214 research outputs found

    A Cross-layer Approach for MPTCP Path Management in Heterogeneous Vehicular Networks

    Get PDF
    Multipath communication has recently arisen as a promising tool to address reliable communication in vehicular networks. The architecture of Multipath TCP (MPTCP) is designed to facilitate concurrent utilization of multiple network interfaces, thereby enabling the system to optimize network throughput. In the context of vehicular environments, MPTCP offers a promising solution for seamless roaming, as it enables the system to maintain a stable connection by switching between available network interfaces. This paper investigates the suitability of MPTCP to support resilient and efficient Vehicleto-Infrastructure (V2I) communication over heterogeneous networks. First, we identify and discuss several challenges that arise in heterogeneous vehicular networks, including issues such as Head-of-Line (HoL) blocking and service interruptions during handover events. Then, we propose a cross-layer path management scheme for MPTCP, that leverages real-time network information to improve the reliability and efficiency of multipath vehicular communication. Our emulation results demonstrate that the proposed scheme not only achieves seamless mobility across heterogeneous networks but also significantly reduces handover latency, packet loss, and out-of-order packet delivery. These improvements have a direct impact on the quality of experience for vehicular users, as they lead to lower application layer delay and higher throughput

    Vehicular networks : IEEE 802.11p analysis and integration into an heterogeneous WMN

    Get PDF
    Tese de Mestrado Integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    An intelligent path management in heterogeneous vehicular networks

    Get PDF
    Achieving reliable connectivity in heterogeneous vehicular networks is a challenging task, owing to rapid topological changes and unpredictable vehicle speeds. As vehicular communication demands continue to evolve, multipath connectivity is emerging as an important tool, which promises to enhance network interoperability and reliability. Given the limited coverage area of serving access technologies, frequent disconnections are to be expected as the vehicle moves. To ensure seamless communication in dynamic vehicular environments, an intelligent path management algorithm for Multipath TCP (MPTCP) has been proposed. The algorithm utilizes a network selection mechanism based on Fuzzy Analytic Hierarchy Process (FAHP), which dynamically assigns the most appropriate underlying network for each running application. The selection process takes into account multiple factors, such as path quality, vehicle mobility, and service characteristics. In contrast to existing solutions, our proposed method offers a dynamic and comprehensive approach to network selection that is tailored to the specific needs of each service to ensure that it is always paired with the optimal access technology. The results of the evaluation demonstrate that the proposed method is highly effective in maintaining service continuity during vertical handover. By tailoring the network selection to the specific needs of each application, our path manager is able to ensure optimal connectivity and performance, even in challenging vehicular environments, delivering a better user experience, with more reliable connections, and smoother data transfers.FCT - Fundação para a Ciência e a Tecnologia(PD/BDE/150506/2019

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    IP Mobility Support in Multi-hop Vehicular Communications Networks

    Get PDF
    The combination of infrastructure-to-vehicle and vehicle-to-vehicle communications, namely the multi-hop Vehicular Communications Network (VCN) , appears as a promising solution for the ubiquitous access to IP services in vehicular environments. In this thesis, we address the challenges of multi-hop VCN, and investigate the seamless provision of IP services over such network. Three different schemes are proposed and analyzed. First, we study the limitations of current standards for the provision of IP services, such as 802.11p/WAVE, and propose a framework that enables multi-hop communications and a robust IP mobility mechanism over WAVE. An accurate analytical model is developed to evaluate the throughput performance, and to determine the feasibility of the deployment of IP-based services in 802.11p/WAVE networks. Next, the IP mobility support is extended to asymmetric multi-hop VCN. The proposed IP mobility and routing mechanisms react to the asymmetric links, and also employ geographic location and road traffic information to enable predictive handovers. Moreover, since multi-hop communications suffer from security threats, it ensures that all mobility signalling is authenticated among the participant vehicles. Last, we extend our study to a heterogeneous multi-hop VCN, and propose a hybrid scheme that allows for the on-going IP sessions to be transferred along the heterogeneous communications system. The proposed global IP mobility scheme focuses on urban vehicular scenarios, and enables seamless communications for in-vehicle networks, commuters, and pedestrians. The overall performance of IP applications over multi-hop VCN are improved substantially by the proposed schemes. This is demonstrated by means of analytical evaluations, as well as extensive simulations that are carried out in realistic highway and urban vehicular scenarios. More importantly, we believe that our dissertation provides useful analytical tools, for evaluating the throughput and delay performance of IP applications in multi-hop vehicular environments. In addition, we provide a set of practical and efficient solutions for the seamless support of IP tra c along the heterogeneous and multi-hop vehicular network, which will help on achieving ubiquitous drive-thru Internet, and infotainment traffic access in both urban and highway scenarios

    Simulation and Improvement of the Handover process in IEEE 802.11p based VANETs (Vehicle Ad-hoc NETworks)

    Get PDF
    Projecte final de carrera fet en col.laboració amb College of Electronics and Information Engineering. Tongji UniversityThis research focuses on the study of the handover process and the di erent simulation environments available in order to generate valid results for the optimization of seamless handover in VANET networks. Handover parameter analysis has been performed and implemented in a application developed in order to batch simulate the process of modifying the selected variables and statistically analyzing the results in order to allow further research on the topic to achieve valid results for VANET handover simulations in a very convenient manner

    Vehicular Wireless Communication Standards: Challenges and Comparison

    Get PDF
    Autonomous vehicles (AVs) are the future of mobility. Safe and reliable AVs are required for widespread adoption by a community which is only possible if these AVs can communicate with each other & with other entities in a highly efficient way. AVs require ultra-reliable communications for safety-critical applications to ensure safe driving. Existing vehicular communication standards, i.e., IEEE 802.11p (DSRC), ITS-G5, & LTE, etc., do not meet the requirements of high throughput, ultra-high reliability, and ultra-low latency along with other issues. To address these challenges, IEEE 802.11bd & 5G NR-V2X standards provide more efficient and reliable communication, however, these standards are in the developing stage. Existing literature generally discusses the features of these standards only and does not discuss the drawbacks. Similarly, existing literature does not discuss the comparison between these standards or discusses a comparison between any two standards only. However, this work comprehensively describes different issues/challenges faced by these standards. This work also comprehensively provides a comparison among these standards along with their salient features. The work also describes spectrum management issues comprehensively, i.e., interoperability issues, co-existence with Wi-Fi, etc. The work also describes different other issues comprehensively along with recommendations. The work describes that 802.11bd and 5G NR are the two potential future standards for efficient vehicle communications; however, these standards must be able to provide backward compatibility, interoperability, and co-existence with current and previous standards

    Heterogeneous LTE/ Wi-Fi architecture for intelligent transportation systems

    Get PDF
    Intelligent Transportation Systems (ITS) make use of advanced technologies to enhance road safety and improve traffic efficiency. It is anticipated that ITS will play a vital future role in improving traffic efficiency, safety, comfort and emissions. In order to assist the passengers to travel safely, efficiently and conveniently, several application requirements have to be met simultaneously. In addition to the delivery of regular traffic and safety information, vehicular networks have been recently required to support infotainment services. Previous vehicular network designs and architectures do not satisfy this increasing traffic demand as they are setup for either voice or data traffic, which is not suitable for the transfer of vehicular traffic. This new requirement is one of the key drivers behind the need for new mobile wireless broadband architectures and technologies. For this purpose, this thesis proposes and investigates a heterogeneous IEEE 802.11 and LTE vehicular system that supports both infotainment and ITS traffic control data. IEEE 802.11g is used for V2V communications and as an on-board access network while, LTE is used for V2I communications. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban vehicular environment. The system performance is evaluated in terms of data loss, data rate, delay and jitter. Several simulation scenarios are performed and evaluated. In the V2I-only scenario, the delay, jitter and data drops for both ITS and video traffic are within the acceptable limits, as defined by vehicular application requirements. Although a tendency of increase in video packet drops during handover from one eNodeB to another is observed yet, the attainable data loss rate is still below the defined benchmarks. In the integrated V2V-V2I scenario, data loss in uplink ITS traffic was initially observed so, Burst communication technique is applied to prevent packet losses in the critical uplink ITS traffic. A quantitative analysis is performed to determine the number of packets per burst, the inter-packet and inter-burst intervals. It is found that a substantial improvement is achieved using a two-packet Burst, where no packets are lost in the uplink direction. The delay, jitter and data drops for both uplink and downlink ITS traffic, and video traffic are below the benchmarks of vehicular applications. Thus, the results indicate that the proposed heterogeneous system offers acceptable performance that meets the requirements of the different vehicular applications. All simulations are conducted on OPNET Network Modeler and results are subjected to a 95% confidence analysis
    corecore