450 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A non-invasive image based system for early diagnosis of prostate cancer.

    Get PDF
    Prostate cancer is the second most fatal cancer experienced by American males. The average American male has a 16.15% chance of developing prostate cancer, which is 8.38% higher than lung cancer, the second most likely cancer. The current in-vitro techniques that are based on analyzing a patients blood and urine have several limitations concerning their accuracy. In addition, the prostate Specific Antigen (PSA) blood-based test, has a high chance of false positive diagnosis, ranging from 28%-58%. Yet, biopsy remains the gold standard for the assessment of prostate cancer, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The major limitation of the relatively small needle biopsy samples is the higher possibility of producing false positive diagnosis. Moreover, the visual inspection system (e.g., Gleason grading system) is not quantitative technique and different observers may classify a sample differently, leading to discrepancies in the diagnosis. As reported in the literature that the early detection of prostate cancer is a crucial step for decreasing prostate cancer related deaths. Thus, there is an urgent need for developing objective, non-invasive image based technology for early detection of prostate cancer. The objective of this dissertation is to develop a computer vision methodology, later translated into a clinically usable software tool, which can improve sensitivity and specificity of early prostate cancer diagnosis based on the well-known hypothesis that malignant tumors are will connected with the blood vessels than the benign tumors. Therefore, using either Diffusion Weighted Magnetic Resonance imaging (DW-MRI) or Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), we will be able to interrelate the amount of blood in the detected prostate tumors by estimating either the Apparent Diffusion Coefficient (ADC) in the prostate with the malignancy of the prostate tumor or perfusion parameters. We intend to validate this hypothesis by demonstrating that automatic segmentation of the prostate from either DW-MRI or DCE-MRI after handling its local motion, provides discriminatory features for early prostate cancer diagnosis. The proposed CAD system consists of three majors components, the first two of which constitute new research contributions to a challenging computer vision problem. The three main components are: (1) A novel Shape-based segmentation approach to segment the prostate from either low contrast DW-MRI or DCE-MRI data; (2) A novel iso-contours-based non-rigid registration approach to ensure that we have voxel-on-voxel matches of all data which may be more difficult due to gross patient motion, transmitted respiratory effects, and intrinsic and transmitted pulsatile effects; and (3) Probabilistic models for the estimated diffusion and perfusion features for both malignant and benign tumors. Our results showed a 98% classification accuracy using Leave-One-Subject-Out (LOSO) approach based on the estimated ADC for 30 patients (12 patients diagnosed as malignant; 18 diagnosed as benign). These results show the promise of the proposed image-based diagnostic technique as a supplement to current technologies for diagnosing prostate cancer

    Nonparametric joint shape learning for customized shape modeling

    Get PDF
    We present a shape optimization approach to compute patient-specific models in customized prototyping applications. We design a coupled shape prior to model the transformation between a related pair of surfaces, using a nonparametric joint probability density estimation. The coupled shape prior forces with the help of application-specific data forces and smoothness forces drive a surface deformation towards a desired output surface. We demonstrate the usefulness of the method for generating customized shape models in applications of hearing aid design and pre-operative to intra-operative anatomic surface estimation

    A learning-based CT prostate segmentation method via joint transductive feature selection and regression

    Get PDF
    In1 recent years, there has been a great interest in prostate segmentation, which is a important and challenging task for CT image guided radiotherapy. In this paper, a learning-based segmentation method via joint transductive feature selection and transductive regression is presented, which incorporates the physician’s simple manual specification (only taking a few seconds), to aid accurate segmentation, especially for the case with large irregular prostate motion. More specifically, for the current treatment image, experienced physician is first allowed to manually assign the labels for a small subset of prostate and non-prostate voxels, especially in the first and last slices of the prostate regions. Then, the proposed method follows the two step: in prostate-likelihood estimation step, two novel algorithms: tLasso and wLapRLS, will be sequentially employed for transductive feature selection and transductive regression, respectively, aiming to generate the prostate-likelihood map. In multi-atlases based label fusion step, the final segmentation result will be obtained according to the corresponding prostate-likelihood map and the previous images of the same patient. The proposed method has been substantially evaluated on a real prostate CT dataset including 24 patients with 330 CT images, and compared with several state-of-the-art methods. Experimental results show that the proposed method outperforms the state-of-the-arts in terms of higher Dice ratio, higher true positive fraction, and lower centroid distances. Also, the results demonstrate that simple manual specification can help improve the segmentation performance, which is clinically feasible in real practice

    Analysis of contrast-enhanced medical images.

    Get PDF
    Early detection of human organ diseases is of great importance for the accurate diagnosis and institution of appropriate therapies. This can potentially prevent progression to end-stage disease by detecting precursors that evaluate organ functionality. In addition, it also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery operations. Advances in functional and contrast-enhanced (CE) medical images enabled accurate noninvasive evaluation of organ functionality due to their ability to provide superior anatomical and functional information about the tissue-of-interest. The main objective of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing complex data from CE magnetic resonance imaging (MRI). The developed CAD system has been tested in three case studies: (i) early detection of acute renal transplant rejection, (ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart attack; and (iii), early detection of prostate cancer. However, developing a noninvasive CAD system for the analysis of CE medical images is subject to multiple challenges, including, but are not limited to, image noise and inhomogeneity, nonlinear signal intensity changes of the images over the time course of data acquisition, appearances and shape changes (deformations) of the organ-of-interest during data acquisition, determination of the best features (indexes) that describe the perfusion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation focuses on building new mathematical models and learning techniques that facilitate accurate analysis of CAs perfusion in living organs and include: (i) accurate mathematical models for the segmentation of the object-of-interest, which integrate object shape and appearance features in terms of pixel/voxel-wise image intensities and their spatial interactions; (ii) motion correction techniques that combine both global and local models, which exploit geometric features, rather than image intensities to avoid problems associated with nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the genetic algorithm. The proposed techniques have been integrated into CAD systems that have been tested in, but not limited to, three clinical studies. First, a noninvasive CAD system is proposed for the early and accurate diagnosis of acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute rejection–the immunological response of the human immune system to a foreign kidney–is the most sever cause of renal dysfunction among other diagnostic possibilities, including acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal transplants are performed annually, and given the limited number of donors, transplanted kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard for the assessment of renal transplant dysfunction, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The diagnostic results of the proposed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with a 95% confidence interval. These results clearly demonstrate the promise of the proposed image-based diagnostic CAD system as a supplement to the current technologies, such as nuclear imaging and ultrasonography, to determine the type of kidney dysfunction. Second, a comprehensive CAD system is developed for the characterization of myocardial perfusion and clinical status in heart failure and novel myoregeneration therapy using cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause of morbidity and mortality in cardiovascular disease, which affects approximately 6 million U.S. patients annually. Ischemic heart disease is considered the most common underlying cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is essential to prevent its relentless progression to premature death. While current medical studies focus on detecting pathological tissue and assessing contractile function of the diseased heart, this dissertation address the key issue of the effects of the myoregeneration therapy on the associated blood nutrient supply. Quantitative and qualitative assessment in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework to reveal regional perfusion improvements with therapy, and transmural perfusion differences across the myocardial wall; thus, it can aid in follow-up on treatment for patients undergoing the myoregeneration therapy. Finally, an image-based CAD system for early detection of prostate cancer using DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy among men and remains the second leading cause of cancer-related death in the USA with more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early diagnosis of prostate cancer can improve the effectiveness of treatment and increase the patient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of prostate cancer. However, it is an invasive procedure with high costs and potential morbidity rates. Additionally, it has a higher possibility of producing false positive diagnosis due to relatively small needle biopsy samples. Application of the proposed CAD yield promising results in a cohort of 30 patients that would, in the near future, represent a supplement of the current technologies to determine prostate cancer type. The developed techniques have been compared to the state-of-the-art methods and demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-order spatial interaction models, shape models, motion correction models, and perfusion analysis models) can be used in many of today’s CAD applications for early detection of a variety of diseases and medical conditions, and are expected to notably amplify the accuracy of CAD decisions based on the automated analysis of CE images

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie
    • …
    corecore