterogeneous wireless networks

    Get PDF
    To provide the seamless mobility in heterogeneous wireless networks two significant methods, simulated annealing (SA) and genetic algorithms (GAs) are hybrid. In this paradigm, vertical handovers (VHs) are necessary for seamless mobility. In this paper, the hybrid algorithm has the ability to find the optimal network to connect with a good quality of service (QoS) in accordance with the user's preferences. The intelligent algorithm was developed to provide solutions near to real time and to avoid slow and considerable computations according to the features of the mobile devices. Moreover, a cost function is used to sustain the chosen QoS during transition between networks, which is measured in terms of the bandwidth, BER, ABR, SNR and monetary cost. Simulation results presented that choosing the SA rules would minimise the cost function and the GA-SA algorithm could reduce the number of unnecessary handovers, and thereby avoid the 'Ping-Pong' effect

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore