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a b s t r a c t

We present a shape optimization approach to compute patient-specific models in customized proto-
typing applications. We design a coupled shape prior to model the transformation between a related
pair of surfaces, using a nonparametric joint probability density estimation. The coupled shape prior
forces with the help of application-specific data forces and smoothness forces drive a surface deforma-
tion towards a desired output surface. We demonstrate the usefulness of the method for generating
customized shape models in applications of hearing aid design and pre-operative to intra-operative
anatomic surface estimation.

1. Introduction

Customized shape modeling is one of the most important tasks
in virtual prototyping of implants and anatomical modeling of
organs. Some applications in customized prototyping are realized
for providing patient-specific models for bones, teeth, and hearing
aid devices. Estimating geometry of organs before, during, and after
surgery and modeling bilateral relationships between the symmet-
ric structures in the brain are other applications. In problems of
customized shape design, the first step involves acquiring a rough
raw data of the structure to be modeled. For instance, impressions
of the teeth or the ear canal can be acquired via a laser scan; or 3-
dimensional (3D) computed tomography (CT), magnetic resonance
(MR) image volumes of the patient are obtained and 3D models of
the organs are extracted from these images. In the next step, cer-
tain operations and rules are applied to the model with constraints
from the input patient data, which is at this point an unprocessed
3D surface model. If one would like to predict the intra-operative
shape of a particular organ, for instance prostate, a natural approach
would be to acquire a pre-operative CT or MR scan of the patient
and extract the prostate surface, and apply a learned transforma-
tion, to the pre-operative surface to generate the intra-operative
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geometry of the prostate. A similar problem arises in hearing aid
design: one obtains an impression of the ear geometry, and esti-
mates the final hearing aid device, which should comfortably fit to
a patient’s ear as well as satisfy other constraints in terms of the
electronics components, ventilation vents, and so on. An example
problem is depicted in Fig. 1 for illustration, where a complete tooth
model is shown along with separate root and crown parts: in dental
implants, the decayed or fractured crown part of the tooth is cov-
ered with a prosthetic crown, whose shape should be customized
for a good fit. We achieve a solution to such problems via a shape
optimization method that jointly models multiple shapes either
consisting of different parts of one structure or different phases of
a given structure.

1.1. Related work

One of the pioneers of morphometrics, the study of statistical
variations on the geometry of biological forms and shapes, is Book-
stein [1]. In active shape models of Cootes and Taylor [2], shapes
are represented by a point distribution model through the posi-
tion of the landmarks described by a Gaussian probability density.
The problem of modeling shape spaces as a Gaussian probability
density via a principal component analysis (PCA) appeared in the
context of image segmentation [3] and [4], which were followed
by a kernel PCA in [5], and later adopted with nonparametric shape
probability distributions in [6]. In this context, the estimated shape
probability density from a training set is used as a shape prior term
for an image segmentation.
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Fig. 1. Shape estimation problem exemplified for crown or complete tooth estima-
tion given the root of the tooth.

In the context of object estimation, a multivariate statistical
approach was taken in Rao et al. [7] where statistical variation of
bilateral structures within the brain were studied via canonical cor-
relation analysis and partial least squares regression. In another
work by Davis et al. [8], shape changes in the brain are analyzed
through nonparametric regression and exemplified for local shape
changes regressed as a function of age. In the context of simulta-
neous segmentation of multiple objects from images, the problem
of joint prior density estimation appears, and is frequently based
on a parametric density to capture dependencies among multi-
ple but coupled shapes to improve segmentation performance by
providing complementary information as in [9,10], and statistical
multi-object modeling via medial shape representations was pre-
sented in [11]. Nonparametric shape priors were utilized in [12] for
segmentation of multiple objects in images.

We will present a coupled learning approach for the problem of
customized shape modeling in order to estimate a customized out-
put surface given as input an anatomical structure of a patient. Our
work was inspired by [13], which presented a multivariate regres-
sion estimation framework between two related classes of shapes,
where the underlying probability of the shape spaces were assumed
to be Gaussian. The authors used a covariance analysis for dimen-
sionality reduction, and worked in a reduced space by retaining a
small number of principal components of shape variation for both
of the paired shapes to estimate the transformation between them
in the reduced space. However, anatomic shape variations are not
guaranteed to lie on a space modeled by a Gaussian probability dis-
tribution, i.e. on a linear manifold where the shapes are represented
by adding a number of principal modes of variations to an average
shape. Therefore, in this paper, we propose using a non-parametric
joint shape probability density to model the spaces of paired shapes
coupled through anatomical and patient-specific constraints.

1.2. Our contribution

Our main contribution is the development of building a coupled
and non-parametric density estimation between two related shape
classes and given an input shape from one of the classes, use the
estimated joint density as a shape prior in deforming a template
shape towards an expected output shape in the second shape class.
For this purpose, our method constructs a conditional probability
density to model relationship between two classes of shapes and a
surface propagation equation is derived as the gradient of an energy
in a variational formulation. Starting from an initial template shape,
an output shape is generated from one of the classes related to an
input shape from the other class. Such an automatic shape estima-
tion or deformation method can be used in various applications like
customized design of anatomical parts.

Due to an expected flexibility in modeling more complex
and arbitrary shape deformations, a non-parametric multivariate
density estimator is utilized. This approach estimates the shape
distribution on a nonlinear manifold rather than a linear one, and

depending on a kernel width parameter and the number of shape
samples, constrains it to the manifold defined by the shapes. In
addition, we present an application specific data term to constrain
deformation of a template surface towards a desired output surface.
We exemplify our methodology via two interesting applications:
hearing aid design for patients, and pre-operative to intra-operative
prostate surface estimation, however, the method can be applied to
similar problems in customized anatomic part design, or for sym-
metry analysis, for instance where structures on right or left part
of the brain can be estimated from that of the other side.

2. Methodology

Our problem can be categorized in the patient population analy-
sis framework, where for each patient, a given pair of related shapes
are anatomic structures, and for further analysis, pose variation is
discarded by aligning the anatomic shapes in a given patient data
population. For the initial alignment steps both within the pair
of shapes and among all the shapes, we followed the registration
method presented in [14]. We utilized an initial rigid registration
with 3D rotation and 3D translation parameters, where each shape
in the training set was first registered to an arbitrarily chosen shape
in the set. After the first step, an average template shape was com-
puted, and all the shapes were registered to the average shape.
After the initial alignment step, all the pose variation is removed,
and we proceed to the shape deformation step that includes the
main components of our approach. The shapes are represented
in an Eulerian framework with signed distance functions (SDFs):
� : R3 → R defined in Eq. (2).1

In a typical variational setting, we define a cost functional:

E(S) = Edata + Ecoupled shape + Eregularizer (1)

where Edata is a data faithfulness term, Ecoupled shape is a coupled
shape prior term, and Eregularizer is a regularizer to obtain a feasible
and smooth surface in the space of admissible surfaces,2 and S is
the unknown shape surface to be estimated, which is embedded in
R

3. The surface S is defined as an implicit surface embedded in a
signed distance function �:

S = {x = (x, y, z) ∈ � ⊂ R3|�(x, y, z) = 0} (2)

with the convention that {�(x, y, z) <= 0} inside and on the surface
S, and {�(x, y, z) > 0} outside the surface S.

2.1. Coupled shape prior term

In scenarios where parametric modeling of density of shapes
such as with a Gaussian density is not satisfactory, a classical
approach is based on a kernel density estimation, known as non-
parametric density estimation [15]. Given a set of N training shapes
{�k}k=1,...,N , one can define a probability density on the space of
signed distance functions as follows:

P(�) = 1
N�

N∑
k=1

exp
(

− 1
2�2

d2(�, �k)
)

(3)

which is a well-studied and widely used kernel density estima-
tor, also known as Parzen window method, that usually entails a

1 We note that the shape surface and its embedding function, the SDF, is used
interchangeably to describe a shape, and should be clear from the context.

2 Mathematically speaking, an admissible set of functions (here surfaces) is a set
on which an extremum problem is defined, here via the energy (cost) functional
E(S). A function (surface) that satisfies all the functional constraints imposed by the
problem (here the data, the coupled shape and the regularizer constraints) is said
to be feasible.



Gaussian kernel with a kernel width �, as is adopted here. It can
be shown that this probability estimate converges toward the true
probability with N → ∞ and � → 0 [16]. The choice of distance d in
this work is the L2 distance among the SDF shape representations:

d2(�, �k) =
∫

�

(� − �k)2d�. (4)

where the SDFs are defined over the domain � ∈R3.
We assume that the shapes are related by a transforma-

tion whose general nature are either anatomic deformations,
and constraints, and/or rules, which are unknown. Usually,
the operations that constitute the transformation are typically
operator-dependent, and patient-specific. In order to mathemat-
ically describe the resulting anatomic relation between the shapes,
one can build a shape prior that captures the coupled relation
between shapes under these different possible scenarios. To do so,
we utilize the joint nonparametric density estimator [17]:

P(�) = 1
N

N∑
k=1

L∏
l=1

1
�l

exp

(
− 1

2�2
l

d2(�l, �l
k)

)
(5)

where �l
k

denotes the k’th training shape for the shape class l,
and the multidimensional kernel is the product of uni-dimensional
kernels with corresponding kernel widths �l . Intuitively, the ker-
nel width �l can be selected proportional to the average distance
between the shapes in the training set, so that the training shapes
are within a multiple of the standard deviation of the underlying
shape space [15].

Suppose we have two shape classes which are paired due to a
certain relation that exists between them. Then for the specific case
of L = 2, we have the following joint probability density function of
the paired shape (�1, �2):

Ecoupled shape = P(�1, �2) = 1
N�1�2

N∑
k=1

exp

(
− 1

2�2
1

d2(�1, �1
k)

)

× exp

(
− 1

2�2
2

d2(�2, �2
k)

)
(6)

Utilizing this joint distribution and Bayes theorem, one can write
the conditional probability density function for the probability of
the surface �2 given a surface �1. We then define the negative
log-likelihood of the conditional probability as our coupled shape
prior:

P(�2|�1) = − log
P(�2, �1)

P(�1)
(7)

Here, the marginal probability density P(�1) is assumed to be uni-
form since any surface to be given is equally likely in the space of
the first shape class. Therefore, it counts as a normalizing constant,
say �. If prior knowledge about the input shape class exists, e.g. size
distribution and so on, this certainly can be incorporated as a prior
probability as well.

Introducing a marching parameter, t ≥ 0, we denote the
unknown shape as �2(x, t) which is to be initialized with an
initial shape �2(x, t = 0). Taking the derivative of the negative log-
likelihood in Eq. (7) w.r.t. the surface �2, the propagation term for
�2(x, t) can be obtained as follows:

∂�2(x, t)
∂t

=
N∑

k=1

�̄k(t)(�2(x, t) − �2
k(x)) (8)

where x ∈ � is a coordinate variable in R3, and the weighting term
�̄k is defined by:

�k(t) = 1
N�1�2�

exp(−d2(�1, �1
k
)/2�2

1 ) exp(−d2(�2(t), �2
k
)/2�2

2 )

�2
2

(9)

�̄k(t) = �k(t)
N∑

k=1

�k(t)

. (10)

In the propagation of the unknown surface �2, the shapes in the
second class’ data set, i.e. �2

k
are weighted according to their dis-

tance to the current estimate of �2, and an additional coupling
comes from the distances between the input shape �1 and the
shapes in the first class data set, i.e. �1

k
’s. These weights are pre-

scribed by the coefficients �̄k(t).

2.2. Data term

Data term in an optimization problem generally entails a design
based on the given application usually in the form of a similarity or
dissimilarity measure between given input data and a model that
is to be estimated. We note that in this work, the input data also
takes the form of a surface which is a raw unprocessed shape. For
instance, given an input raw shape �1 and the estimate of the pro-
cessed shape �2 that is expected to resemble �1 in certain aspects,
we define the following energy functional:

Edata(�2) =
∫

�

f (�1(x))H�(−�2(x))d� (11)

where f (·) provides a data faithfullness constraint, and H� is a reg-
ularized Heaviside function:

H�(x) = 1
2

(
1 + 2

	
arctan

(
x

�

))
, (12)

which acts as a smoothed indicator function for the inside of the
closed surface of �2 (for the inside region: H�(−�2) is used). Here,
the � parameter adjusts the steepness of the step to provide a
smoothed discontinuity in H. A typical value for this parameter is
� = 0.5.

A possible choice for f is that f (�1) = sign(�1(x)) so that the
shape �2 minimizes the total sign or maximizes its interior over-
lap with shape �1 over the domain �. Equivalently, the zero level
sets of the two surfaces are to be lined up: hence the surface �2

is completely morphed to the surface �1. Another similar choice
for the f (·) function is given by [18] where the target SDF �1 was
directly used, i.e. f (x) = x.

The gradient descent on a typical energy functional as in Eq. (11)
leads to:

∂�2(x, t)
∂t

= −f (�1(x))ı�(−�2(x, t)) (13)

where ı� is the derivative of the regularized Heaviside function H�
in Eq. (12). Another possibility is to replace ı�(�2) by |∇�2| in order
to extend the evolution to all level sets of the SDF �2:

∂�2(x, t)
∂t

= f (�1(x))|∇�2(x, t)| (14)

Note that |∇�2(x, t)|, which is the L2 norm of the gradient of �2, is
induced from a geometric flow: (∂S/∂t) = f N , where S is a paramet-
ric surface and N is the unit normal to the surface, and can be also
expressed in terms of the SDF: N = (∇�2/|∇�2|). The equivalence
between the generic surface evolution equations described math-
ematically either on S or the implicit surface � naturally follows
[19,20]. Here, f denotes the speed of the propagating front �.



Next, we construct a more general data speed g(�1, �2), which
is a function of both the fixed surface �1, and the time-varying sur-
face �2, and define the energy functional for this data constraint:

Edata(�2) =
∫

�

g(�1(x), �2(x))H�(−�2(x))d�, (15)

where g is defined as:

g(�1, �2) = −�2(x)sign(�1(x)). (16)

The Euler–Lagrange equation for (15) then leads to the gradient
descent equation:

∂�2(x, t)
∂t

= −sign(�1(x))H�(−�2(x)) + �2(x)sign(�1)ı�(−�2(x)). (17)

For instance, in the hearing aid shell design application, the pro-
cessed output shape �2 should fit to the input shape, i.e. to the
patient’s anatomy comfortably. Therefore, the output shape should
stay inside the input shape in certain anatomical regions, such as
the ear canal. The second term in (17) is adequate for our purpose,
i.e., to prevent the �2 surface to propagate outside �1 surface.
Therefore, the designed evolution term becomes:

∂�2(x, t)
∂t

= �2(x)sign(�1(x, t))ı�(−�2(x)). (18)

Inserting the data speed notation, g in (16), and using the geometric
flow term |∇�2| instead of the ı�(−�2) term, we obtain:

∂�2(x, t)
∂t

= g(�1(x), �2(x, t))|∇�2(x, t)|. (19)

In the speed g, a regularized version of the sign function is utilized:
sign(�1(x)) = H�(�1(x)) − H�(−�1(x)).

To further improve the data constraint, more sophisticated rules
that depend on more complex features can be incorporated. For
instance, an anatomical surface atlas, which partitions the shape
surface into different anatomical labels can be employed as a spatial
mask over the deformation of the unknown shape �2.

2.3. Smoothing term

As a regularizer, standard surface area penalty is utilized so that
the deforming surface does not grow its area unnecessarily large
and become irregular and rugged, which is undesirable for most of
the anatomic surfaces. The smoothing term in this case is typically
based on the mean curvature function 
 of the surface as its speed
function:

∂�2(x, t)
∂t

= 
(x)|∇�2(x, t)|. (20)

Note that in the absence of shape priors in a variational setting,
using curvature function as the speed function of the surface can
be considered as the most basic shape prior for a surface, as an
anatomic structure is generally not expected to have an uneven
and nonuniform surface.

2.4. Overall deformation

Finally, for our given problem of estimating the processed shape
surface given the raw shape surface, the paired shape combination
(�1, �2) becomes (�r, �p), where �r is a raw unprocessed input

surface and �p is the processed version of that surface. Combining
the different terms of the surface propagation equations obtained
above, we can write the overall shape deformation equation as:

∂�p(x, t)
∂t

= ˛ Coupled Shape Prior + ˇ Data term

+ � Smoothness term

∂�p(x, t)
∂t

= ˛

N∑
k=1

�̄k(t, �r, �p)(�p(x, t) − �p
k
(x))

+ [ˇg(�p(x, t), �r(x)) + �
(x, t)]|∇�p(x, t)|

(21)

�p(x, t = 0) = �p
mean(x) (22)

where ˛, ˇ, � are the weights corresponding to the coupled shape
prior term, the data term, and the smoothness term, respectively,
and �̄k are given by

�̄k(t, �r , �p) = 1
N

exp (−d2(�r , �r
k
)/2�2

r ) exp (−d2(�p(t), �p
k
)/2�2

p )

N∑
k=1

exp (−d2(�r , �r
k
)/2�2

r ) exp (−d2(�p(t), �p
k
)/2�2

p )

. (23)

Eq. (21) is solved until it reaches a steady state with the initial con-
dition (22), which starts with the mean SDF surface of the processed
output shape class:

�p
mean = 1

N

N∑
k=1

�p
k
, (24)

where �p
k

are the corresponding training shapes. The initial tem-
plate is deformed and converges to an estimate of the unknown
final surface �p.

The PDE in (21) provides an update equation for the SDF �p

of the surface, and in order to retain the properties of a signed
distance function, it should be re-initialized periodically. This can
be achieved either by re-computing the distance function around
the zero-level set of the current SDF, or by the initial value PDE
suggested in [19]:

∂�p(x, t)
∂t

= sign(�p(x))(1 − |∇�p(x, t)|). (25)

2.4.1. Implementation

Finite differences are used for solving the initial value partial
differential equation (PDE) (21) along with Neumann Boundary
Conditions at the volumetric grid borders. The upwind differ-
encing scheme [19] is used both for the coupled shape prior
term, the first on the right hand side of the PDE (21), which
is a source term, and for the data term, which is of advection
form.

For the curvature term, central differences are used in discretiz-
ing the mean curvature function at each coordinate x:


 = (�yy + �zz)�2
x + (�xx + �zz)�2

y + (�xx + �yy)�2
z − 2�x�y�xy − 2�x�z�xz − 2�y�z�yz

(�2
x + �2

y + �2
z )

3/2
. (26)

The time step in discretization of the PDE (21) was set to �t = 0.25.
The maximum number of iterations was set to 100, which ensured
that the shape updates have converged to the final steady state.
The SDF was re-initialized every 20 iterations by re-computing the
distance function around its zero-level set.

3. Results

The proposed shape modeling algorithm is tested on two differ-
ent datasets. The first application is the estimation of a hearing aid
shell from a patient raw ear impression. The second application is



Fig. 2. (a) Raw ear impression surface; (b) hearing aid shell resulting from processing, i.e. detailing of the raw surface. (Pictures: adapted from [21].)

Fig. 3. (a) An input shape (raw ear impression) sample from the dataset; (b) corresponding detailed shape (ground truth); (c) (a and b) rendered together with transparency.

the estimation of the intra-operative geometry of an organ given
the pre-operative surface, here exemplified for the prostate shape.

3.1. Hearing aid shell design

An example is provided in Fig. 2 where the initial surface is
acquired originally through a laser scanner in the form of a point
cloud and then triangulated to form a mesh model of the ear canal
and surrounding outer regions of the ear.

In the hearing aid dataset, there are 43 input and output surface
pairs, i.e. N = 43. The original data is saved in an stl format as tri-
angulated meshes, and we converted them into a voxelized format
to represent each surface as a signed distance function embedded
in a 100 × 100 × 100 voxel grid. The reason behind this choice is
that partial differential equations we proposed in this paper involve
local surface deformations, which are naturally solved in such an
implicit representation avoiding the problems of possible mesh
irregularity after updates of mesh vertices. A sample pair from the
hearing aid dataset: an input shape and its corresponding output
shape produced by a specialist are shown in Fig. 3. The output sur-
face fits to mainly the canal part of the input surface. The goal is then
given the input full surface model, to estimate the smaller output
hearing aid shell which should house necessary components for the
device as well as conform comfortably to a patient’s ear.

In Fig. 4, we compare the influence of different terms in the
deformation equation (21) for the estimation of the hearing aid
shell from a patient’s raw ear impression data. When only the data
term is utilized as in (a), the resulting surface is not constrained by
any shape prior forces therefore continues to deform towards the
input model or the observation data, which is the complete input
raw ear model, to produce a very distant result.

Note that as an initial condition for the PDE (21), a template
shape was computed as the average of all ground truth output
shapes in the training dataset in Eq. 24, which was slightly eroded
as well (see Fig. 6a). On the other hand, the coupled shape prior term
alone will constrain the deforming shape to the canal region and
conform to similar surfaces in the training set due to the weighted
averaging in the equation, however, when the distance between
the initial surface and the expected result is large, it alone may not
be enough to fully drive the surface to the true solution (Fig. 4b).

If there are samples in the data set, whose shapes are similar
to the given test shape, the sole non-parametric prior would also
produce finer details, however, as the existence of close models is
usually unknown, the data term, which depends on the input data,
i.e. the observation, ensures that the model is pulled to the spe-
cific fine details. When both the coupled shape prior term and the
data term are utilized as in Fig. 5, the final estimated surface cor-
rectly mimics the ground truth surface generated by the specialist
(in blue).

Fig. 4. Resulting surface (in red): (a) data term only (no coupled shape prior) rendered alone and with ground truth shape (in blue); (b) shape term only (no data term)
rendered alone and with ground truth shape (in blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
article.)



Fig. 5. Resulting surface with both data term and coupled shape prior term (red),
shown together with the ground truth shape (blue) from two different render view
points. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of the article.)

Fig. 6. (a) Template surface used as the initial condition for the deformation equa-
tion (21), which is computed as the average of all registered ground truth detailed
shapes in the dataset; (b) initial condition surface visualized together with the
deformation result (also rendered in Fig. 5).

Through all the experiments for the hearing aid application in
this paper, we fixed the weights in Eq. (21) as follows: the coupled
shape prior weight ˛ = 1, the data weight ˇ = 1, the smoothness
weight � = 1. The Gaussian kernel widths �2

r and �2
p in Eq. (23) were

both set to 1% of the average distance between all surfaces in input
and output training sets, respectively.

3.1.1. Validation studies
For quantitative validation of the results, leave-one-out tests

over 43 ear impression shape set are carried out. The averaged
results for the Dice measure, which is a kind of overlap measure,
and the median absolute distance between the estimated shape and
the ground truth shape are displayed in Table 1. The Dice measure
between two shapes A and B represented in the voxel domain is
defined as 2#(A

⋂
B)/(#A + #B), where # denotes the number of

voxels on and inside a shape A. All shapes in our experiments are
defined as signed distance functions over a 100 × 100 × 100 grid.
The median absolute distance between two shapes is multiplied by
0.45 mm which is the size of one voxel cube during triangulated
mesh to voxel domain conversion. The Dice overlap measure is cal-
culated as 85 ± 4.9%, reported as mean ± standard deviation values,
over 43 separate leave-one-out experiments, where in each exper-
iment one shape was left out as the test shape and the rest were
used as the training shapes. In the same experiments, the median
absolute distance is calculated as 0.47 ± 0.27 mm.

We show qualitative results for the experiments on 43 ear
impression surfaces in Fig. 7, where the estimated hearing aid shells
are observed as superimposed over the input surfaces and with the
ground truth shapes. As demonstrated by the quantitative results
in Table 1, and the visual observations, the estimated shells are in
good agreement with the expected shells, particularly in the canal
region, and the interaction between the coupled shape prior, the

Table 1
Mean ± standard deviation values of the Dice measure and the median absolute
distance between the estimated surface and the ground truth surface for the hearing
aid shell dataset.

Hearing aid shell dataset Dice overlap (%) Median absolute distance (mm)

43 leave-one-out tests 85.01 ± 4.90 0.47 ± 0.27

Table 2
Mean ± standard deviation values of the Dice measure and the median absolute
distance between the estimated surface and the ground truth surface using the pro-
posed approach, compared for different number of training shapes in the hearing
aid shell dataset.

Number of training samples Dice overlap (%) Median absolute
distance (mm)

Tests with N = 33 shapes 84.53 ± 6.29 0.53 ± 0.37
Tests with N = 23 shapes 84.26 ± 7.32 0.58 ± 0.43
Tests with N = 13 shapes 83.10 ± 7.43 0.67 ± 0.44

data, and the smoothness forces aid each other to drive the initial
template surface to the correct solution.

3.1.2. Effect of training sample size
Theoretically, by using kernel density estimation functions (Eqs.

(5) and (6)), a large number of samples are required. In real clinical
applications, however, the number of training shape instances is
usually limited. We present some results with different number
of training samples to explore effect of number of training shapes
over the proposed method. The validation studies were carried on
the full data set with N = 43 samples in Section 3.1.1, therefore, we
tested with the following three different sample sizes: N = 33, 23,
and 13 in Eq. (21). The same performance measures of Table 1 are
reported in Table 2. The results depicted show that when compared
to those in Table 1, as the number of shapes in the sample set is
reduced, a slight decrease in both the Dice measure and an increase
in the distance between the shapes is observed, as expected.

One should cautiously interpret these results since the total
number of shapes in our data set were limited, and with much larger
datasets, substantial increase or decrease in the number of shapes
may cause more significant performance changes. However, still,
for a well-sampled data set, which contains a range of expected
variations in a given anatomical shape class, the obtained results
indicate that the coupled shape prior term, even with a smaller
number of training shapes, helps constrain the data term ade-
quately to converge to a reasonable expected output shape. Note
that the fact that by construction, the initial surface will always
completely deform towards the input raw surface, e.g. the full ear
impression, by the data term without the coupled shape prior term,
points to importance of employing the latter, even with a small
number of available training shapes.

3.1.3. Comparison
We have implemented part of the technique by [13] to which we

compare our method. Their method applies traditional statistical
modeling approach to both shape spaces, i.e. the input surfaces and
the output surfaces. After projecting the input and output shapes
onto a shape space modeled with Gaussian probability densities,
the method in [13] finds a transformation T between these two
shape spaces. Given a new input shape, the transformation T is used
to transfer the input shape into the desired output shape related to
the input shape. Let us call this the direct shape estimate as a result
of using the traditional statistical model. As this technique assumes
an inherent Gaussian density, and the class of shapes are not guar-
anteed to lie on a linear space, i.e. cannot be exactly expressed by
adding modes of variations around an average template shape, the
authors have proposed additional steps by estimating an auxiliary
class of shapes, referred to as the mask shapes, using the difference
shape between the input and the output shape. This is followed by
fitting planes to the estimated auxiliary shape and finally deform-
ing the direct shape estimated in the first stage using the plane
constraints. Here, for a fair comparison, we implement and use the
direct shape estimate without further constraints to compare with
our approach.



Fig. 7. Visualizations from ear impression/hearing aid surface experiments (left-to-right): input surface (green), ground truth (blue), surface estimate result (red), along with
the ground truth, and with the input surface depict highly overlapping, close to true solutions. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of the article.)

Table 3
Mean ± standard deviation values of the Dice measure and the median absolute
distance between the ground truth surface and the direct surface estimate using a
more traditional statistical shape modeling approach [13] for the hearing aid shell
dataset.

Traditional stat. approach Dice overlap (%) Median absolute
distance (mm)

10 leave-one-out tests 75.45 ± 7.52 1.16 ± 0.50

Table 3 presents the results of 10 test shapes that were not used
in the training of the traditional statistical approach. The computed
Dice measure was 75.45 ± 7.52 (mean ± std deviation), and the
median absolute distance between the ground truth surface and
the direct shape estimate was 1.16 ± 0.50 mm. As N = 33 shapes
were used in the data set, the comparison was done against the cor-
responding experiment with the same sample size in the proposed
method. It can be observed from Table 2 (first row) and Table 3 that
the non-parametric probability density modeling of the input and
output shape spaces achieves closer results to the expected shape.
Fig. 8 depicts some visualizations from the results obtained using
this approach, which qualitatively shows the degraded perfor-
mance. The resulting estimated surfaces (red) display the expected
character of a certain number of variations added around an aver-
age shape, and although they depict the global characteristics of the

ground truth, i.e. the desired output shape (gray), they fall slightly
short of producing the local variations of the desired shapes. This
is a natural behavior expected from using the Gaussian probability
density modeling over the shape spaces. This was the very reason
to use a nonparametric probability density modeling of the shape
spaces as proposed in this paper.

3.2. Pre-op to intra-op anatomic shape estimation

In surgical planning and medical interventional guidance, pre-
operative and intra-operative information and observations over
a patient’s anatomy are crucial. To improve the steps of surgical
processes, usually high resolution pre-operative (pre-op) medical
images of the patient are acquired to create a detailed planning
model for the organ to be operated and its surrounding regions.
During the surgery, fast intra-operative (intra-op) images of the
patient are often acquired, and registered to and fused with the
pre-op information to help with the surgical navigation and inter-
vention. In situations where an intra-op model of the organ to be
operated is not available (since an intra-op scan is not required in
some operations), an analysis of the morphometric changes in an
organ before and during surgery may be useful. In this paper, as
a second application of the method we proposed, we model how
the prostate surfaces deform from a pre-op to intra-op scenario.

Fig. 8. Shape estimation results using Gaussian density modeling of shape spaces, (in each box): input surface (blue); surface estimate result (red) overlaid transparently on
ground truth surface (gray), as expected falls a little short of modeling nonlinear local variations in shapes as opposed to the nonparametric modeling approach proposed.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)



In Fig. 9, samples from the prostate dataset which included pre-
op/intra-op shape pairs: the pre-op surfaces (visualized in green),
the intra-op surfaces (visualized in blue), and both surfaces super-
imposed are depicted. It can be observed that the pre-op surface
has mainly blob-like features and the intra-op surface has mainly
heart-like features with a more pointed-tip at the bottom and flat
geometry at the top. It is anatomically known that prostate is a
highly deformable organ, therefore modeling the deformations of
the prostate and directly relating its pre-op state to its intra-op
state is a challenging problem.

In this paper, we proposed mainly a probabilistic mathemati-
cal approach to describe the relation between inter-related shapes.
For the prostate application, the coupled shape probability con-
straint we presented will produce a likely intra-op surface given
a pre-op prostate surface. The prostate dataset originally obtained
from Harvard’s Surgical Planning Laboratory included about 30 pre-
op and intra-op triangulated meshes with 1026 vertices, which
are pre-aligned. We voxelized the meshes and obtained signed
distance function representations of the prostate surfaces over a
100 × 100 × 100 grid. We then applied our proposed deformation
equation in (21) with the weights in the differential equation fixed
to: ˛ = 1, ˇ = 0, � = 1. The calculated mean surface of the intra-
op surfaces was used as the initial template surface, which was
propagated towards a final solution. The output shape, i.e. the
intra-op surface, is not directly constrained by the input shape,
i.e. the pre-op surface, but undergoes a form of expected defor-
mation. Therefore, a natural and direct data constraint term as in
the hearing aid application in Section 3.1 was not designed for the
prostate shape application. The corresponding weight ˇ was set to
zero to lift any input data influence over the deformation. Here,
as the shape term is the only influential force that drives an ini-
tial surface towards the desired result, the two parameters, the
Gaussian kernel size in the kernel density estimator, i.e. the ker-
nel widths in Eq. (23) gain importance. After experimenting with
various values of kernel widths, they were set to 1% and 0.5% of the
average distance between all surfaces in the dataset for the pre-op
surface kernel width �2

r and the intra-op surface kernel width �2
p ,

respectively.
Fig. 10 shows example intra-op surfaces obtained as a result of

the proposed deformation (21) rendered separately and superim-

Fig. 9. Input and output surfaces from prostate dataset (left-to-right): pre-op sur-
face (green), intra-op (blue), and depicted together. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)

Fig. 10. Sample surface estimation results from prostate dataset (left-to-right): esti-
mated intra-op surface (red), together with ground truth intra-op (blue) from two
different render view points. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

posed with the ground truth, which is the true intra-op surface
extracted as a result of manual segmentation from computed
tomography image data. The final surfaces are mostly in agree-
ment with the ground truth surfaces. Table 4 presents quantitative
results for 23 leave-one-out tests over the dataset. We note that the
two shape classes, i.e. the pre-op and intra-op already overlapped
considerably compared to the previous hearing aid application: the
Dice overlap and distance measures between the input and output
shape classes were 84 ± 4.19%, and 2.29 ± 0.71, respectively. Fur-
thermore, the initial template shape calculated as the mean surface
of all intra-op shapes also overlapped at 87% on average with the
true surfaces. As a result of applying our method, the calculated
Dice overlap measure between the estimated and the true intra-op
surface showed an increase to 92 ± 2.51%, mean ± standard devia-
tion, and the median absolute distance was reduced to 1.25 ± 0.36
voxels.

3.3. Discussion

We show typical problems in the surface estimation of the hear-
ing aid shells in Fig. 11. On the given typical samples, it can be
observed that the surface has slightly propagated past the top and
bottom ends of the canal (Fig. 11: second from the right). Most
of the errors are concentrated around these regions where a tight
data constraint does not exist but mainly a probabilistic shape
constraint drives the solution. A solution to such a problem can
be to incorporate further anatomical constraints through features

Table 4
Mean ± standard deviation values of the Dice measure and the median absolute
distance between the estimated surface and the ground truth surface for the prostate
dataset.

Prostate pre-op/intra-op dataset Dice overlap (%) Median absolute
distance (voxels)

Pre-op surface to intra-op 84 ± 4.19 2.29 ± 0.71
23 leave-one-out test results to

intra-op
92 ± 2.51 1.25 ± 0.36



Fig. 11. Hearing aid data: typical problems in the surface estimates (in red) appear in the canal tip and bottom ends, rendered along with the ground truth (in blue) hearing
aid shell surfaces, and input raw ear impression (in green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
article.)

Fig. 12. Prostate data: problems in the surface estimation: estimated intra-op surfaces (in red) rendered along with the ground truth intra-op surfaces (in blue) and pre-op
surfaces (in green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

extracted over the given anatomic shape. An anatomic region seg-
mentation, a surface atlas, on the ear impression surface could
provide restricted propagation and limit the amount of overflow
from both sides. Nevertheless, we should note that the coupled
shape prior term we presented generally restrained the deform-
ing surface successfully to the canal region and produced a likely
feasible shape as validated by the quantitative results in Section
3.1.1.

In the prostate application, problems arise due to the fact that a
regularly defined relation between the pre-op and intra-op surfaces
of the prostate does not always exist, as prostate can arbitrarily
deform in some situations. Some problems in the surface estima-
tion of the intra-op prostate are exemplified in Fig. 12. On the first
row, the intra-op surface (blue) does not exhibit the pointed-tip fea-
ture at the bottom of the expected heart-like shape, however, the
shape prior term drives it past the true geometry (blue) expect-
ing such a pattern. The situation on the second row is worse, as
the true intra-op surface has an upward bulging unlike most of the
other intra-op surfaces in the dataset. The coupled shape prior term
drives the template towards again an expected heart-like geome-
try, which is flat at the top and pointed at the bottom (surface in
red).

Another limitation here is that in both applications, the vox-
elization operation we carried out has decreased the resolution of
the shapes to a 1003 voxel grid, which optimized our memory and
computation constraints. A typical estimation through our defor-

mation equation implemented in MatlabTM currently takes a few
minutes. The resolution and computational speed can be increased
with more optimized coding and hardware.

On a final remark, we note that our gradient descent solution
to the energy functional, which is composed of a coupled shape
prior, a data term, and a smoothness term, is non-convex, hence
produces locally optimal solutions. Furthermore, the energy terms
are combined in a weighted fashion, hence there is an inter-play
among the different constraints. For the hearing aid experiments,
we fixed the weights in Eq. (21): the coupled shape prior weight
˛ = 1, the data weight ˇ = 1, the smoothness weight � = 1, and for
the prostate shape application the weights were fixed to: ˛ = 1,
ˇ = 0, � = 1. The two other parameters, the kernel widths, were
also fixed for both applications as reported in Sections 3.1 and 3.2.
One can of course explore the space of parameters to further fine
tune the parameters for a specific application.

4. Conclusion

This paper presents a method that uses a coupled shape model-
ing for automatic generation of a surface that belongs to an output
shape class given a surface from a related input shape class. A ker-
nel density estimator approach is utilized for modeling the shape
spaces via a joint non-parametric probability density estimator,
and a conditional probability density function is derived for the
prediction problem also constrained by the data terms and other



regularization terms such as the mean curvature flow. The main
idea in this paper can be expanded or augmented by adding other
prior knowledge about the process or anatomic information such
as features extracted on a pair of input and output surfaces, which
can improve the performance. Further large scale testing for rapid
prototyping applications are required for an extensive validation
of the methodology, however, our studies have demonstrated the
potential of our method to be successfully used in such applications.
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