76 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Reliability-Aware Design for Nanometer-Scale Devices, January 2008

    Get PDF
    Continuous transistor scaling due to improvements in CMOS devices and manufacturing technologies is increasing processor power densities and temperatures; thus, creating challenges to maintain manufacturing yield rates and reliable devices in their expected lifetimes for latest nanometer-scale dimensions. In fact, new system and processor microarchitectures require new reliability-aware design methods and exploration tools that can face these challenges without significantly increasing manufacturing cost, reducing system performance or imposing large area overheads due to redundancy. In this paper we overview the latest approaches in reliability modeling and variability-tolerant design for latest technology nodes, and advocate the need of reliability-aware design for forthcoming consumer electronics. Moreover, we illustrate with a case study of an embedded processor that effec- tive reliability-aware design can be achieved in nanometer-scale devices through integral design approaches that covers modeling and exploration of reliability effects, and hardware-software architectural techniques to provide reliability-enhanced solutions at both microarchitectural- and system-level

    DeSyRe: On-demand system reliability

    Get PDF
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect-/fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints. (C) 2013 Elsevier B.V. All rights reserved

    Efficient Power Management for Heterogeneous Multi-Core Architectures

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    A survey of cross-layer power-reliability tradeoffs in multi and many core systems-on-chip

    Full text link
    As systems-on-chip increase in complexity, the underlying technology presents us with significant challenges due to increased power consumption as well as decreased reliability. Today, designers must consider building systems that achieve the requisite functionality and performance using components that may be unreliable. In order to do so, it is crucial to understand the close interplay between the different layers of a system: technology, platform, and application. This will enable the most general tradeoff exploration, reaping the most benefits in power, performance and reliability. This paper surveys various cross layer techniques and approaches for power, performance, and reliability tradeoffs are technology, circuit, architecture and application layers. © 2013 Elsevier B.V. All rights reserved

    Design of Thermal Management Control Policies for Multiprocessors Systems on Chip

    Get PDF
    The contribution of this thesis is a thorough study of thermal aware policy design for MPSoCs. The study includes the modelling of their thermal behavior as well as the improvement and the definition of new thermal management and balancing policies. The work is structured on three main specific disciplines. The areas of contributions are: modeling, algorithms and system design. This thesis extends the field of modeling by proposing new techniques to represent the thermal behavior of MPSoCs using a mathematical formalization. Heat transfer and modelling of physical properties of MPSoCs have been extensively studied. Special emphasis is given to the way the system cools down (i.e. micro-cooling, natural heat dissipation etc.) and the heat propagates inside the MPSoC. The second contribution of this work is related to policies, which manage MPSoC working frequencies and micro-cooling pumps to satisfy user requirements in the most effective possible way, while consuming the lowest possible amount of resources. Several families of thermal policies algorithms have been studied and analyzed in this work for both 2D and 3D MPSoCs including liquid cooling technologies. The discipline of system design has also been extended during the development of this thesis. Thermal management policies have been implemented in real emulation platforms and contributions in this area are related to the design and implementation of proposed innovations in real MPSoC platforms

    Cost-Efficient Soft-Error Resiliency for ASIP-based Embedded Systems

    Full text link
    Recent decades have witnessed the rapid growth of embedded systems. At present, embedded systems are widely applied in a broad range of critical applications including automotive electronics, telecommunication, healthcare, industrial electronics, consumer electronics military and aerospace. Human society will continue to be greatly transformed by the pervasive deployment of embedded systems. Consequently, substantial amount of efforts from both industry and academic communities have contributed to the research and development of embedded systems. Application-specific instruction-set processor (ASIP) is one of the key advances in embedded processor technology, and a crucial component in some embedded systems. Soft errors have been directly observed since the 1970s. As devices scale, the exponential increase in the integration of computing systems occurs, which leads to correspondingly decrease in the reliability of computing systems. Today, major research forums state that soft errors are one of the major design technology challenges at and beyond the 22 nm technology node. Therefore, a large number of soft-error solutions, including error detection and recovery, have been proposed from differing perspectives. Nonetheless, most of the existing solutions are designed for general or high-performance systems which are different to embedded systems. For embedded systems, the soft-error solutions must be cost-efficient, which requires the tailoring of the processor architecture with respect to the feature of the target application. This thesis embodies a series of explorations for cost-efficient soft-error solutions for ASIP-based embedded systems. In this exploration, five major solutions are proposed. The first proposed solution realizes checkpoint recovery in ASIPs. By generating customized instructions, ASIP-implemented checkpoint recovery can perform at a finer granularity than what was previously possible. The fault-free performance overhead of this solution is only 1.45% on average. The recovery delay is only 62 cycles at the worst case. The area and leakage power overheads are 44.4% and 45.6% on average. The second solution explores utilizing two primitive error recovery techniques jointly. This solution includes three application-specific optimization methodologies. This solution generates the optimized error-resilient ASIPs, based on the characteristics of primitive error recovery techniques, static reliability analysis and design constraints. The resultant ASIP can be configured to perform at runtime according to the optimized recovery scheme. This solution can strategically enhance cost-efficiency for error recovery. In order to guarantee cost-efficiency in unpredictable runtime situations, the third solution explores runtime adaptation for error recovery. This solution aims to budget and adapt the error recovery operations, so as to spend the resources intelligently and to tolerate adverse influences of runtime variations. The resultant ASIP can make runtime decisions to determine the activation of spatial and temporal redundancies, according to the runtime situations. At the best case, this solution can achieve almost 50x reliability gain over the state of the art solutions. Given the increasing demand for multi-core computing systems, the last two proposed solutions target error recovery in multi-core ASIPs. The first solution of these two explores ASIP-implemented fine-grained process migration. This solution is a key infrastructure, which allows cost-efficient task management, for realizing cost-efficient soft-error recovery in multi-core ASIPs. The average time cost is only 289 machine cycles to perform process migration. The last solution explores using dynamic and adaptive mapping to assign heterogeneous recovery operations to the tasks in the multi-core context. This solution allows each individual ASIP-based processing core to dynamically adapt its specific error recovery functionality according to the corresponding task's characteristics, in terms of soft error vulnerability and execution time deadline. This solution can significantly improve the reliability of the system by almost two times, with graceful constraint penalty, in comparison to the state-of-the-art counterparts
    corecore