
Efficient Power Management for
Heterogeneous Multi-Core

Architectures

Thannirmalai Muthukaruppan Somu

(B.S, State University of New York, Buffalo, 2009)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

� I hereby declare that this thesis is my original work and it has been written

by me in its entirety.

� I have duly acknowledged all the sources of information which have been

used in the thesis.

� This thesis has also not been submitted for any degree in any university

previously.

Thannirmalai Muthukaruppan Somu

July 2014

i

Acknowledgements

The research contributions in this thesis would not have been possible without

the guidance, advice, mentorship and supervision of several people.

First and foremost, I would like to express my deepest gratitude to my advisor

Tulika Mitra. I still remember the day when I joined her group. I was raw and

lacking all the essential skills required to become a good researcher. Not to men-

tion that my knowledge in computer architecture was near zero. She was patient

and successful in transforming me into a decent researcher despite being a high-

maintenance student. Throughout the years, I have acquired valuable knowledge

from her, which helped me grow both professionally and personally. Her vision,

commitment and ambition towards good quality contributions have shaped my

personality in many ways. Her level of commitment to the most intricate details

of a problem has always amazed me. She has always been supportive and caring,

especially during my difficult times. I feel eternally indebted to her and respect

her as a son respects a caring mother.

Besides my advisor, I would like to thank Prof. Wong Weng Fai and Prof. Colin

Tan for their invaluable and intriguing comments that has shaped this research

work. I am highly indebted to Cambridge Silicon Radio plc (CSR) for their

generous financial and logistics (board) support without which this thesis would

not have been possible. I am also very thankful to thank Sanjay Vishin from

CSR for all the productive discussions. His critical thinking and intellectual

foundation have influenced the contributions in this thesis in many ways.

There is no shortage of my fellow colleagues and collaborators to thank. First,

I would like to sincerely thank Haris Javaid from UNSW. Haris has made me

understand on how to present an idea to a wider audience in a convincing manner.

I will remember his mentorship and guidance for life. From the day I joined the

eCO lab (that is what we call ourselves now), Mihai has always been there to

ii

listen, comment, positively criticize and support in all my research endeavours.

I thank him for showing me how a researcher should quantitatively evaluate an

idea in an effective manner. I would like to thank Vanchi for patiently listening

to my rants, crazy ideas and philosophical believes. And more importantly he

was instrumental in keeping me sane in the lab. The best time of my PhD was

during my collaborations with Mihai and Vanchi. Thanks guys for giving an

awesome and memorable time. I am grateful for Chen Liang for traveling this

journey of PhD together in all the ups and downs. I would also like to thank

Anuj for his support. His eagerness to develop numerous ideas in very short

span is astonishing. I would like to thank all my lab mates: Huping, Chundong,

Sudipta, Alok, Lee Kee, Tan Cheng, Henry and Jiao Qing for keeping an healthy

research environment. A special thanks goes to Mahesh, without whom I would

have never met my advisor.

I was fortunate enough to meet lots of nice people in Singapore. Their friendship

and kindness helped me sail through the ups and downs of my life in Singapore.

Each and everyone one of them have touched my heart in a very positive manner.

Thanks to P-boy, SK, Director, Kauntz, Raaju, Poli samiyar, PM and Gii. I

thank all the mamis (SK, P-boy and TKB wives) for providing enough home

cooked and healthy food. My sincere thanks goes to Badri Mama, Manavalan

Mama and TKB for enriching the spiritual side of my life. A special thanks goes

to Ancy Alexander for his guidance about life in general.

Last, but certainly not the least, I would like to acknowledge my family. I would

not be who I am today without their support. I owe everything to my family.

Mani, my brother, has been instrumental in supporting and guiding me in all

the major crucial phases of my life. I am always grateful for his passion to see

me grow in life. Appa and Amma have always trusted and encouraged me in

numerous ways. Appa, you have always been a great role model for me right

iii

from my childhood. Amma, as a token of your immeasurable love and support I

would like to dedicate this thesis to you.

iv

Contents

Declaration i

Acknowledgements ii

Contents v

Abstract xi

List of Tables xiii

List of Figures xv

Related Publications xx

1 Introduction 1

1.1 Motivation and Objective . 1

1.2 Contributions . 5

1.2.1 Run-time technique . 6

1.2.1.1 Predictive power management 6

1.2.1.2 Reactive power management 7

v

Contents

1.2.1.3 Lifetime-reliability aware power management . . 8

1.2.2 Design-time technique . 8

1.3 Organization . 9

2 Related Work 10

2.1 Static technique - Static architecture 10

2.1.1 DVFS . 11

2.1.2 Processor customization 11

2.1.3 Cache customization . 12

2.1.4 DVFS and processor customization 12

2.1.5 DVFS and task mapping 12

2.1.6 Processor customization and task mapping 13

2.1.7 Processor customization and cache customization 13

2.2 Dynamic technique - Static architecture 13

2.2.1 Homogeneous Multi-cores 14

2.2.2 Heterogeneous Multi-cores 15

2.2.3 Computational Economics 16

2.2.4 Power-Performance Model 17

2.3 Dynamic technique - Dynamic architecture 17

3 Power-Performance Modeling on Heterogeneous Multi-cores 19

3.1 ARM big.LITTLE architecture 22

3.2 Performance Modeling . 25

3.2.1 CPIsteady estimation . 29

vi

Contents

3.2.2 CPI stack model of big core 30

3.2.3 CPI stack model of small core 32

3.2.4 Latency of miss events and performance counters 33

3.2.5 Contribution of CPI stack components 34

3.3 Inter-core miss estimation . 35

3.4 Power Modeling . 39

3.5 Runtime Scheduler . 42

3.5.1 Performance Estimation 43

3.5.2 Energy Estimation . 43

3.6 Experimental Evaluation . 43

3.6.1 Performance estimation accuracy 46

3.6.2 Power estimation accuracy 50

3.6.3 Phase behavior . 50

3.6.4 Asymmetric vs Symmetric multi-core 51

3.7 Summary . 52

4 Hierarchical Power Management 54

4.1 ARM big.LITTLE architecture 57

4.1.1 Impact of DVFS . 58

4.1.2 Impact of active cores on cluster power 58

4.1.3 Migration Cost . 59

4.2 Power Management Framework 60

4.2.1 Per-Task Resource Share Controller 63

vii

Contents

4.2.2 Per-Cluster DVFS Controller 64

4.2.3 Chip-Level Power Allocator 64

4.2.4 Per-Task QoS Controller 66

4.2.5 Load Balancer and Migrator 66

4.3 Experimental Evaluation . 67

4.3.1 Implementation Details 67

4.3.2 Results . 70

4.4 Summary . 78

5 Price Theory based Power Management 79

5.1 System Overview . 80

5.2 Power management Framework 82

5.2.1 Agents Overview . 84

5.2.2 Supply-Demand Module 85

5.2.2.1 Task Dynamics 86

5.2.2.2 Cluster Dynamics 87

5.2.2.3 Chip Dynamics 89

5.2.2.4 Stability of the Supply-Demand module 94

5.2.3 Load Balancing and Task migration (LBT) module 96

5.2.3.1 Stability of the LBT module 101

5.2.4 Invocation Frequency . 102

5.3 Experimental Evaluation . 103

5.3.1 Experimental Setup . 103

viii

Contents

5.3.2 Workload Selection . 104

5.3.3 Comparative Study . 107

5.3.4 Impact of priorities and savings 110

5.3.5 Scalability . 112

5.4 Summary . 114

5.5 Future Work . 115

6 Dynamic Reliability Management 116

6.1 Parameter Selection . 120

6.2 Dynamic Reliability Management 123

6.2.1 Naive Bayesian Classifier 124

6.2.2 Performance Prediction Model 126

6.2.3 Search Space Pruning . 129

6.3 Experimental Evaluation . 130

6.4 Summary . 132

7 Energy-Aware Synthesis of Application Specific MPSoCs 133

7.1 Problem Formulation . 137

7.2 Proposed Framework . 140

7.2.1 Profiler . 141

7.2.2 Latency and Energy Estimation 142

7.2.2.1 Accurate (Acure) Estimator 142

7.2.2.2 Fast Estimator 146

7.2.3 Design Space Exploration 148

ix

Contents

7.2.3.1 Prune and Search (Push) Algorithm 148

7.2.3.2 Map and Customize (MaC) Heuristic 150

7.3 Experimental Methodology . 153

7.4 Results . 155

7.5 Summary . 158

8 Conclusions 159

9 Future Work 160

Bibliography 162

x

Abstract

Relentless Complementary Metal-Oxide Semiconductor (CMOS) scaling at deep

sub-micron level has resulted in increased power density in microprocessor, which

forced the computing systems to move in the direction of parallel architectures

with homogeneous multi-cores. However, the emergence of dynamic and diverse

workloads combined with the failure of Dennard Scaling facilitated the growth of

heterogeneous multi-cores. The presence of heterogeneity enables better match

between application demand and computation capabilities leading to substan-

tially improved performance and energy-efficiency. In spite of significant benefits

in terms of both performance and energy consumption, the heterogeneous multi-

core systems introduce many of design and scheduling challenges. In this thesis,

we address various challenges involved in designing heterogeneous multi-cores.

In the first part of this thesis, we focus on developing power management schemes

for heterogeneous multi-cores that can satisfy application’s demand with low en-

ergy consumption under the Thermal Design Power (TDP) constraint. First, we

develop a performance and power model of heterogeneous cores having differ-

ent performance and power consumption characteristics that can be used in any

predictive scheduling approach. Second, we propose two reactive power man-

agement frameworks: Hierarchical Power Management (HPM) and Price theory

based Power Management (PPM). All the aforementioned dynamic power man-

agement frameworks were evaluated on a real Advance RISC Machines (ARM)

big.LITTLE heterogeneous multi-core platform. Our experimental evaluations

establish the superiority of the power management schemes compared to the ex-

isting state-of-the-art techniques. Lastly, we propose a power-aware dynamic re-

liability management technique that can meet both reliability and thermal/power

constraints, while optimizing the performance.

In the second part of this thesis, we propose a comprehensive framework that

help to design the most energy-efficient application-specific Multi-Processor Sys-

tem on Chips (MPSoCs). We model the synthesis of energy-efficient MPSoC

as a design space exploration problem involving four design parameters: DVFS,

processor customization, cache customization and task mapping. Experiments

reveal that our framework can reduce energy consumption compared to solutions

obtained from a combination of existing techniques.

Overall in this thesis, we address power consumption related challenges exhibited

in heterogeneous multi-core systems by proposing both static and dynamic power

management techniques. While the first part of the thesis focuses on the dynamic

techniques, the second part elaborates the static solutions.

xii

List of Tables

3.1 Architectural Parameters of Cortex-A7 and Cortex-A15 23

3.2 Estimated latency in cycles for miss events on A15 and A7 . . . 33

3.3 Hardware Performance Counters on A15 and A7 33

3.4 Training and Test Benchmarks 45

4.1 Migration Cost within cluster in usec. 59

4.2 Migration Cost in msec from A7 to A15 cluster. 60

4.3 Migration Cost in msec from A15 to A7 cluster. 60

4.4 Controller Features. 61

4.5 Linux kernel modifications. 69

4.6 Benchmarks description. 70

4.7 Heartbeats in QoS benchmarks. 70

4.8 Controller Parameters. 71

4.9 Quantitative comparison of HPM with Linaro scheduler. 74

5.1 Task and Core Level Dynamics Example 87

5.2 Cluster Level Dynamics Example 88

5.3 Chip Level Dynamics Example 93

xiii

List of Tables

5.4 Illustration of conversion from heart rate to demand with min and

max heart rate being 24 hb/s and 30 hb/s respectively. 104

5.5 Benchmarks description . 105

5.6 Workload Sets . 106

5.7 Computational overhead for varying number of clusters V , cores

per cluster C, and tasks per core T 114

7.1 Cache state across iterations of a task. 144

7.2 Maximum error in the Acure and Fast estimators. 155

7.3 Exploration time (in secs) of optimization techniques. 157

xiv

List of Figures

1.1 Dennard’s constant field scaling. 2

1.2 Overall Contributions of the thesis. 6

1.3 ARM big.LITTLE asymmetric multi-core. 8

3.1 Performance improvement, energy consumption ratio and EDP

ratio of A15 in comparison to A7. 25

3.2 Inter-core performance, power estimation from P to P ′. 26

3.3 Estimated CPIsteady and CPImiss of different inputs for the same

benchmark on A7 and A15. 27

3.4 Estimation of steady state CPI of a program using gcc. 29

3.5 Estimated CPI stack components on A7 and A15 for a subset of

benchmarks. 34

3.6 Online scheduler with power-performance estimation. 42

3.7 Intra-core model validation accuracy using CPIsteady obtained

through compile-time analysis compared to the accuracy assuming

CPIsteady = 1/D . 47

xv

List of Figures

3.8 CPI stack model fitting error on training benchmarks, intra-core

model validation error using test benchmarks and inter-core CPI

estimation error for Cortex-A7 (top row) and Cortex A-15 (bot-

tom row). 48

3.9 Power model fitting error on training benchmarks, intra-core model

validation error using test benchmarks and inter-core power esti-

mation error for Cortex-A15. 48

3.10 Contiuous CPI and power estimation from A7 to A15 for astar

benchmark. 51

3.11 Comparison of percentage of time heart rate was met between

symmetric and asymmetric multi-core. 52

3.12 Comparison of energy consumption between symmetric and asym-

metric multi-core . 52

4.1 Power and heart rate with varying frequency. 57

4.2 Impact of number of active cores on cluster power. 58

4.3 Feedback based Controller. 60

4.4 Overview of the hierarchical power management system coordi-

nating multiple controllers. 61

4.5 Picture of the Vexpress board. 68

4.6 x264: Heart rate on symmetric & asymmetric multi-core. 72

4.7 HPM versus stock Linaro scheduler equipped with DVFS governor

and inter-cluster migration. 74

xvi

List of Figures

4.8 Frequency and power consumption plot (HPM versus stock Linaro

scheduler). 75

4.9 Comparison of HPM and Linaro extended with cluster switch-off

policy under TDP constraint. 76

4.10 Fairness of non-QoS tasks. 77

5.1 Agent Interaction Overview . 83

5.2 Task Migration in Constrained Core. 100

5.3 Comparison of the percentage of time the tasks do not meet the

reference heart rate range (no TDP constraint). 108

5.4 Comparison of power consumption (no TDP constraint). 108

5.5 Comparison of the percentage of time the tasks do not meet the

reference heart rate range under TDP constraint of 4W. 109

5.6 Normalized performance of swaptions and bodytrack where [0.95,1.05]

is the normalized performance goal. 110

5.7 Normalized performance of swaptions and x264 when [0.95, 1.05]

is the normalized performance goal. 111

6.1 MTTF vs. Performance for different adaptation mechanisms for

the benchmark bzip2 . 118

6.2 MTTF vs. temperature for different architectural configurations

for the benchmark crafty . 119

6.3 Performance-reliability tradeoff. 121

6.4 Performance-temperature tradeoff. 122

xvii

List of Figures

6.5 Comparison of different DRM techniques 131

6.6 Time varying trends for bzip2. 132

7.1 Comparison of ‘independent’ and ‘integrated’ optimization tech-

niques. 135

7.2 (a)Task graph (b)MPSoC architecture. 138

7.3 Different task mappings on an MPSoC. 140

7.4 Framework Overview. 141

7.5 Illustration of Push algorithm. 149

7.6 Illustration of map stage: (a)Task graph (b)Task sequencing (c)Different

task mappings. 152

7.7 Illustration of customize stage. 152

7.8 Comparison of different optimization techniques, normalized to

Acure-Push. 156

7.9 Error distribution in different optimization techniques for SA3

application. 156

xviii

For Amma, Appa and Mani. . .

xix

Related Publications

T. S. Muthukaruppan, and T. Mitra. Lifetime Reliability Aware Architectural

Adaptation. In IEEE International Conference on VLSI Design and 2013 12th

International Conference on Embedded Systems (VLSID), 2013.

T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra and S. Vishin.

Hierarchical power management for asymmetric multi-core in dark silicon era.

In ACM Proceedings of the 50th Annual Design Automation Conference (DAC),

2013.

M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra and S. Vishin.

Power-performance modeling on asymmetric multi-cores. In IEEE International

Conference on Compilers, Architecture and Synthesis for Embedded Systems

(CASES), 2013.

T. S. Muthukaruppan, H. Javaid, T. Mitra and S. Parameswaran. Energy-aware

synthesis of application specific MPSoCs. In IEEE International Conference on

Computer Design (ICCD), 2013.

T. S. Muthukaruppan, A. Pathania and T. Mitra. Price theory based power

management for heterogeneous multi-cores. In ACM Architectural Support for

Programming Languages & Operating Systems (ASPLOS), 2014.

xx

Chapter 1

Introduction

In the modern era, computers have penetrated all facets of human life. They have

revolutionized the way we think, interact and perform our day-to-day activities.

One of the reasons for this indispensable addiction is the variety of features that

they offer such as recreation, health-care, transportation etc. We use computers

in various forms and sizes such as laptops, tablets, smart phones, etc. even

being oblivious to their presence at times. The increasing number of computing

devices have inevitably led to an increasing demand on energy resources. Hence,

it is crucial to develop energy-efficient computers – a design choice that helps

in designing computers that are small, fast, efficient and generate less heat.

Heterogeneous computing has emerged as a popular design option for realizing

energy-efficient computers. In this thesis, we discuss and develop heterogeneous

systems that have a positive impact on the energy consumption.

1.1 Motivation and Objective

The significant compound annual growth rate of 14% [6] for the microproces-

sor industry in the past 40 years is heavily attributed to the success of Moore’s

law [85], which states that the number of transistors doubles once every eighteen

1

Chapter 1. Introduction

Dimensions 0.7x

Voltage 0.7x

Doping Concentrations 0.7x

Area 0.5x

Capacitance 0.7x

Frequency 1.4x

Power 0.5x

Figure 1.1: Dennard’s constant field scaling.

months. This is achieved by scaling various transistor dimensions like chan-

nel length, channel width, and oxide thickness. The main challenge in inte-

grating more transistors across generations is to prevent the chip from melt-

ing. It is in fact the Dennard Scaling [30] that has enabled the success of

Moore’s law for the past 40 years. Figure 1.1 shows the scaling factor for

Dennard’s constant electric field scaling. According to Dennard Scaling, for

complementary metal–oxide–semiconductor (CMOS) transistors, scaling the di-

mensions, voltage and doping concentrations by 0.7 times results in an area

reduction of 0.5 times of the original transistor. Similarly, the capacitance re-

duces by a factor of 0.7 times, while the frequency increases by a factor of 1.4

times. The dynamic power consumption of a transistor is given by the formula

Capacitance×Frequency×V oltage2. Therefore, for constant electric field, ide-

ally the power consumption of the transistor reduces by the factor of 0.5 times.

Therefore, at every new process technology, the power consumption scales by the

same factor as the area, which results in constant power density in the chip. It

is the fusion of Moore’s law with Dennard Scaling that resulted in exponential

performance increase in microprocessors.

Unfortunately, Dennard Scaling has started failing in recent generations due to

the relatively slow scaling of supply voltage, resulting in increased dynamic power

density. The non-ideal scaling of supply voltage is attributed to the following

reasons: a) need for higher performance, which can be obtained only at high

2

Chapter 1. Introduction

supply voltage and b) relatively stagnant threshold voltage to control the static

power consumption. Thus, as more and more of transistors are integrated in the

same area in the future generations, the power density will increase rapidly. The

increase in power density has resulted in increase in on-chip temperature of the

microprocessors. High on-chip temperatures can affect the following features:

• Leakage Power: There exists positive feedback relationship between the

leakage power and the temperature [77, 112]. Increase in temperature

results in increasing the leakage power, which in turn can increase the

temperature resulting in a thermal runway.

• Reliability: Extensive studies [108] have shown that the lifetime reliabil-

ity of microprocessors is significantly affected by the high on-chip temper-

atures. The advent of various failure mechanisms like electro migration,

stress migration, gate oxide breakdown, and thermal cycles surges with

high on-chip temperature.

Traditionally, the researchers have relied upon packaging and cooling technolo-

gies (heat sink, convection resistance, fan etc.) to bring down the high temper-

atures in modern microprocessors. The maximum power dissipation handled by

the given packaging and cooling solutions is defined as Thermal Design Power

(TDP). The chips with higher TDP limits have better cooling solutions. Unfor-

tunately, as we are already in the era of mobility, integrating advanced cooling

solutions to mobile devices is both expensive and infeasible. From the above dis-

cussions, it is clear that reducing power dissipation to lower on-chip temperature

is the most important design goal in modern high performance microprocessors.

For continued adherence to Moore’s law and to combat the increase in power

consumption, the computing systems have made an irreversible transition to-

wards parallel architectures with multi-cores and many cores. From the virtue

of the power model described in [86], for the same compute capability, the power

3

Chapter 1. Introduction

consumption of a dual core reduces by four times compared to that of a single

microprocessor. However, with continued non-ideal CMOS scaling, power and

thermal limits are rapidly bringing the computing community to another cross-

road where a chip can have many cores but a significant fraction of them are

left un-powered, or dark, at any point in time [37]. This phenomenon, known as

dark silicon, is immediately visible in the computing space due to the increas-

ing cooling costs of the chip. Furthermore, the emergence of sophisticated and

power hungry mobile applications like speech processing, pattern recognition,

audio/video editing etc. have further exacerbated the power challenges in the

mobile devices.

The dark silicon era is driving the emergence of heterogeneous multi-cores, which

exhibit diverse power/performance characteristics. Unlike homogeneous multi-

cores, exploiting the potential of heterogeneous multi-cores is not straightfor-

ward. First, the major challenge in designing heterogeneous multi-cores is how

to efficiently explore the complex design space so as to improve the efficiency of

the power-performance tradeoff. Secondly, for static and pre-designed heteroge-

neous multi-cores, the capability can only be fully exploited with a proper online

scheduling support. Hence, it is imperative that both the design of heterogeneous

multi-core and scheduling should be prudently crafted.

The most popular choice of mechanism for power reduction is dynamic voltage

and frequency scaling (DVFS). Few recent works [96, 108] have claimed that there

is a decrease in overall lifetime reliability of the microprocessors due to aggressive

power management policies. For example, frequent voltage-frequency (v-f) levels

transition can introduce thermal cycling, which can significantly reduce the mean

time to failure (MTTF) of the microprocessors. Hence, it is also important

to design power management scheme that has minimal impact on the lifetime

reliability.

4

Chapter 1. Introduction

The above discussions motivate the need for efficient power management schemes

for heterogeneous multi-cores that can exhibit following desirable features:

• The power should not be allowed to exceed the power budget defined by

TDP.

• The performance requirements of various applications have to be met under

the power budget with minimal energy consumption.

• The reduction in power consumption should not come at the expense of

sacrificing the lifetime reliability of the microprocessor.

To meet the above challenges and fulfill the objectives, we propose efficient power

management schemes in this thesis. This work investigates various power man-

agement schemes like DVFS, task migrations, load balancing, custom instruction

selection etc. in a detailed manner.

1.2 Contributions

This thesis makes following key contributions (as shown in Figure 1.2):

• We develop a power-performance model [92] for commercial heterogeneous

multi-core: ARM big.LITTLE. Our model can be deployed with any pre-

diction based dynamic power management scheme.

• We propose two reactive dynamic power management schemes based on

the strong foundations of control theory [90] and price theory [89].

• We explore the effect of heterogeneity in terms of micro-architectural adap-

tation on the lifetime reliability of microprocessors [88].

• We also propose a comprehensive framework for synthesis of application

specific MPSoC for multimedia applications. Our framework searches for

5

Chapter 1. Introduction

a design with minimum energy consumption under area and period con-

straints [87].

Power
Management

Schemes

Design time
technique

Application
specific
MPSoC

Synthesis [85]

Run time
technique

Predictive
technique

Power-
Performance
model [90]

Lifetime
Reliability [86]

Reactive
technique

Control
Theory [88]

Price Theory
[87]

Static-arch Static-technique Static-arch Dyn-technique Dyn-arch Dyn-technique

Figure 1.2: Overall Contributions of the thesis.

1.2.1 Run-time technique

1.2.1.1 Predictive power management

The ability to estimate the performance/power characteristics for various work-

loads for each core type in heterogeneous multi-cores can solve the scheduling

challenges in determining the best workload-to-core mapping. Hence, in the first

contribution, we develop power-performance model for ARM big.LITTLE. While

an application is executing on ARM Cortex-A7 (alternatively ARM Cortex-A15),

we collect profile information provided by hardware counters, and estimate power

and performance characteristics of the same application on ARM Cortex-A15 (al-

ternatively ARM Cortex-A7). We evaluate the accuracy of our estimation on real

ARM big.LITTLE hardware platform. Our evaluations clearly states the accu-

racy of our power-performance model. We also develop a scheduling algorithm

6

Chapter 1. Introduction

based on the proposed estimation model for ARM big.LITTLE heterogeneous

multi-core.

1.2.1.2 Reactive power management

The second contribution of this thesis is to propose a dynamic power manage-

ment framework for heterogeneous multi-cores like ARM big.LITTLE in mobile

platforms, that can satisfy application’s demand expressed in terms of Quality of

Service (QoS) with low energy consumption under Thermal Design Power (TDP)

constraint. We propose two reactive run-time power management frameworks.

First, we propose Hierarchical Power Management (HPM) [90] for heterogeneous

multi-cores – in particular ARM big.LITTLE [7] (as shown in Figure 1.3) archi-

tecture in the context of mobile embedded platforms — that can provide satisfac-

tory user experience while minimizing energy consumption within the Thermal

Design Power (TDP) constraint. Our HPM framework is based on the solid

foundation of control theory and integrates multiple controllers to collectively

achieve the goal of optimal energy-performance tradeoff under restricted power

budget. Second, we propose Price theory based Power Management (PPM) [89]

for heterogeneous multi-cores that can contain any number of clusters of differ-

ent core types (unlike HPM which can handle only at most two clusters with

each containing different core types). Our PPM framework borrows strong ba-

sics from the concept of price theory from economics, which makes the technique

scalable, holistic and priority-driven.

Aforementioned techniques (HPM and PPM) have been build as an extension

of Linux completely-fair scheduler while preserving all of its desirable properties

such as fairness, non- starvation etc. Finally, both the frameworks have been

implemented on a test version of the ARM big.LITTLE heterogeneous multi-

core architecture and we report power, performance results from this real chip (as

7

Chapter 1. Introduction

L2

Cortex-A7
Core

Cache Coherent Interconnect

Cortex-A15
Core

Cortex-A15
Core

Cortex-A7
Core

Cortex-A7
Core

DRAM

L2

Figure 1.3: ARM big.LITTLE asymmetric multi-core.

opposed to simulation). We experimentally evaluate and establish the superiority

of our approaches compared to the existing state-of-the-art.

1.2.1.3 Lifetime-reliability aware power management

The third contribution of this thesis is to propose a dynamic reliability man-

agement technique for lifetime reliability enhancement via micro-architectural

adaptations. We propose a dynamic reliability management (DRM) technique

that exploits architectural adaptation in conjunction with dynamic voltage/fre-

quency scaling (DVFS). In this contribution, the heterogeneity is evident from

the dynamic architectural adaptation. We employ an online Bayesian classi-

fier that can efficiently detect the reliable configurations, while a performance

prediction model selects the one with best performance among all the reliable

configurations. We later extend our approach to meet both reliability and ther-

mal constraints. The thermal constraints act as proxy for power constraints.

1.2.2 Design-time technique

The final contribution of this thesis is a framework for design of heterogeneous

application-specific MPSoC for multimedia applications [87]. Modern MPSoCs

8

Chapter 1. Introduction

for multimedia applications have to deliver a certain performance to provide rea-

sonable quality of service to the users (performance constraint), must have area

smaller than a certain limit due to the size of the portable devices (area con-

straint), and should have low energy consumption to increase the battery life.

Therefore, application specific MPSoCs are deployed in portable devices [41]

where an MPSoC is (extremely) customized for a given application under an

objective function and various constraints. This contribution focuses on cus-

tomization of MPSoCs for multimedia applications with the objective of mini-

mum energy consumption under performance and area constraints.

To summarize, the run time techniques [89, 90, 92] proposed in thesis are dynamic

techniques on a static heterogeneous architecture except for the one proposed

in [88] (which is a dynamic technique on a dynamic heterogeneous architecture),

while the design time technique[87] proposed is a static technique engaged on a

static heterogeneous architecture.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses related work.

Chapter 3 discusses the power-performance estimation model for heterogeneous

multi-core. Chapter 4 and 5 elaborates the various reactive based run-time power

management framework for heterogeneous multi-cores. Chapter 4 proposes con-

trol theory based power management framework in detail. Chapter 5 proposes

price theory based power management framework that improves on the technique

explained in Chapter 4. Chapter 6 proposes a dynamic reliability management

technique for microprocessors. Chapter 7 describes the static design time tech-

nique for synthesizing energy-efficient application specific MPSoC. Chapter 8

describes the conclusion of this thesis and Chapter 9 explains possible avenues

of future work.

9

Chapter 2

Related Work

In this chapter, we briefly present the overview of the previously published work

on power management based on the categories described in Figure 1.2. The

categorization is based on the type of architecture and technique, which can be

either static or dynamic. For static techniques, the mechanisms are determined

at the design time. Unlike static techniques, the dynamic techniques adapt

according to the workload at run-time. Similarly, in terms of architecture, static

architectures are fixed at design time (for example, ARM big.LITTLE). In this

thesis, we adapt micro-architectural parameters like issue-width, window size

and cache sizes at run-time to emulate dynamic heterogeneous architectures.

2.1 Static technique - Static architecture

Power management techniques can be built into the system at the design time

either in software or hardware. Static techniques are mostly applicable for em-

bedded domain, where the hardware-software co-design is very relevant. In recent

years, application specific MPSoCs have become a promising option for designing

embedded portable devices, because of their high performance and low energy

consumption. There is a plethora of work on designing of application specific

10

Chapter 2. Related Work

MPSoCs, where researchers have considered different objective functions, con-

straints and design parameters. We report the most relevant works categorized

according to the four design parameters: DVFS, processor customization, cache

customization and task mapping.

2.1.1 DVFS

The authors of [38, 39] used DVFS to balance workload across processors con-

nected in a pipeline, in order to reduce their energy consumption. They proposed

feedback controllers to monitor the occupancy levels of buffers in the pipeline,

and either increased or decreased the v-f level of a processor accordingly. Chen

et al. [23] also considered a pipeline of processors with the availability of DVFS;

however, they minimized the energy consumption of the system under an end-

to-end application deadline using quadratic programming.

2.1.2 Processor customization

Bonzini et al. [18] studied the effects on energy consumption and performance due

to addition of custom instructions in an ASIP. They built an estimation model

for a simplescalar-like processor to quickly evaluate different custom instructions.

In [17], the authors characterized the energy benefits of extending the baseline

instruction set architecture of an FPGA based soft processor. Lin et al. [76]

targeted multiobjective optimization of an ASIP where custom instructions are

added considering area and energy consumption. They used mixed integer linear

programming for an optimal solution and a simulated annealing based heuristic

for a near-optimal solution.

11

Chapter 2. Related Work

2.1.3 Cache customization

The authors of [48, 125] explored the design space of a cache (cache size, line size,

associativity) to select a cache configuration with minimum energy consumption.

The authors proposed a heuristic to quickly search through complex design space

of cache configurations for a near-optimal solution. Rawlins et al. [95] targeted

run-time tuning of L1 data cache to minimize energy consumption of a heteroge-

neous MPSoC architecture. They proposed a heuristic to quickly search through

the design space with minimal run-time overhead.

2.1.4 DVFS and processor customization

Jung et al. [63] customized an MPSoC, where custom instructions and different

v-f levels were used for the ASIPs in the system. They employed mixed integer

linear programming to find the design point with minimum dynamic energy

consumption under an area constraint.

2.1.5 DVFS and task mapping

Ruggiero et al. [99] considered an MPSoC with variable number of processors

and DVFS. They used a design space exploration algorithm to determine the

optimal number of processors and v-f levels for a given application to minimize

the MPSoC’s power consumption under quality of service constraints. The au-

thors of [14] considered resource allocation and voltage selection problem in an

MPSoC. They minimized MPSoC’s energy consumption with the use of integer

programming and constraint programming. Lu et al. [78] considered the prob-

lem of task mapping/scheduling and DVFS in homogeneous MPSoCs. They

proposed a processor utilization based algorithm for task mapping and exploited

the slacks available in periodic tasks to minimize energy consumption.

12

Chapter 2. Related Work

2.1.6 Processor customization and task mapping

Sun et al. [113] proposed an iterative algorithm to select custom instructions

for ASIPs in an MPSoC along with the mapping and scheduling of tasks to

maximally improve performance under an area constraint. A dynamic program-

ming based algorithm was introduced in [25] to find optimal mapping of tasks

on ASIPs of an MPSoC under a period constraint, where custom instructions for

ASIPs and interval-based mapping were considered.

2.1.7 Processor customization and cache customization

The works in [59, 60, 103] considered a pipeline of ASIPs for multimedia ap-

plications. They maximized performance improvement per unit area [103] or

minimized area under performance constraints [59, 60] while exploring custom

instructions and cache configurations. Pruning algorithms, heuristics and integer

linear programming based approaches were proposed in these works.

It is clear that none of the above works considered combined use of DVFS,

processor customization, cache customization and task mapping, which has a

potential to save significant amounts of energy. To the best of our knowledge,

our contribution of designing heterogeneous MPSoC is the first to use these tech-

niques together for energy minimization under performance and area constraints

in application specific MPSoCs for multimedia applications.

2.2 Dynamic technique - Static architecture

Design time techniques are beneficial for static architectures when the workloads

are known a priori. On the other hand, dynamic techniques are required for ap-

plications exhibiting phase behaviours [53] (which is difficult to capture in static

13

Chapter 2. Related Work

techniques). Most of the commercial mobile platforms, which are not application-

specific have static architectures. Examples include NVIDIA’s Tegra [28], Qual-

comm’s Snapdragon [56] and Samsung’s Exynos [29] platforms. We discuss dif-

ferent types of dynamic techniques on static architectures in detail.

2.2.1 Homogeneous Multi-cores

There exists plenty of prior works on dynamic power management on homoge-

neous multi-core systems. Most of the works focus on power management using

any combination of techniques like DVFS, load balancing and task migrations.

Few recent works [26, 80, 82, 122] focuses on power management of homoge-

neous multi-core systems based on the control theory. [82] allocates the chip

power budget to each of the power islands, which is in turn distributed to the

individual cores by employing DVFS. The authors in [93] proposed a hierarchi-

cal feedback-based control system for power management in server farms. Isci

et al. [58] evaluate a DVFS based global power management policy with various

objectives like prioritization, power balancing and throughput for different com-

binations of benchmarks. Rangan et al. [94] explore the use of thread migration

in power management compared to the traditional DVFS scheme. The authors

in [115] proposed a power management technique based on linear programming

using DVFS and thread mapping. In [122], the authors present a control the-

ory based power management framework using per-core DVFS capability and

dynamic cache resizing. Ma et al. [80] present a scalable power management

solution for workloads that contain a mix of multi-threaded and single-threaded

applications in homogeneous chip multiprocessor. However, these solutions are

designed for homogeneous multi-core systems and require non-trivial modifica-

tions to adapt them to heterogeneous multi-cores.

14

Chapter 2. Related Work

2.2.2 Heterogeneous Multi-cores

The potentials of heterogeneous multi-cores in terms of power-performance effi-

ciency have been illustrated in [12, 24, 69, 70, 118]. However, the heterogene-

ity introduces additional complexity to the dynamic/runtime scheduler [27, 70].

[74] proposed a scheduling algorithm for heterogeneous cores that incorporates

the following techniques: a) asymmetric aware load balancing, b) fast-core first

scheduling and c) NUMA-aware migrations. Similarly, the authors in [100] pro-

posed an asymmetric-aware scheduler, where ILP intensive and TLP intensive

threads are scheduled in fast and small cores, respectively. In both the works, the

heterogeneous cores are simply symmetric cores using different frequency levels

without any micro-architectural differences. [68] identified the key metrics such

as external and internal stalls, for mapping a task to the appropriate core type to

improve performance. The heterogeneity is achieved by limiting the instruction

retirement bandwidth. Operating system support for heterogeneous architec-

ture with non-identical but overlapping ISA was proposed in [75]. Craeynest et

al. [118] propose a scheduling technique for asymmetric multi-cores using online

performance estimation across different core types. Similarly, Koufaty et al. [69]

propose a dynamic heterogeneous aware scheduler, which schedules tasks with

very low memory stalls on complex cores for higher performance. However, none

of these techniques consider power management as an optimization criteria.

A study by Winter et al. [123] evaluates various scheduling and power manage-

ment techniques for heterogeneous multi-cores with special considerations to the

scalability of the approaches. They propose a thread scheduling algorithm called

Steepest Drop, which has a light overhead and completely ignores the DVFS

technique. The technique Pack & Cap proposed in [26] uses thread packing

and DVFS to maximize performance under a TDP constraint. Schranzhofer et

al. [101] introduce a static solution for task to core mapping problem in het-

erogeneous MPSoC. [27] developed energy-aware scheduling for a single task on

15

Chapter 2. Related Work

Intel QuickIA heterogeneous platform with two cores. Our work dynamically

incorporates all the three techniques (load balancing, task migration and DVFS)

in both HPM and PPM frameworks to meet performance demands at minimum

energy consumption under a power budget.

2.2.3 Computational Economics

One of the dynamic power management technique (PPM) proposed in this thesis

is based on price theory, which borrows lots of inspiration from computational

economics. Few existing works [9, 22, 34–36, 50, 79, 98] borrow economic theory

ideas to develop power or thermal management schemes. Ebi et al. [34] propose

an agent-based power distribution scheme for multi-cores, where the trading

commodity is the power units. Agent based dynamic thermal management tech-

niques are proposed in [9, 47], where negotiations are made in the market to make

efficient task migration decisions. Roy et al. [98] propose an energy management

technique for mobile devices based on abstractions such as isolation, delegation

and subdivision. This technique requires building an offline energy model for a

system, which consists of a multi-core that uses two different ISA (ARM11 and

ARM9).

Some prior works [22, 50, 79] employ welfare economics in datacenters to improve

power efficiency. [50, 79] employ Mixed Integer Linear Programming (MILP)

technique for determining the optimal allocation of resources. Lubin et al. [79]

present power management in homogeneous multi-core datacenters. This ap-

proach is extended to heterogeneous systems in [50]. The solving time is quite

high (800ms) for MILP formulation. This is only suitable for datacenter work-

loads exhibiting relatively stable phases so that allocation decisions can be made

at long intervals (e.g., 10-minute interval). But such high overhead cannot be

tolerated in a mobile platform with dynamic workloads where the allocation

decisions need to be revised multiple times per second.

16

Chapter 2. Related Work

2.2.4 Power-Performance Model

We also propose a power-performance estimation model for heterogeneous multi-

core. Considerable number of prior works [19, 44, 66] have developed analytical

performance models for processors. The two predominant approaches employed

in building performance models are mechanistic modeling and empirical mod-

eling. Mechanistic models are purely based on the insights of the target pro-

cessor architecture. In [64, 66], the authors developed a simple interval based

mechanistic model for out-of-order cores that assumes a sustained background

performance level, which is punctuated by transient miss-events. The models

from [64, 66] was further improved in [43] by weighing the dispatch stage in

detail. Eyerman et al. [19] propose mechanistic model for superscalar in-order

processors. In empirical modeling, the performance model is considered as a

black box and typically inferred using statistical/regression techniques. Joseph

et al. [62] use non-linear regression performance modeling. In [72], the authors

employ spline-based regression modeling for performance and power across dif-

ferent micro-architectural configurations. The authors in [44] propose hybrid

mechanistic-empirical modeling for commercial processor cores with few simplis-

tic assumptions. However, the model proposed in this thesis uses the combination

of compile-time analysis, mechanistic modeling and empirical modeling to con-

struct performance models for both out-of-order and in-order cores with better

accuracy on a real platform.

2.3 Dynamic technique - Dynamic architecture

Our last contribution is a power/thermal aware dynamic reliability manage-

ment technique. Traditionally, dynamic thermal management techniques were

employed as a convenient proxy to improve the lifetime reliability of the proces-

sors [109]. Commonly employed mechanisms that reduce temperature include

17

Chapter 2. Related Work

DVFS, activity migration [33, 107], fetch gating and clock gating. However,

these techniques do not consider the lifetime reliability problem explicitly. Don-

ald et al [33] weighed the efficiency of various combinations of DVFS, clock gating

and migration for thermal management.

Several techniques have been proposed for lifetime reliability (also known as

hard errors) management. Srinivasan et al. [109] proposed an architectural level

analytical model, called Reliability-Aware Micro-Processor (RAMP), for temper-

ature induced lifetime reliability. They explore the effectiveness of optimizing

the architectural configurations and the voltage/frequency settings statically to

meet the reliability target. Karl et al. [67] proposed the use of a proportional-

integral-derivative (PID) controller based DRM technique. The most common

technique employed for DRM is DVFS, possibly with a feedback controller. Dy-

namic wearout centric job scheduling in chip multiprocessor proposed in [45]

employs a fine grained reliability management at the module-level of the cores.

As these approaches focus only on the lifetime reliability, the peak temperature

constraint is not considered.

We show that dynamically adapting architectural configurations along with DVFS

can provide better performance and meet both reliability and/or thermal con-

straints. Also, while previous works are mostly reactive in nature, i.e., the per-

formance is throttled only when reliability constraint is violated, we propose a

predictive DRM technique. Also, we extend our technique to accommodate both

reliability and thermal/power constraints.

18

Chapter 3

Power-Performance Modeling

on Heterogeneous Multi-cores

A predictive technique that can estimate power-performance across different

core types in heterogeneous multi-cores can solve the challenge of scheduling

the workload to the appropriate core types. In this chapter, we propose a

power-performance estimation model for heterogeneous multi-cores that can be

efficiently employed in any prediction based scheduling power management tech-

nique. We also develop an online predictive scheduling algorithm which leverages

the benefits of the developed power-performance model.

Earlier proposals [13, 69, 74] employed a simple strategy of scheduling memory-

intensive workloads on the small core and compute-intensive workloads on the

big core. Recently [119] has shown that this strategy may lead to sub-optimal

mappings and it is imperative to accurately estimate the power-performance

characteristics of a workload on different core types. The Performance Impact

Estimation (PIE) mechanism proposed in [119] is a dynamic technique that col-

lects profile information while executing the application on any one core type,

and estimates the performance on the other core type. This estimation allows

19

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

the scheduler to make appropriate adjustments to the application-core mapping

at runtime. However, the PIE mechanism [119] has few shortcomings that ren-

ders it difficult, if not impossible, to be deployed on real hardware. First, the

estimation is based on a number of simplifying assumptions such as the presence

of identical cache hierarchy and branch prediction on both core types, which are

unrealistic for commercial asymmetric multi-cores. Second, the PIE mechanism

requires profile information, such as the inter-instruction dependency distance

distribution, that cannot be collected on existing cores and requires specialized

hardware support. Third, power estimation is completely missing as [119] fo-

cuses on throughput oriented server workload. Finally, and most importantly,

the mechanism is evaluated using simulator where one has complete flexibility

in choosing the core configurations.

We develop power-performance model for commercial heterogeneous multi-core:

ARM big.LITTLE. While an application is executing on ARM Cortex-A7 (alter-

natively ARM Cortex-A15), we collect profile information provided by hardware

counters, and estimate power and performance characteristics of the same appli-

cation on ARM Cortex-A15 (alternatively ARM Cortex-A7). We evaluate the

accuracy of our estimation on real ARM big.LITTLE hardware platform. We

also construct a runtime scheduler that uses the estimation model for meeting

the performance goals of an application under minimal energy consumption.

Our modeling and estimation on real hardware are challenging in many ways.

First, the big core and the small core are dramatically different, not just in the

pipeline organization, but also in terms of memory hierarchy and the branch

predictor — a reality that is ignored in all previous works [69, 100, 119]. These

differences render the power, performance estimation from one core type to an-

other considerably more difficult. Second, we are constrained by the performance

counters available on the cores and their idiosyncrasies; for example, while the

big core provides the L2 cache write access counter, it is unavailable on the

20

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

small core. More importantly, in contrast to simulation based modeling work,

we cannot rely on additional profiling information, such as inter-instruction de-

pendency [119], that can only be collected by introducing extra hardware.

We overcome the challenges outlined above using a combination of static (compile

time) program analysis, mechanistic modeling [64, 66], which builds analytical

model from an understanding of the underlying architecture, and empirical mod-

eling [62, 72], which employs statistical inferencing techniques like regression to

create an analytical model.

Our performance model for any core centers around the CPI (cycles per instruc-

tion) stack that quantifies the impact of different architectural events (such as

data dependency, cache miss, branch misprediction etc.) on the execution time.

While we can obtain information about certain events (e.g., cache miss, branch

misprediction) from the hardware counters, other information such as data de-

pendency are not readily available. We rely on compile time static program

analysis technique to capture the data dependency information and its impact

on pipeline stalls.

Once we develop the CPI stack based performance model for each core, we

proceed to estimate the CPI stack of the second core given the CPI stack of the

first core. We employ regression modeling to estimate the architectural events

(cache miss, branch misprediction) on the second core given information about

the architectural events on the first core. These estimates of architectural events

can be plugged into the CPI stack model of the second core to derive the CPI

value and hence the performance estimate. Finally, our power model uses the

CPI value along with additional information, such as instruction mix, memory

behavior etc., to estimate the power behavior of the core.

Our concrete contributions in this chapter are the following.

21

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

• We propose a combination of static program analysis, analytical modeling,

and statistical techniques to model the performance of individual cores and

estimate power, performance across different cores on single-ISA heteroge-

neous multi-core platforms.

• Ours is the first work towards performance estimation across asymmet-

ric cores on real hardware. Estimation on real hardware is challenging

compared to simulation based studies [119] due to distinctly different con-

figurations of the cores, memory hierarchy, and unavailability of some of

the required hardware counters.

• Ours is the first work to model CPI stack on real out-of-order and in-order

cores. [44] is the only existing work that models CPI stack for commercial

out-of-order processors; but does not consider in-order processors. We

demonstrate that our CPI stack model is more accurate as we combine the

strengths of static program analysis and runtime analytical modeling.

• Ours is the only work to derive power estimation on the second core solely

based on the execution profile on the first core. Existing works [27] require

execution of the application on both cores to estimate power, an assump-

tion that is unrealistic when migration cost from one core type to another

is relatively high, as is the case in our setting.

• We implement a runtime predictive scheduler that integrates the power-

performance estimation model for single-ISA heterogeneous multi-core plat-

form. The online scheduler achieves the performance goals with minimal

energy consumption for an application.

3.1 ARM big.LITTLE architecture

We first describe the micro-architectural features of the ARM big.LITTLE het-

erogenous multi-core that we model for power, performance estimation. The

22

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

Parameter Cortex-A7 Cortex-A15

Pipe-line In-order Out-Of-Order
Issue Width 2 3
Fetch Width 2 3

Pipeline Stages 8-10 15-24

Branch Predictor
512-entry BTB 2K-entry BTB

2-way 2-way
L1 I-cache 32KB/2-way/32B 32KB/2-way/64B
L1 D-cache 32KB/4-way/64B 32KB/2-way/64B

L2 Unified-cache 512KB/8-way/64B 1MB/16-way/64B
Frequency Levels 8 8

Frequency Range(MHz) 350-1000 500-1200
Voltage Range(mV) 900 - 1050 900 - 1050

Table 3.1: Architectural Parameters of Cortex-A7 and Cortex-A15

single-ISA heterogeneous architecture consists of high performance Cortex-A15

cluster and power efficient Cortex-A7 cluster, as shown in Figure 1.3. The evalua-

tion platform we use in this work contains a prototype chip with two Cortex-A15

cores and three Cortex-A7 cores at 45nm technology. All the cores implement

ARM v7A ISA. The Cortex-A15 is complex out-of-order superscalar core that

can execute high intensity workloads, while Cortex-A7 is a power efficient in-

order core meant for low intensity workloads. While each core has private L1

instruction and data caches, the L2 cache is shared across all the cores within

a cluster. The L2 caches across clusters are kept seamlessly coherent via the

CCI-400 cache coherent interconnect.

Table 3.1 summarizes the micro-architectural parameters of Cortex-A15 and

Cortex-A7, obtained from publicly released data. It should be evident that the

cores are genuinely asymmetric in nature. The 2-way issue in-order pipeline of

A7 containing 8-10 stages is dramatically different from the 3-way issue out-of-

order pipeline of A15 containing 15-24 pipeline stages. Moreover, even the cache

configurations and branch predictors are distinctly different in A15 compared to

A7. Most previous works [69, 100, 119] assume that the memory parameters are

identical across different core types.

The architecture provides DVFS feature per cluster. The A7 cluster provides

23

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

eight discrete frequency levels between 350MHz – 1GHz, while the A15 cluster

also provides eight discrete frequency levels between 500MHz – 1.2 GHz. Note

that all the cores within a cluster should run at the same frequency level. More-

over an idle cluster can be powered down if necessary. As our focus is on power,

performance estimation across core types, we conduct the experiments by setting

the same voltage (1.05 Volt) and frequency (1 GHz) for the two clusters. Esti-

mating power, performance for different frequency levels is left as future work.

We also consider execution of a sequential application on either A7 or A15, that

is, we only use one core at a time and the idle cluster is powered down.

The heterogeneous cores exhibit different power and performance characteristics

across workloads. Figure 3.1 shows the performance speedup, energy consump-

tion ratio, and EDP (Energy-Delay product) ratio for 15 selected benchmarks

on A15 in comparison to A7. Clearly, A15 has significant performance improve-

ment compared to A7 (average speedup of 1.86); more importantly, the speedup

varies significantly across benchmarks from 1.45 to 2.30. In terms of power, it is

expected that A7 has lower average power compared to A15 for all the bench-

marks. While average power on A7 is 1.44Watt, the average power on A15 varies

from 4.20Watt to 5.15Watt. Even though A7 has worse performance, it can com-

pletely make up for it in terms of power to achieve far superior energy efficiency

compared to A15 (1.78 times lower energy on average). A7 is also more energy

efficient for all the benchmarks.

But in embedded systems, especially in interactive systems such as smartphones,

we are more interested in the combination of energy and delay to decide on

workload-to-core mapping because both battery life and response time are equally

important. This metric is captured as Energy-Delay product (EDP). Interest-

ingly, in terms of EDP, there is no clear winner: A15 is more efficient than A7

for 8 benchmarks due to faster execution that overcomes the power inefficiency,

24

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

while A7 is superior for the remaining 7 benchmarks due to lower power con-

sumption. Thus, the scheduler needs both power and performance behavior on

a core type to decide on the appropriate mapping.

As observed in [119] and validated in our experiments, it is impossible to pre-

dict the power, performance characteristics of an application on different core

types based on simple metrics such as memory access intensity. We also observe

that the average migration cost across clusters is quite high: 2.10ms to move

a task from A7 to A15, and 3.75ms to move from A15 to A7. This renders it

unrealistic to first execute a workload on each cluster separately and then make

the workload-core mapping decision as proposed in [27]. Thus it is essential to

accurately estimate the CPI for performance and use the CPI to estimate power.

We do so through power, performance modeling in the next section.

3.2 Performance Modeling

The aim of performance modeling is to estimate the performance of an applica-

tion on a second core type (small/big) given its execution profile on the first core

(big/small) type. Our model centers around CPI stacks. The basic observation

0.0

0.5

1.0

1.5

2.0

2.5

A
1

5
 a

n
d

 A
7

 p
e

rf
o

rm
a

n
ce

, e
n

e
rg

y

co
n

su
m

p
ti

o
n

 a
n

d
 E

D
P

 r
a

ti
o

Speedup (A15 better) Energy (A7 better) A15 EDP better A7 EDP better

Figure 3.1: Performance improvement, energy consumption ratio and EDP
ratio of A15 in comparison to A7.

25

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

collect runtime
performance counters

arch.
param. Build intra-

core CPI
stack model

perf.
counters

Build inter-
core miss

events
model

Build intra-
core power

model

perf.
counters

𝑓𝑃′

𝑔𝑥
𝑃→𝑃′

ℎ𝑝𝑜𝑤𝑒𝑟
𝑃′

miss
events

𝑚𝑖𝑠𝑠𝑥
𝑃

𝑚𝑖𝑠𝑠𝑥
𝑃′

arch.
param.

𝐶𝑃𝐼𝑃′

𝑔𝑥
𝑃→𝑃′

ℎ𝑝𝑜𝑤𝑒𝑟
𝑃′

𝑓𝑃′

𝑝𝑜𝑤𝑒𝑟𝑃′

runtime scheduler

𝐶𝑃𝐼𝑠𝑡𝑒𝑎𝑑𝑦
𝑃′

𝐶𝑃𝐼𝑠𝑡𝑒𝑎𝑑𝑦
𝑃′

Training benchmarks Real-world applications

Operating System

Figure 3.2: Inter-core performance, power estimation from P to P ′.

behind the model is that the CPI follows a sustained background level perfor-

mance CPIsteady punctuated by miss events that show up as temporary peaks.

CPIsteady captures the cycles spent in the architectural events tightly coupled to

the pipeline such as data dependency among instructions and structural hazards,

while CPImisses represents the cycles spent due to the external events such as

cache miss and branch mispredicton.

CPI = CPIsteady + CPImiss (3.1)

The performance estimation framework shown in Figure 3.2 comprises of three

major steps. The first step is an off-line procedure where we build intra-core

CPI stack model for each core type.

While CPImiss can be expressed in terms of miss events and their latencies, com-

puting CPIsteady requires presence of elaborate hardware mechanisms [119] that

can collect inter-instruction dependencies and are not available in existing pro-

cessors. We avoid additional hardware mechanism by observing that CPIsteady

is an intrinsic characteristics of a program on a core type and is stable across

different program inputs, whereas CPImiss is highly dependent on the program

26

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

inputs. For example, Figure 3.3 shows the estimated CPIsteady and CPImiss val-

ues of bzip benchmark for different program inputs on A7 and A15. Note that

expectedly CPIsteady is higher on A7 than A15 because A15 with out-of-order

execution engine can better exploit instruction-level parallelism in the presence

of data dependencies and structural hazards. The estimated CPI is the summa-

tion of the estimated CPIsteady and CPImiss. For reference, we have also plotted

the measured CPI. Our assumption that CPIsteady of an application on a core

type is stable across different program inputs is validated here as the variation

in CPI has been captured accurately only through variation in CPImiss.

We exploit this observation to estimate CPIsteady of a program on both core

types at compile time (see Section 3.2.1) and encode this information with the

binary executable. In other words, we estimate both CPIbigsteady and CPIsmallsteady for

a program at compile time. Most modern compilers have an optimization pass

that takes care of instruction scheduling based on the hardware description of the

processor pipeline. We modify the compiler in the instruction scheduling phase

to estimate the CPIsteady. For applications with distinct phases, i.e., multiple

computation kernels with different behavior, we estimate separate CPIsteady

value for each phase.

0

0.5

1

1.5

2

2.5

3

bzip.c bzip.l bzip.s bzip.d bzip.c bzip.l bzip.s bzip.d

A15 A7

C
P

I CPI miss

CPI steady

CPI measured

CPI estimated = CPI steady + CPI miss

Figure 3.3: Estimated CPIsteady and CPImiss of different inputs for the
same benchmark on A7 and A15.

27

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

To build the CPI stack on a core P , we collect the execution profiles of a set of

training benchmarks through the hardware counters. We then combine analytical

modeling with linear and non-linear regressions to derive the CPI stack model

that accurately captures the contributions of the different events to performance.

The CPI stack model can thus be expressed as the function fP where

CPIP = fP (CPIPsteady,miss
P
X , latency

P
X) (3.2)

where missPX and latencyPX are the number of occurrences and latency of each

occurrence of the miss event X on processor P .

The second step is another offline procedure where we develop regression models

that estimate the occurrence of different miss events on processor P ′ given the

frequency of the miss events on processor P . These inter-core miss event estima-

tion models are built by collecting and correlating corresponding miss events on

both cores using a set of training benchmarks. The inter-core estimation model

from P to P ′ for an event X can be expressed by a function gP→P
′

X where

miss
P ′

X = gP→P
′

X

(
missPX

)
(3.3)

where miss
P ′

X is the predicted occurrence of miss event X on P ′1.

At runtime, when a new application is running on core P , the operating system

collects the counter values at regular intervals to get information about the miss

events on P . For each miss event X, it uses inter-core miss event estimation

model to predict miss
P ′

X on core type P ′. Finally, it plugs in the estimated miss

event counter values in the CPI stack model of P ′ to predict CPI
P ′

, which is

inter-core estimated performance.

CPI
P ′

= fP
′
(CPIP

′
steady,miss

P ′

X , latency
P ′
X) (3.4)

1We use M to indicate the estimated value of a metric across cores.

28

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

where CPIP
′

steady is estimated using analytical models, while miss
P ′

X is estimated

using linear and non-linear regression models. It has been well established in lit-

erature [44] that analytical models are far more accurate than regression models.

However, building analytical models for miss events are extremely difficult due

to the presence of heterogeneous memory hierarchy and branch predictor.

3.2.1 CPIsteady estimation

Computing the CPIsteady value of a program on real hardware is challenging

due to limited information that is exposed through the performance counters.

While [119] proposes hardware counters that can count dynamic data depen-

dencies and structural hazards for this purpose, the overhead of such counters

is quite high due to the increased amount of book-keeping. An alternative is

to simply assume CPIPsteady = 1/D where D is the dispatch width of processor

P [44]. This assumption only holds true for perfectly balanced pipelines where

the number of functional units for each type of operation is equal to the dispatch

width and hence there is no structural hazards. It is not realistic as commercial

processors do have unbalanced number of functional units. More importantly,

the assumption completely ignores the dependency of CPIPsteady on the charac-

teristics of the program, in particular, inter-instruction data dependencies. We

sidestep this problem by computing CPIPsteady of a program on core P at compile

time.

Gimple SSA RTL

instr sched 1

Middle End

Font
End

Back
End

reg allocation

instr sched 2

CPI estimation

Figure 3.4: Estimation of steady state CPI of a program using gcc.

29

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

We use gcc compiler, where instruction scheduling optimization pass is performed

twice, before and after register allocation pass (see Figure 3.4). When schedul-

ing instructions, the algorithm uses a detailed description of the target processor

pipeline. At this stage, the compiler is aware of the data dependencies among in-

structions and the structural hazards due to the limited number of the functional

units in the processor pipeline.

We include our CPIsteady estimation pass after the second instruction schedul-

ing pass. For each basic block B of the application, we extract the estimated

number of cycles cyclePB, number of instructions instrB, and the estimated fre-

quency freqB. Traditionally, the frequency values are obtained by profiling the

application across different inputs but when the profile information is not avail-

able, the compiler can predict the behavior of each branch in the program using

a set of heuristics and can compute estimated frequencies of each basic block

by propagating the probabilities over the control graph. This estimate is used

in our equation and it captures rather an average behavior of the application

regardless of the input.

We define CPIPsteady of an application A on core P as

CPIPsteady

∣∣∣∣
A

=

∑
B freqB · cyclesPB∑
B freqB · instrB

∣∣∣∣
A

(3.5)

Note that only cyclesPB depends on the core type and leads to different steady

state CPI values for different core types. The CPIsteady values thus computed

for the small and big core are embedded into the application binary.

3.2.2 CPI stack model of big core

We extensively employ linear and non-linear regression models in our perfor-

mance and power estimation framework. Our CPI stack model for the big core

30

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

extends and adapts the mechanistic-empirical model proposed in [44] to Cortex-

A15 core. Our model estimates the total number of clock cycles C required to

execute an application on the big core as:

Cbig = β0 ·N · CPIsteady +missL1I · cL2

+missbr · (cbr + cfe) + dmissL2 ·
cmem
MLP

(3.6)

Once the total number of cycles are estimated, the CPI value can be easily

computed by dividing the cycles by the total number of instructions N .

CPIbig =
Cbig

N
(3.7)

This parameterized model sums the number of cycles consumed due to internal

and external events. The first term, CPIsteady is converted into the correspond-

ing number of cycles by multiplying it with the total number of instructions N .

The βi parameters are unknown and are fitted through non-linear regression.

The next term represents the miss event cycles due to the instruction misses

in first level of cache. The penalty paid for an instruction miss in L1 cache is

cL2 and represents the number of cycles spent to access L2 cache and is micro-

architecture dependant.

The next term of the equation quantifies the cycles spent during the branch

misprediction events. The branch misprediction penalty is a function of the front-

end length of the pipeline cfe and the back-end of the processor where the branch

is resolved in a branch resolution time cbr. The branch resolution time represents

the number of cycles spent between the arrival time of the mispredicted branch

in the dispatch queue and the moment when the branch is actually resolved in

the execution unit. The branch resolution time is dependent on inter-instruction

dependency, long-latency instructions and L1 data misses.

31

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

The next term of the Equation 3.6 represents the cycles spent due to the misses

in the last level of data cache. The big core is an out-of-order core which takes

advantage of the memory level parallelism such that part of an L2 cache miss

latency overlaps with other independent L2 cache misses. Thus, we reduce the

overall penalty by a factor MLP which is described as follows:

MLP = β1 ·
(
dmissL2

N

)β2

This equation assumes that the L2 data misses are uniformly distributed and the

amount of parallelism that can be extracted has a power law relation with the

window of misses per instruction from which the parallelism is to be extracted.

We recommend the reader to consult the work in [19] for more details about the

intuition behind the presented equations.

3.2.3 CPI stack model of small core

Modeling the CPI stack for the small in-order core is simpler. We start from

Equation 3.6 and remove the terms that are specific to out-of-order processors.

The total number of cycles for the small core can be modeled using linear re-

gression as follows:

Csmall = β3 + β4 ·N · CPIsteady +missL1I · cL2

+missbr · cfe + dmissL2 · cmem
(3.8)

CPIsmall =
Csmall

N
(3.9)

32

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

Parameter
Var

Cortex-A15 Cortex-A7
name

Pipeline front-end cfe 4 13
L2$ access cL2 19 13
Main memory

cmem 140 100
access

Table 3.2: Estimated latency in cycles for miss events on A15 and A7

In case of in-order processor, the branch resolution time in the back-end pipeline

is not relevant because there is no reorder buffer structure present in an in-

order processor. Once there is branch misprediction, the entire pipeline has to

be drained. Similarly, the MLP correction factor is not used as cache missses

cannot overlap.

Parameter
Var

Cortex-A15 Cortex-A7
name

Cycles C X X
Instructions N X X
Branch instr Nbr X X
Branch misses missbr X X
Load instr Nld X X
Store instr Nst X X
Integer instr Nint X X
Float instr Nfp X X
L1I$ access accessL1I X X
L1D$ access accessL1D X X
L1I$ misses missL1I X X
L1D$ misses missL1D X X
L2$ data miss dmissL2 X X
L2$ write access dwaccessL2 X
L2$ write back WBL2 X X
Power sensor Power X X
Energy sensor Energy X X

Table 3.3: Hardware Performance Counters on A15 and A7

3.2.4 Latency of miss events and performance counters

The performance models for both big and small core use a number of hardware

performance counters and the latencies corresponding to each individual miss

event. Table 3.3 enumerates all the performance counters that are used in our

work and their availability on A7 and A15 cores.

33

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

While information about the pipeline structure and memory hierarchy configura-

tions of A7 and A15 are available from publicly released data as well as processor

internal registers, the cache miss and memory access latencies are not released.

To estimate the access latencies to L2 cache and main memory we use the lm-

bench [81] micro-benchmark. Table 3.2 summarises the penalties in cycles for

the different miss events used in our models for A7 and A15.

3.2.5 Contribution of CPI stack components

0

1

2

3

4

5

6

A15 A7 A15 A7 A15 A7 A15 A7 A15 A7 A15 A7

texture gzip.r cactusADM wupwise GemsFDTD equake

C
P
I

CPI steady L2D miss CPI branch miss CPI L1D miss CPI L1I miss CPI

Figure 3.5: Estimated CPI stack components on A7 and A15 for a subset of
benchmarks.

The miss events used in both the models are branch misprediction, L1 and L2

cache miss. We chose only these events as they contribute most to the overall CPI

of a processor. In order to support our claim we conducted several experiments

on a set of benchmarks that expose different computational behaviour. Figure

3.5 plots the estimated CPI stack on both small and big cores. We chose two com-

pute intensive benchmarks (texture and gzip.r), two average compute intensive

benchmarks (cactusADM and wupwise), and two memory bound benchmarks

(GemsFDTD and equake). The benchmarks were selected from Vision [120],

SPEC2000 and SPEC2006 [3] benchmark suites. In case of the memory bound

applications, the impact of misses in L1 and L2 caches on the overall CPI is con-

siderably higher compared to the compute intensive applications for which the

CPIsteady and branch mispredictions are impacting the CPI mostly. Note that

34

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

branch misprediction impacts A15 substantially more than A7, because A15 has

an aggressive back-end pipeline that suffers more from squashing of instructions.

We also observe that the speedup on A15 compared to A7 is dependent on a lot

of factors, such as CPIsteady, branch misprediction cost, and cache miss cost.

3.3 Inter-core miss estimation

The real challenge in inter-core performance and power estimation on asymmet-

ric cores is that the memory hierarchy and the branch predictors may not be

identical across different core types, as is the case in ARM big.LITTLE (see

Table 3.1). The small cores are connected to a simpler cache system in order

to increase the power efficiency, while the big cores are connected to a more

complex memory that supports higher memory throughput, which increases the

overall performance. Recent related works [119] assumed that the asymmetric

systems have identical memory hierarchy. The innovation in our approach is that

we develop mechanistic-empirical models that can predict the occurrences of miss

events missP
′

X on processor P ′, given their occurrences missPX on P obtained

through hardware performance counters.

In order to predict the CPI value of core P ′ while running on core P , we need to

predict the values of the performance counters used in Equation 3.6 and Equation

3.8 depending on whether we are predicting the CPI of big core or small core,

respectively. These counters are: number of first level data and instruction

cache miss (missL1D,missL1I), number of last level cache miss (missL2) and

the number of branch mispredictions (missbr).

Inter-core branch misprediction estimation. The big core A15 has sig-

nificantly more aggressive branch predictor compared to A7 to ensure sustained

supply of instructions to the high-throughput back end. We observe that the

35

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

branch misprediction rate on P ′ (big or small) is correlated to three metrics on

P : the branch misprediction rate, the CPI, and the number of branches per

instruction. The last metric signifies the rate of branch prediction — the higher

the rate, the more is the benefit from a complex predictor. Similarly, the higher

the instructions per cycle (or lower the CPI), the more is the need for aggressive

branch predictor. Thus we define the inter-core branch misprediction estimation

model as follows:

missP
′

br = β5 + β6 ·missbr +

(
1

CPI

)β7
+ β8 ·

(
Nbr

N

)β9 ∣∣∣∣
P

Inter-core L1 instruction cache miss estimation. The L1 instruction

caches on both cores have the same size and associativity. But the line size

on A15 is 64 bytes, while the line size on A7 is 32 bytes. Thus A15 can exploit

more spatial locality leading to reduced cold miss. But A7 has twice the number

of sets compared to A15, which may lead to reduce conflict miss in A7. As we

do not have information about cold and conflict miss, we attempt to estimate

them. We assume that the number of cold misses cold on processor P is the code

size divided by the line size. To predict cold miss on P ′, the cold miss obtained

from P is scaled by the average size of basic blocks N
Nbr

. The rationale is that the

larger the basic block size, the more likely the cache benefits from larger line size

due to spatial locality. Thus, our inter-core L1 instruction cache miss estimation

model is

missP
′

L1I = β10 + β11 · cold ·
(
N

Nbr

)β12
+ β13 · conflict

∣∣∣∣
P

cold =
codesize
linesize

∣∣∣∣
P

; conflict = missL1I − cold
∣∣∣∣
P

36

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

Inter-core L1 data cache miss estimation. The L1 data cache has the the

same size but different associativity on A7 and A15. However, across a large

range of benchmarks, we observe that there is very little difference between the

number of L1 data cache miss on A7 and A15. So we employ a simple linear

regression model for inter-core miss prediction of L1 data cache.

missP
′

L1D = β14 + β15 ·missL1D

∣∣∣∣
P

Inter-core L2 cache miss estimation. The L2 is a unified data plus instruc-

tion cache on both A7 and A15. Even though both L1I and L1D miss filter down

and access the unified L2 cache, the instruction accesses have higher spatial and

temporal locality leading to negligible miss rate for instruction accesses in L2.

Thus instruction miss in L2 does not influence the CPI stack on either A7 or A15

and can be safely ignored. This is fortunate because both A7 and A15 provide

performance counters for only L2 data access miss and not L2 instruction access

miss. We denote L2 data access miss as dmissL2 and it has significant influence

on CPI stack as shown in Figure 3.5. Thus for accurate inter-core performance

and power estimation, it is absolutely essential to predict dmissL2 correctly.

For our architecture, L2 cache is distinctly different in A15 compared to A7. Not

only the L2 in A15 has twice the associativity of A7 (16-way versus 8-way); but

also the size is doubled in A15 (1MB compared to 512KB). This also implies that

the number of sets (1024) in L2 is exactly the same for both A7 and A15 and

A15 is likely to have significantly less conflict miss due to higher associativity,

whereas cold misses should be similar because the line size is identical.

How do we determine the number of conflict miss for L2 data access? We use

the number of write backs to estimate conflict miss in L2. A write back indicates

conflict miss because a memory line is being evicted from the cache due to conflict

with another memory line. But not all conflict miss are captured via write backs.

37

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

If the memory line being replaced in the cache is clean (i.e., contains read data),

we cannot observe the conflict in terms of write back. We make the assumption

that the rate of conflict miss is the same for both read data and write data. Thus

we scale the write back by the fraction of write access to estimate the conflict

miss conflict.

conflict =
WBL2

(wfracL2)β16

∣∣∣∣
P

; cold = dmissL2 − conflict
∣∣∣∣
P

While predicting L2 data miss from the big core (A15) to the small core (A7),

we have measured value for wfrac from performance counters: number of L2

access (which is same as the sum of L1D and L1I miss) and number of L2 data

write access (dwaccessL2). Thus

wfracL2 =
dwaccessL2

missL1I +missL2D

While predicting from the small core to the big core, however, we are challenged

by the lack of performance counters for write access. So we estimate L2 write

access as the L1D miss scaled by the fraction of store instructions over total

memory instructions.

wfracL2 =

Nst
Nst+Nld

·missL1D

missL1I +missL2D

We are now ready to predict dmissL2 across cores. We use linear regression of

cold miss and conflict miss on P to predict the total miss on P ′. We observe that

while L2 instruction access miss is negligible, if the number of instruction access

in L2 is high compared to total L2 access, there is higher chance of instructions

evicting data through conflict in unified cache. Thus we scale the conflict miss

by L2 instruction access fraction to obtain more accurate inter-core conflict miss

38

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

prediction.

dmissP
′

L2 = β17 · conflict ·
missL1I

missL1I +missL1D
+ β18 · cold

∣∣∣∣
P

Inter-core CPI estimation. Once we have estimated the miss events on core

P ′, given the miss event information on core P , it is straightforward to obtain

CPI estimate on P ′. We simply need to compute CPIP
′

miss by plugging in the

estimated miss event values in the CPI stack of P ′ as defined by Equation 3.6 or

Equation 3.8.

3.4 Power Modeling

We now describe our modeling technique to estimate power on asymmetric multi-

core. Unlike performance modeling, which required a combination of mechanistic

and empirical modeling, power can be modeled purely based on regression analy-

sis. We used a simple linear regression model to estimate the power consumption

in terms of available performance counters.

Modeling power of small core. In big.LITTLE platform, the small cores

are superscalar in-order, power efficient Cortex-A7 processors. We observe that

the average power consumption of the small core is quite similar across all the

benchmarks. This is because, the benchmarks exhibit similar performance char-

acteristics in small core. The only variability observed in the performance across

the benchmarks is the L2Dmiss. Our power consumption does not capture

L2Dmiss i.e., access to main memory. The min and max power consumption

measured across training benchmarks (from Table 3.4) are 1.385 watts and 1.506

watts respectively. Thus, there is no need to model power for the small cores.

39

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

Modeling power of big core. While power consumption on the small A7 core

is stable across benchmarks, the big core (power-hungry, out-of-order A15) shows

significant variation in power consumption within (due to phase behavior in pro-

grams) and across benchmarks. The observed min and max power consumption

on A15 across training benchmarks (from Table 3.4) are 4.535 watts and 5.155

watts respectively. This is because complex out-of-order cores exhibit different

access profiles of various micro-architectural components across the benchmarks.

Thus, it is imperative to model application-specific power consumption on A15.

The power consumption of A15 depends on the pipeline behavior and the memory

behavior of the application. In particular, the instruction mix of an application

is expected to influence the access profile of different architectural components

such as ALU, floating-point unit, branch predictor etc, which in turn, determines

the power consumed in the pipeline. The power consumption in the memory

hierarchy is determined by the number of L1I, L1D, L2, and memory access.

So we are looking for the function hP in Figure 3.2 that models the power

consumption

PowerP = hP (NX ,miss
P
X , CPI

P)

where NX is fraction of instructions of type X in instruction mix.

Given a set of training benchmarks (described in Section 3.6), we first collect

the performance counter values on A15 that captures the instruction mix and

the access at different levels of the memory hierarchy. We also measure the

power consumption on A15 (power measurement setup will be presented in Sec-

tion 3.6). Next we employ correlation analysis to identify the important perfor-

mance counter that are most related to power consumption. The total power

consumption of the big core can be expressed in terms of the following linear

40

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

regression model:

Power = β19 + β20 ·
Nint

N
+ β21 ·

Nfp

N
+ β22 ·

1

CPI

+β23 ·
accessL1D

N
+ β24 ·

accessL2

N
+ β25 ·

dmissL2

N

(3.10)

The first three terms capture the power consumption in the pipeline, which

is influenced by the proportion of integer instructions (Nint), the proportion of

floating point instructions (Nint), and the instructions per cycle IPC (the inverse

of CPI).

The power consumption is also linearly related to the rate of access to the various

levels of the memory hierarchy, which is captured using the next three terms.

Notice that we do not include L1 instruction cache access here because it is

already included in terms of CPI. The higher the CPI, the lower the rate of

access to L1 instruction cache.

Estimating power of big core from small core. In the previous section,

we described the methodology for estimating the performance of an application

on the big core while running it on the small core. In this section, we provide the

models to estimate the power consumption. The major challenge in estimating

the power consumption of an application on the big core while running it on the

small core is that we have to predict the access profile. In Equation 3.10, the

instruction mix (N , Nint and Nfp) remains unchanged across cores. The inter-

core miss event prediction model given in Section 3.3 estimates CPI, dmissL2,

missL1D, missL1I on the big core from the corresponding values on the small

core (see also in Figure 3.2). We can then define

access(L2) = missL1D +missL1I

These estimated values can be plugged into Equation 3.10 to estimate the power

consumption on the big core.

41

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

3.5 Runtime Scheduler

We now present our runtime scheduler that leverages the power-performance es-

timation model for single-ISA heterogeneous multi-core. Figure 3.6 presents the

various components of our online scheduler. The goal of the runtime scheduler

is to schedule the application in a big or small core such that the performance

goals are met at a minimal energy consumption.

Runtime
Scheduler

big

LITTLE

Application

Power-
Performance
estimation

Hardware
performance

counters

Performance
goals

IPC/Power

Figure 3.6: Online scheduler with power-performance estimation.

The application provides the performance goals in terms of the target throughput

rate. We employ Heart Rate Monitor [54] infrastructure to set the performance

goal. Heart rate is defined as the throughput of the critical kernel of a task, for

example, number of frames per second for a video encoder.

Every 100 ms, the runtime scheduler collects the hardware performance counters

and estimates the IPC and power consumption of the other core type. Since

the migration across clusters is expensive (2-4 ms), the runtime scheduler is

called infrequently. At every scheduling epoch, the runtime scheduler maps the

application to the core that meets the performance goal with minimal energy

consumption. We explain in detail on how the runtime scheduler uses the power-

performance estimation model to achieve the target goal.

42

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

3.5.1 Performance Estimation

As mentioned before, the application defines the performance goals in terms

of heart rate, which is number of heart beats per second. Our performance

estimation model computes the CPI of the target core type. We assume a linear

correlation between the heart rate and CPI. The conversion between heart rate

and CPI is illustrated using the following example. Let us assume an application

is running on a small core with CPI of 1.0 and heart rate of 50 heart beats per

second (hb/s). For a CPI of 0.5 (in big core), the heart rate in the big core would

be 100 hb/s.

3.5.2 Energy Estimation

Our power estimation model computes the power consumption of the target core

type. From the heart rate and power consumption, one can easily calculate the

energy consumption per heart beat.

The scheduler chooses the core that meets the target performance goal in terms

of heart rate with minimal energy consumption per heart beat. Currently, our

runtime scheduler can handle only one application at any given time. This means

that only a big core or a small core is active at any give time. The unused cluster

is always turned off.

3.6 Experimental Evaluation

We now evaluate our power, performance estimation framework for asymmetric

multi-core. We first present the experimental setup, followed by fitting errors

of our model on training benchmarks, and finally a validation of our models

within and across cores for a new set of test benchmarks. Then, we evaluate the

superiority of our runtime scheduler in exploiting the heterogeneity of the cores.

43

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

Experimental setup. We use the Versatile Express development platform [7]

comprising of a motherboard on which the big.LITTLE prototype chip is mounted

as part of a daughter board. The motherboard handles the interconnection be-

tween the daughter board and the peripherals using an FPGA bus intercon-

nection network. The board boots Ubuntu 13.02 Linaro with the Linux kernel

release 3.7.0 for Versatile Express [8]. The platform firmware runs on an ARM

controller, which is embedded on the motherboard. The Linux file system is

installed on the Secure Digital (SD) card where all our benchmark applications

are located.

We collect the hardware performance counter values using ARM Streamline gator

kernel module and daemon [1]. We compile and configure Linux kernel to support

the gator driver. The gator driver is a dynamic kernel module that interrupts the

core at periodic intervals to collect the performance counters. The average CPU

utilization of gator daemon is less that 0.5%, which indicates that the overhead

of running gator daemon in the background is minimal. We use Matlab [84] to

develop our regression models offline.

The prototype big.LITTLE chip consists of one A15 cluster and one A7 cluster at

45nm technology. The individual clusters are equipped with sensors to measure

the frequency, voltage, current, power and energy consumption at the cluster

level and not at the core level. Moreover, we can only power down a cluster; but

not individual cores within a cluster. In our experiments, we utilize only one A15

core and one A7 core. The remaining cores in the clusters are logically turned

off using system calls, such that no tasks are scheduled on them. Finally, we set

the voltage and frequency for both the clusters at 1.05V and 1GHz, respectively.

The runtime scheduler is implemented within the Linux kernel source. The

scheduler is invoked every 100 ms to collect the hardware performance counters

using the gator kernel module and daemon [1]. Then, it employs the estimation

model to predict the power and performance on a different core type. Finally, it

44

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

migrates the application to the appropriate core type using the sched setaffinity

interface in the Linux scheduler.

Training Benchmarks

ammp, cactusADM, equake, gcc
GemsFDTD, gzip.s, gzip.l, gzip.r, milc

namd, sift, sixtrack,
texture, wupwise, zeusmp

Test Benchmarks

apsi, calculix, gamess, gzip.p
gzip.g, h264, lbm, leslie3d,

mcf, mgrid, mser, omnetpp
parser, swim, tonto

Table 3.4: Training and Test Benchmarks

Compiler setup. We implement our CPIsteady estimation pass in the GCC

Linaro version 4.7.3. The GCC instruction scheduler [2] uses a very efficient

pipeline hazard recognizer to estimate the possibility of issuing an instruction on

a given core in a given cycle. The processor pipeline descriptions can be expressed

in terms of a deterministic finite automaton, which in turn is used to generate

pipeline hazard recognizer. The latest version of Linaro GCC compiler includes

the processor pipeline descriptions for Cortex-A7 and Cortex-A15 cores. We

exploit the hazard recognizer to estimate the data dependencies and structural

hazards for a program on A7 and A15, which leads to the steady state CPI

estimate as presented in Section 3.2.1.

We compile all the benchmarks with -O2 optimization flag. This ensures that

the instruction scheduling optimization pass and the CPIsteady estimation pass

are invoked. We disable both the hardware and the software prefetcher in all our

experiments. The Cortex-A15 cores comprise of Level 2 hardware prefetcher,

while Cortex-A7 contains Level 1 data cache hardware prefetcher. We disable

all the hardware prefetcher because of lack of documentation on the working of

the prefetcher. Hence, modeling of the prefetchers were not made possible. All

the hardware prefetcher are disabled by writing to the CP15 auxiliary control

register. All the benchmarks are compiled with -fno-prefetch-loop-arrays flag to

disable software prefetching.

45

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

Training and Test benchmarks. For our experiments, we use Vision [120],

SPEC CPU2000 and CPU2006 [3] benchmark suites with reference inputs. Ta-

ble 3.4 lists the set of benchmarks used in our training and tests set. We cat-

egorize all the benchmarks into three types based on the memory behaviour:

memory intensive benchmarks, compute intensive benchmarks and intermedi-

ate benchmarks. The fraction of L2 miss per instruction is given by fracL2 =

(dmissL2
N · 100). For memory intensive benchmarks, we chose the fracL2>1.5%,

while the compute intensive benchmarks have fracL2<0.5% and the remaining

are classified as intermediate benchmarks. We randomly select five benchmarks

from each category to capture diverse behavior in our training set. The training

set is used to develop our regression models for power and performance, while

the test set is used to cross-validate the model. As shown in Table 3.4, we keep

the test benchmark set consisting of 15 benchmarks completely disjoint from the

training set.

Benchmarks for runtime scheduler. For our runtime scheduler evaluation,

we use x264, bodytrack, swaptions and bodytrack from PARSEC [16] benchmark

suites with native input. The reason behind choosing the aforementioned bench-

marks for evaluating our runtime scheduler is two-folds: a) it is straightforward to

implement the heart rate monitor infrastructure [54] and b) the selected bench-

marks are not part of the training benchmarks.

3.6.1 Performance estimation accuracy

We validate our performance and power estimation models using three sets of

experiments. In the first experiment, we compute the fitting error for our re-

gression models on the training benchmarks. It is important to get a good

fitting in order to build an accurate model. However, with over-fitting, we run

at the risk of large errors for new applications, for which the model was not

46

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Test Benchmark number

measured CPI A7 predicted CPI predicted CPI (CPI steady = 1/2)

(a) CPI prediction on A7

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Test Benchmark number

measured CPI A15 predicted CPI predicted CPI (CPI steady = 1/3)

(b) CPI prediction on A15

Figure 3.7: Intra-core model validation accuracy using CPIsteady obtained
through compile-time analysis compared to the accuracy assuming CPIsteady =

1/D

trained. Thus, our second experiment computes error in intra-core performance

and power estimation for the test benchmark set using the model derived from

training benchmarks. This shows the robustness of the model, i.e., how well the

model behaves for new applications. Finally, we validate the accuracy of our

inter-core estimation models on test benchmarks. This challenging task requires

both accurate CPI stack models and inter-core miss event estimation models to

achieve good accuracy.

Fitting error in regression for training benchmarks. In Figure 3.8, the

benchmarks are numbered in the same order as it is enumerated in Table 3.4.

Figures 3.8a and 3.8d show the measured and estimated CPI for small and big

core, respectively, on the training set. The average fitting errors observed are

47

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Training Benchmark number

Measured CPI Estimated fitting CPI

A7
 Avg Err 8.2%

(a)

1

3

5

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Test Benchmark number

Measured CPI Estimated intra-core CPI

A7
 Avg Err 12.7%

(b)

1

3

5

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Test Benchmark number

Measured CPI Estimated inter-core CPI

A15->A7
 Avg Err 13.4%

(c)

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Training Benchmark number

Measured CPI Estimated fitting CPI

A15
Avg Err 10.1%

(d)

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Test Benchmark number

Measured CPI Estimated intra-core CPI

A15
Avg Err 14.6%

(e)

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

I

Test Benchmark number

Measured CPI Estimated inter-core CPI

A7->A15
Avg Err 16.7%

(f)

Figure 3.8: CPI stack model fitting error on training benchmarks, intra-core
model validation error using test benchmarks and inter-core CPI estimation

error for Cortex-A7 (top row) and Cortex A-15 (bottom row).

4.5

4.7

4.9

5.1

5.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
o

w
e

r

Training Benchmark number

Measured A15 Power Estimated fitting A15 Power

A15
Avg Err 1.2%

(a)

3.9

4.2

4.5

4.8

5.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
o

w
e

r

Test Benchmark number

Measured A15 Power Estimated intra-core A15 Power

A15
Avg Err 2.6%

(b)

3.9

4.2

4.5

4.8

5.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
o

w
e

r

Test Benchmark number

Measured A15 Power Estimated inter-core A15 Power

A7->A15
Avg Err 3.9%

(c)

Figure 3.9: Power model fitting error on training benchmarks, intra-core
model validation error using test benchmarks and inter-core power estimation

error for Cortex-A15.

8.2% for small core and 10.1% for big core, respectively. A7 CPI stack model

has better accuracy because it is easier to build the CPI stack for in-order cores

in comparison to complex out-of-order cores.

Given an application, we obtain CPIsteady on big and small core at compile time.

This is in contrast to the technique proposed in [44] that assumes CPIsteady to

be equal to 1
D , where D is the dispatch width of the core (D = 2 for A7 and

D = 3 for A15). In other words, the model in [44] completely ignores the impact

of program characteristics on steady state CPI. Figure 3.7 shows the advantage of

compile-time estimation on CPI prediction for both A7 and A15. Our technique

48

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

reduces the prediction error by 33.3% on A7 and 8.1% on A15, on an average,

in comparison to [44].

Intra-core validation for test benchmarks. In order to further evaluate

the accuracy and robustness of our intra-core CPI stack model, we compare the

measured CPI and the estimated CPI for a completely new set of benchmarks

(i.e., test benchmarks) from Table 3.4. From Figures 3.8b amd 3.8e, we observe

that the average intra-core prediction errors are 12.7% for small core and 14.6%

for big core, respectively. For both small and big cores, 80% of all test bench-

marks have prediction error less than 25%. The error increases slightly compared

to the fitting error, which is expected given the diverse characteristics of our test

benchmarks. The intra-core validation with test benchmarks confirms that our

CPI stack model is robust and we have avoided over-fitting.

Inter-core validation for test benchmarks. It is challenging to estimate

the CPI for one core type, while executing on the other core type. The estima-

tion is further exacerbated by the presence of highly dissimilar cache hierarchy.

We perform Inter-core validations using the test benchmarks. For this set of

experiments, we execute each test benchmark on A7 (alternatively A15), col-

lect the execution profile, and estimate its CPI on A15 (alternatively A7) using

our regression models explained in Section 3.2. We then compare the predicted

CPI on the target core with the measured CPI to evaluate the accuracy of our

estimation.

Figure 3.8c shows the measured CPI and the estimated CPI on small core us-

ing the performance counters from big core. The average Inter-core validation

error in predicting small core CPI from big core is 13.4%; the maximum error is

43.2%. The comparison between the measured CPI and the estimated CPI on

big core using the performance counters from small core is shown in Figure 3.8f.

We observe average Inter-core validation error in predicting big core from small

49

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

core is 16.7% and the maximum error is 41.3%. As inter-core estimation de-

pends on both CPI stack model and inter-core miss event estimation models,

this experiment validates the accuracy of both the models.

3.6.2 Power estimation accuracy

Similar to the evaluation of our performance modeling, we evaluate the power

modeling in terms of fitting error, intra core validation and inter core validation.

As discussed earlier, we do not need to build a power model for the small core

due to insignificant variance in power consumption across the benchmarks. Fig-

ure 3.9a shows the measured and estimated fitting power for the training set on

big core. Similarly, Figure 3.9b and 3.9c compare the measured and estimated

power for intra-core and inter-core validation on test benchmarks. The average

prediction error is fairly low even for inter-core validation (3.9%) (y-axis is scaled

to capture the small difference between the measured and estimated values). The

power estimation across cores rely more on memory access behavior, which we

predict fairly accurately leading to high acuracy.

3.6.3 Phase behavior

So far we have shown the accuracy of our power and performance estimation

models for whole benchmarks. In reality, some benchmarks exhibit phase behav-

ior in their execution. We envision that our estimation framework can be used

in such contexts to continuously monitor the execution profile on one core and

estimate the power, performance on the other core. This will allow the scheduler

to migrate the task back and forth between the cores depending on which phase

the program is currently in and the appropriate core type for that phase.

We conduct a case study experiment with astar benchmark to evaluate the ac-

curacy and robustness of our model in detecting phase changes and accurately

50

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

C
P

I

P
o

w
e

r
(W

)

Instruction intervals (x 500 million)

predicted power measured power predicted CPI measured CPI

Figure 3.10: Contiuous CPI and power estimation from A7 to A15 for astar
benchmark.

predicting the behavior on the target core for each phase. Figure 3.10 shows the

estimated power, performance on A15 predicted from executing the application

on A7. For references, we also show the measure power, performance on A15.

The X-axis shows the number of committed instructions as time progresses. We

set our sampling interval at 500ms, which roughly corresponds to 500 million in-

structions on A7 at 1GHz. The application demonstrates clear phase behavior.

Our estimations are fairly close to the measured values. Thus we can track the

phase changes accurately and present performance speedup and energy efficiency

on A15 compared to A7 for each phase.

3.6.4 Asymmetric vs Symmetric multi-core

Our runtime scheduler exploits the benefits of heterogeneity present in ARM

big.LITTLE architecture. We compare the benefits of having our runtime sched-

uler for asymmetric multi-core to a scheduler present in a symmetric multi-core.

We emulate symmetric multi-core by using only big or small core.

Figure 3.11 plots percentage of time heart rate was met on big, small (LITTLE)

and big.LITTLE. Similarly, figure 3.12 plots the energy consumption of big, small

and big.LITTLE. It is evident from the Figures 3.11 and 3.12 that the runtime

scheduler exploits the heterogeneity efficiently by having performance very close

51

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

0

20

40

60

80

100

120

x264 h264 bodytrack swaptions blackscholes

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e
 Q

o
S

 m
e

t
[%

]

big LITTLE big.LITTLE

Figure 3.11: Comparison of percentage of time heart rate was met between
symmetric and asymmetric multi-core.

0

20

40

60

80

100

120

140

160

x264 h264 bodytrack swaptions blackscholes

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

big LITTLE big.LITTLE

Figure 3.12: Comparison of energy consumption between symmetric and
asymmetric multi-core

to big core with minimal energy consumption. The runtime scheduler is able to

achieve better performance-energy efficiency because of the power-performance

estimation model.

3.7 Summary

We developed accurate models to estimate the power and performance on asym-

metric multi-core architectures. Our aim is to predict, at runtime, the power,

performance behavior of an application on a target core, given its execution

52

Chapter 3. Power-Performance Modeling on Heterogeneous Multi-cores

profile on the current core, where the cores share the same ISA but has het-

erogeneous micro-architecture. We overcome the challenges of distinctly differ-

ent micro-architecture, memory hierarchy, and branch predictor on commercial

asymmetric multi-cores through a combination of compile-time analysis, mech-

anistic modeling, and linear/non-linear regressions. One of the key contribution

of our work is an accurate model that estimates the cache miss and branch mis-

prediction rates on the target core, solely from the information available on the

current core. We also implemented a runtime scheduler for asymmetric multi-

core that employs the estimation model. Unlike almost all previous modeling

works, we design and evaluate our estimation framework on a real asymmetric

multi-core – ARM big.LITTLE.

53

Chapter 4

Hierarchical Power

Management

In the previous chapter, we discussed about power-performance estimation mod-

els for asymmetric multi-cores. We also developed a simple runtime scheduler

that leverages the estimation model to schedule a single application on ARM

big.LITTLE multi-core. In this chapter, we present a comprehensive dynamic

power management framework for heterogeneous single-ISA multi-cores architec-

ture in the context of mobile embedded platforms — that can provide satisfactory

user experience while minimizing energy consumption within the Thermal De-

sign Power (TDP) constraint. With comparison to homogeneous multi-cores,

power management is challenging on heterogeneous multi-cores under limited

TDP budget. Unlike the scheduler proposed in chapter 3, the power manage-

ment technique proposed in this chapter can handle multiple applications. We

set out to design our framework with the following objectives.

• The dramatically different power-performance behavior of the cores implies

that we need to identify the right core for the right task at runtime and

migrate the tasks accordingly.

54

Chapter 4. Hierarchical Power Management

• The power hungry complex cores should be employed sparingly and only

when absolutely necessary.

• Dynamic Voltage and Frequency Scaling (DVFS) as a control knob is avail-

able per cluster rather than per core within a cluster necessitating appro-

priate load balancing strategies. A cluster should run at the minimum

frequency level required for adequate user experience so as to conserve

energy.

• The restricted TDP budget precludes certain combination of frequencies for

the different clusters. For example, it may be necessary to power down A7

cluster when A15 cluster is running at maximum frequency, a canonical

example that illustrates the impact of the dark silicon era. Thus power

budget has to be allocated opportunistically among the clusters.

• If a system exceeds the power budget, the quality-of-service (QoS) of the

tasks should degrade gracefully.

• The framework should be integrated in a commodity operating system

without altering any of its desirable properties.

While, there exists solutions in the literature focusing on at least a subset of the

objectives mentioned earlier, each of these solution have been generally designed

to operate independently. It should be clear that deploying them together re-

quires a carefully coordinated approach that is aware of the complex interplay

among the individual solutions. For example, once the system exceeds the TDP

of the entire chip, the power budgets for the clusters have to be reduced, which

implies scaling down the voltage and frequency levels of the clusters, and conse-

quently degrading the QoS of the tasks that triggered the thermal emergency in

the first place. However, once the system load decreases (e.g., some tasks leave

the system), this process has to be reversed and the QoS of the tasks should be

restored back to the original level. This requires synergistic interaction among

55

Chapter 4. Hierarchical Power Management

the different solutions so as to ensure safety (operate under power budget) and

efficiency (optimal tradeoff between power and performance), while maintaining

stability, i.e., avoiding oscillation between different operating points.

We design a hierarchical power management framework that is based on the

solid foundation of control theory and integrates multiple controllers to collec-

tively achieve the goal of optimal energy-performance tradeoff under restricted

power budget in asymmetric multi-core architectures. Moreover, we build our

framework as an extension of Linux completely-fair scheduler while preserving

all of its desirable properties such as fairness, non-starvation etc. We take ad-

vantage of Heart Rate Monitor (HRM) [54] infrastructure in Linux to set the

performance goal for a task and to monitor its execution progress as a measure

of QoS. Finally, our Linux-based hierarchical power management framework is

implemented on real ARM big.LITTLE platform [7] exploiting all the control

knobs provided on the platform, namely, per cluster DVFS, cluster power down,

and task migration within and across clusters.

To the best of our knowledge, the work presented in this chapter is the first

one to provide a comprehensive power management approach for heterogeneous

multi-cores under limited power budget and definitely the first one to integrate

the solution in a commodity operating system (Linux) running on real platform

(ARM big.LITTLE). In this chapter, following are there key contributions:

• Our power management framework successfully achieves all the objective

enumerated earlier.

• Our solution builds on a formal control-theoretic approach that provides

guarantees for safety, efficiency, and stability.

• Our hierarchical framework carefully coordinates the controllers to avoid

inter-controller interference.

56

Chapter 4. Hierarchical Power Management

• We integrate our power management framework within the confines of

Linux completely fair scheduler.

• We implement our Linux based power management solution on a test ver-

sion of the ARM Big.Little asymmetric multi-core architecture and report

power, performance results from this real chip (as opposed to simulation).

• We experimentally evaluate and establish the superiority of our approach

compared to the state-of-the-art.

4.1 ARM big.LITTLE architecture

We have provided a detailed micro-architectural features of the ARM big.LITTLE

in Section 3.1. The power-performance tradeoff in ARM big.LITTLE has been

comprehensively discussed in Section 3.1. In this section, we discuss the im-

pact of DVFS on performance and power consumption. Second, we evaluate the

impact of the number of active cores on each cluster. Finally, we discuss the

migration cost within and across the clusters.

0

5

10

15

20

25

30

35

40

45

50

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

300 400 500 600 700 800 900 1000 1100 1200

H
e

a
rt

 r
a

te

P
o

w
e

r
(W

)

Frequency (MHz)

A7 Power A15 Power A7 Heart rate A15 Heart rate

Figure 4.1: Power and heart rate with varying frequency.

57

Chapter 4. Hierarchical Power Management

4.1.1 Impact of DVFS

As mentioned earlier, our objective is to provide satisfactory user experience or

QoS at minimal energy. We employ Heart Rate Monitor [54] infrastructure to

set the performance goal and measure the QoS of a task. Heart rate is defined

as the throughput of the critical kernel of a task, for example, number of frames

per second for a video encoder. Figure 4.1 plots the heart rate and power for

blacksholes from PARSEC benchmark suite on A7 and A15 at difference fre-

quency levels. We observe that the heart rate increases linearly with increasing

frequency on a core. Also as the IPC of A15 is better than A7, the heart rate

can be improved by migrating a task from A7 to A15 at the same frequency

level (but at higher power cost). Finally, the power generally increases linearly

with increasingly frequency on a core; but there is a sudden jump at 800MHz

for A7 and 1GHz for A15 due to change in voltage level. For A7, the voltage

level remains constant for frequency levels 350-800MHz. Similarly, for A15 the

voltage level is same for for frequency levels 500-1000MHz.

4.1.2 Impact of active cores on cluster power

2

2.5

3

3.5

4

4.5

5

5.5

6

500 600 700 800 900 1000 1100 1200

P
o

w
e

r
(W

)

Frequency (MHz)

One A15 Two A15

(a) A15 Cluster Power

0.7

0.85

1

1.15

1.3

1.45

1.6

1.75

300 400 500 600 700 800 900 1000

P
o

w
e

r
(W

)

Frequency (MHz)

One A7 Two A7 Three A7

(b) A7 Cluster Power

Figure 4.2: Impact of number of active cores on cluster power.

As noted earlier, we can set frequency and measure power only at cluster level.

Also we can only power down a cluster, but not individual cores. Thus, even

58

Chapter 4. Hierarchical Power Management

if a core is idle, it still consumes power. Here we evaluate the impact of active

cores on power consumption of the cluster. For this experiment, we run the same

benchmark application on one, two, and three cores in A7 cluster as well as one

and two cores on A15 cluster at different frequency levels. It is interesting to

observe(Figure 4.9) that the A7 and A15 cluster have completely different power

behavior with respect to the number of active cores.

In A7 cluster, even at the highest frequency level (1GHz), there is only 0.3 Watt

difference between one active core and three active cores. In the A15 cluster,

on the other hand, there is roughly 1.5 Watt difference in power between one

active core and two active cores. For both clusters, it is important to perform

load balancing and run all the cores at the lowest possible frequency level.

4.1.3 Migration Cost

Task migration across clusters is important to exploit the unique advantage

of asymmetric multi-cores. We perform a set of experiments to quantize the

migration cost within and across clusters.

Table 4.1 summarizes the migration costs within the cluster. The migration cost

among cores within A15 cluster is 54 µsec – 105 µsec depending on the frequency

level, while the cost within A7 cluster is 71 µsec – 167 µsec. Table 4.2 and 4.3

shows the migration costs across the clusters. The migration costs between

clusters are somewhat high: 1.88ms – 2.16ms for moving from A7 to A15 cluster

at different frequency levels, and 3.54ms – 3.83ms for a move from A15 to A7

cluster. The migration cost is proportional to the amount of architectural state

being transferred.

Frequency(in MHz) 350 400 500 600 700 800 900 1000 1100 1200
Within A15 cluster 167 149 131 119 95 85 79 71 - -
Within A7 cluster - - 105 91 79 72 63 58 58 54

Table 4.1: Migration Cost within cluster in usec.

59

Chapter 4. Hierarchical Power Management

hhhhhhhhhhhhA7(MHz)
A15(MHz)

500 600 700 800 900 1000 1100 1200

350 2.00 1.99 1.95 1.95 1.94 1.94 2.17 2.17
400 1.96 1.95 1.95 1.93 1.93 1.93 2.16 2.16
500 1.96 1.94 1.93 1.93 1.92 1.91 2.15 2.16
600 1.94 1.93 1.92 1.92 1.91 1.91 2.14 2.14
700 1.93 1.92 1.92 1.92 1.90 1.90 2.13 2.13
800 1.94 1.94 1.92 1.90 1.90 1.89 2.13 2.13
900 1.93 1.93 1.92 1.90 1.89 1.89 2.13 2.12
1000 1.93 1.92 1.90 1.90 1.89 1.88 2.13 2.12

Table 4.2: Migration Cost in msec from A7 to A15 cluster.

hhhhhhhhhhhhA15(MHz)
A7(MHz)

350 400 500 600 700 800 900 1000

500 3.66 3.65 3.63 3.62 3.60 3.59 3.82 3.83
600 3.65 3.63 3.61 3.60 3.58 3.55 3.81 3.82
700 3.64 3.63 3.59 3.58 3.56 3.55 3.79 3.79
800 3.65 3.62 3.59 3.57 3.55 3.55 3.78 3.79
900 3.64 3.62 3.61 3.59 3.56 3.55 3.78 3.79
1000 3.65 3.62 3.59 3.57 3.55 3.54 3.77 3.78
1100 3.70 3.58 3.57 3.56 3.55 3.54 3.78 3.80
1200 3.70 3.59 3.57 3.56 3.55 3.54 3.79 3.80

Table 4.3: Migration Cost in msec from A15 to A7 cluster.

Therefore, task migration for load balancing within a cluster can be performed

more frequently, whereas migration decisions across clusters should be done in-

frequently.

4.2 Power Management Framework

Controller ∑
𝑒𝑟𝑟𝑜𝑟

-

𝑡𝑎𝑟𝑔𝑒𝑡
System

𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

Figure 4.3: Feedback based Controller.

An overview of our hierarchical power management framework is presented in

Figure 4.4. We incorporate several feedback based controllers in our framework.

A controller measures the output metric and compares it with the reference or

target metric as shown in Figure 4.3. The error is minimized by manipulating the

actuators of the target system. The actuation policy is determined by the model

60

Chapter 4. Hierarchical Power Management

Res
Share
Ctrli

QoS
Taski

𝑠(𝑄𝑖)
∑

𝑒(𝑄𝑖)

-

ℎ𝑟(𝑄𝑖)

1

0

ℎ
𝑟 𝑟
𝑒
𝑓
(𝑄

𝑖)

𝑢(𝑄𝑖)

COREk

Cluster
Ctrlm

Clusterm

𝑓𝑟𝑒𝑞(𝐶𝑙𝑚)

-
𝑃(𝐶𝑙𝑚)

max(𝑢(𝐶𝑘))

𝑢𝑟𝑒𝑓(𝐶𝑙𝑚)

∑

𝑒(𝐶𝑙𝑚)

Chip-lvl
power

allocator

𝑇𝐷𝑃

𝑃𝑡ℎ𝑟𝑒𝑠ℎ

QoS
Ctrli

𝑃 > 𝑇𝐷𝑃

∑
𝑒(ℎ𝑟𝑖)

-
1

0

×

𝑃 ≤ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ

ℎ𝑟𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒(𝑄𝑖)

1

0

ℎ𝑟𝑖𝑑𝑒𝑎𝑙(𝑄𝑖)

Balancer Migrator

𝑢(𝑁𝑄𝑗)

NQoS
Taskj

∑

∑

ℎ𝑟 𝑄𝑖 ∈ [ℎ𝑟𝑟𝑒𝑓
𝑚𝑖𝑛, ℎ𝑟𝑟𝑒𝑓

𝑚𝑎𝑥]

Figure 4.4: Overview of the hierarchical power management system coordi-
nating multiple controllers.

of the target system being designed. We employ PID (Proportional-Integral-

Derivative) controllers z(t) = Kpe(t)+Ki

∫
e(t)dt+Kd

de(t)
dt , where z(t), e(t), Kp,

Ki and Kd are the output of the controller, error, proportional gain, integral gain,

and derivative gain, respectively. Table 4.4 summarizes the process variable,

actuator and set point for the various controllers employed in our hierarchical

power management framework.

Controller Name Process Variable Actuator Set Point

Resource Share heart rate time slices target heart rate
Controller

DVFS Controller cpu utilization voltage-frequency target cpu utilization

QoS Controller target heart rate heart rate throttled heart rate

Table 4.4: Controller Features.

We have two types of tasks in our system; QoS and non-QoS tasks. A QoS task

is one that demands certain user-defined throughput (e.g., video encoder, music

player), while the non-QoS tasks do not specify any QoS requirement. As noted

in Section 4.1.1, we specify the QoS of a task in terms of its heart rate.

The framework consists of three different types of controllers: per-task resource

share controller, per-cluster DVFS controller, and per-task QoS controller. Each

61

Chapter 4. Hierarchical Power Management

QoS task in the system is assigned a resource share controller and a QoS con-

troller. The resource share controller (bottom left in Figure 4.4) of a QoS task

Qi manipulates the CPU share available to Qi so that it can meet the target

heart rate hrref (Qi). The per-task QoS controller (top in Figure 4.4) is inactive

when the entire system is lightly loaded. However, when the total power of the

chip exceeds the TDP, the QoS controller slowly throttles the target heart rate

hrref (Qi) so that the workload in the system decreases to a sustainable level and

brings it back to the user- defined level when the thermal emergency is over.

We have two cluster controllers corresponding to A7 and A15 clusters. The

objective of the controller for cluster Clm (bottom right in Figure 4.4) is to apply

DVFS such that the utilization remains close to the target utilization uref (Clm).

The utilization of a cluster is determined by the maximum utilization of its cores.

Thus, we periodically invoke a load balancer to ensure even utilization among

the cores within a cluster. We also invoke a migrator periodically (at a much

longer interval compared to the load balancer) to migrate the tasks between

the clusters if necessary. Finally, we have a chip-level power allocator (extreme

right in Figure 4.4) that throttles the frequency of the clusters and forces QoS

controller to degrade target heart rates when the total power exceeds the TDP.

The key challenge here is to coordinate the various controllers, load balancer,

migrator, and chip- level power allocator. We achieve a synergistic coordination

with two mechanisms. First, the different components in our framework are

invoked at different timescales. The per-task resource share controller and load

balancer are invoked most frequently, followed by per-cluster DVFS controller

and per-task QoS controller, then the migrator, and finally the chip- level power

allocator. This ensures that a task attempts to reach its QoS target by first

manipulating its share in a core or through migration within a cluster. If this

fails, then it tries to change the frequency of the cluster. As a last resort, the

62

Chapter 4. Hierarchical Power Management

task is migrated to another cluster. The thermal emergency takes quite a long

time to develop; hence the power allocator is invoked least frequently.

Second, the controllers communicate with each other through designated chan-

nels. For example, the resource shares of the tasks within a core (both QoS and

non-QoS) determines its utilization, which is provided as input to the cluster con-

troller. More interestingly, when the power exceeds TDP, the power allocator

increases the target utilization levels of the clusters uref (Clm). This indirectly

achieves the goal of decreasing power as the cluster controller is forced to lower

its frequency in order to meet the increased target utilization. In parallel, the

power allocator also sends a heart rate throttling factor (hrthrottle(Qi)) to each

QoS controller which makes them slowly degrade their target heart rate. This

reduced heart rate is communicated to the resource share controller, who in turn,

reduces the CPU share of the QoS tasks and hence the processor utilization to a

more sustainable level. Overall, the system stabilizes to a level where the total

power is just below the TDP.

4.2.1 Per-Task Resource Share Controller

We employ one resource share controller per QoS task. The target heart rate

of a task Qi is defined as a range hrref (Qi) = [hrminref (Qi), hr
max
ref (Qi)] and is set

by the QoS controller. The objective of the resource share controller is to keep

the measured heart rate hr(Qi) in the target heart rate range. This is achieved

by regulating the slice s(Qi) of time provided to the task Qi in the scheduler.

For example, a task that does not meet the minimum heart rate would demand

more resource, which translates to more slices of time. The manipulation of the

slice value of a task within Linux completely fair scheduler is explained in detail

in Section 4.3. If the measured heart rate is within the reference range, then the

controller does not need any action and hence the target heart rate hrref (Qi) is

set to the measured heart rate hr(Qi) so that error is zero in the controller.

63

Chapter 4. Hierarchical Power Management

4.2.2 Per-Cluster DVFS Controller

Let a core Ck consist of N QoS and P non-QoS tasks. Then its current utilization

is

u(Ck) =
N∑
i=0

u(Qi) +
P∑
j=0

u(NQj) (4.1)

where u(Qi) and u(NQj) are the utilizations of the QoS task Qi and non-QoS

tasks NQj , respectively. The core component in Figure 4.4 is responsible for

measuring the utilization of each individual core. As the frequency can be con-

trolled only at cluster level, the utilization of cluster Clm defined as u(Clm) is set

to the maximum utilization max(u(Ck)) across all the cores within the cluster.

The DVFS controller attempts to achieve the target utilization

uref (Clm) = max(uideal, utarget(Clm)) (4.2)

where uideal is a constant specifying the ideal target utilization and utarget(Clm) is

the target utilization set by the power allocator under thermal emergency. Using

max(u(Ck)) as the measured metric and uref (Clm) as the reference metric, the

cluster-level PID controller actuates the frequency of the cluster.

4.2.3 Chip-Level Power Allocator

When the total power of the chip exceeds the TDP, the power allocator needs to

throttle the frequency of the clusters and the QoS of the tasks. Let Pm be the

current power measured for cluster Clm. The target power Pm for cluster Clm

is calculated using the following equation

Pm = Pm −
(

(P − TDP)× (T qos − T qosm)

T qos

)
(4.3)

64

Chapter 4. Hierarchical Power Management

where P is the total power of the chip given by P =
∑M

m=0 Pm, T qos is the total

number of QoS tasks in the system and T qosm is the total number of QoS tasks

in the cluster Clm. From Equation 4.3, it is evident that the reference power

allocated to the cluster is proportional to the number of QoS tasks in the cluster.

From the reference power budget allocated to each cluster, the power allocator

computes utarget(Clm) using the following equation,

utarget(Clm) = uideal + uideal ×
Pm − Pm
Pm

(4.4)

In the event of TDP violation, the power allocator increases the target utilization

uref (Clm) of the cluster, which in turn causes cluster-level DVFS controller to

set a lower frequency for the cluster. As our controllers are reactive in nature,

the power may exceed the TDP for a short time interval. The gain factors

within the DVFS controller are set appropriately so that it stabilities the power

below the TDP within the specified time interval (typically few seconds [97]) as

demonstrated in Section 4.3.

When TDP is violated, the power allocator also sets a throttle factor hrthrottle(Qi)

for each QoS task Qi in a hierarchical manner. The throttle factor hrthrottle(Clm)

for a cluster is proportional to its penalty factor as defined via higher than ideal

utilization.

hrthrottle(Clm) = 1− (utarget(Clm)− uideal)
utarget(Clm)

(4.5)

The cluster throttle factor is further divided among the cores

hrthrottle(Ck) = hrthrottle(Clm)× u(Ck)

uavg(Clm)
(4.6)

where uavg(Clm) is the average utilization in cluster Clm across all the cores.

Finally, the throttle factor of a QoS task in a core ensures that the penalty of a

65

Chapter 4. Hierarchical Power Management

task is proportional to its utilization.

hrthrottle(Qi) = hrthrottle(Ck)×
∑N

i=0 u(Qi)

u(Ck)
(4.7)

Once the system escapes from the thermal emergency, the power allocator needs

to set back hrthrottle(Qi) = 1. During the thermal emergency, the clusters reduce

their frequency and the QoS tasks reduce their workload, the power decreases just

below the TDP. However, the QoS of the tasks cannot be brought back to their

ideal QoS level as the system will again oscillate back to thermal emergency. The

QoS of the tasks can be restored only when the workload decreases because (a)

one or more tasks leave the system and/or b) the tasks exhibit phase behavior.

This is reflected in the drop in power consumption of the system. Thus, we chose

an empirically determined power threshold Pthresh below which the hrthrottle is

set to one (as shown in Figure 4.4).

4.2.4 Per-Task QoS Controller

The QoS controller provides the graceful degradation of the QoS measure in

case of thermal emergency by manipulating the target heart rate hrref (Qi). The

input to this controller is the user-defined ideal heart rate range hrideal(Qi) =

[hrminideal(Qi), hr
max
ideal(Qi)]. When the power is below the TDP, the power alloca-

tor sets hrthrottle(Qi) = 1 and this controller sets hrref (Qi) = hrideal(Qi). In

case of thermal emergency, the controller strives to set the reference heart rate

hrref (Qi) = hrthrottle(Qi)× hrideal(Qi).

4.2.5 Load Balancer and Migrator

In our framework, the Balancer ensures that the cores within the cluster are

evenly load balanced in terms of the utilization. The Migrator migrates the set

66

Chapter 4. Hierarchical Power Management

of tasks that do not achieve their target heart rate at maximum frequency in the

A7 cluster to the A15 cluster. Similarly, a task is migrated from A15 cluster to

A7 cluster when the measured heart rate hr(Qi) is above the maximum target

heart rate hminref (Qi) at the minimum frequency in the A15 cluster.

4.3 Experimental Evaluation

4.3.1 Implementation Details

big.LITTLE platform with Linux. In our evaluation, we use the real Ver-

satile Express development platform [7] as shown in Figure 4.5. It is a flexible,

configurable and modular developing platform that allows quick prototyping of

hardware and software projects. The system comprises a motherboard on which

modular daughter boards can be plugged. The big.LITTLE processor is part of

the daughter board (TC2) pointed in the Figure 4.5. The motherboard handles

the interconnection between the daughter board and the peripherals by using a

FPGA bus interconnection network. The process technology of the TC2 board is

at 45nm Generic Process (GP). The TC2 test chip consists of two core Cortex-

A15 (big) cluster and three core Cortex-A7 (LITTLE) cluster. Both big and

LITTLE cores implement ARM v7A ISA and are connected together by CCI-

400 cache coherent interconnect. The frequency can only be modified at the

cluster level in the target platform.

The board boots an Ubuntu 12.10 Linaro release for Versatile Express [8]. The

platform firmware runs on an ARM controller (MCC) embedded on the moth-

erboard and handles the load of the Linux kernel while booting. The Linux file

system is installed on the Secure Digital (SD) card where all our benchmarks

are saved. The TC2 daughter board is also equipped with sensors for measuring

the frequency, voltage, current, power and energy consumption per cluster. The

board also supports the change of voltage and frequency per cluster.

67

Chapter 4. Hierarchical Power Management

Big.Little
TC2
daughter
board

Figure 4.5: Picture of the Vexpress board.

Profiling Section. The Linux version [8] provides hardware monitor (hwmon)

interface to communicate with the sensors located in the test chip. We use ARM

Streamline gator kernel module and daemon [1] to obtain performance related

metrics like instructions per cycle (IPC). Powering off the cluster and adjusting

the clock frequency were made possible by accessing the oscillator related drivers

provided in the kernel. The legal voltage and frequency ranges for the clusters

are shown in Table 3.1.

Managing task slice and Migrator. Linux scheduler uses the notion of time

slicing for allocating the resources to the running tasks in the system. At every

system tick (10ms in our experiments), the kernel computes the time slice that

the next tasks should receive. By default, the CFS scheduler fairly divides a

relatively fixed period of time (6ms in our experiments) and allocates the slice to

the task. The slice dictates the duration for which the task can consume the core.

Our Resource Share Controller manipulates the computed slice for the QoS task

by the original Linux mechanism by gradually increasing the time slice when a

higher utilization is required or reducing the slice when less utilization is required.

For non-QoS tasks, the CFS scheduler will try to fairly share the remaining time

68

Chapter 4. Hierarchical Power Management

period among them. Linux kernel uses cpumask to decide the affinity of the

tasks. Migrator component in our HPM alters the cpumask associated with

each task to attain the desired scheduling decision.

In Table 4.5 we show the minor modifications that we did in the Linux kernel in

order to implement our HPM scheduler.

Function Description # lines
scheduler tick() Fire controllers based on system tick. 30
load balance() HPM Balancer within the cluster. 12

run rebalance domains() HPM Migrator across the clusters. 47
sched slice() Manipulate the QoS time slices. 5

Table 4.5: Linux kernel modifications.

Heart Rate Monitor and Benchmarks. We use the Application Heartbeats

framework proposed in [54] as a mechanism to measure the performance of an

application. The API provided in this framework provides a QoS metric in

terms of heartbeats which are periodic signals sent by an application to track its

progress. The QoS metric provided by the framework is called heartrate (i.e, the

number of heartbeats per second). For example, in video encoding applications

the heartbeats can be registered every frame. Thus, the heart rate measured

would be the number of frames per second. The interested reader is referred to

[54] for more information on Heartbeats Framework. In the absence of HRM

infrastructure, an approximate way to determine the demand in Linux operating

system is to measure the time a task spends in the run-queue in a given epoch

of scheduling. This per-entity load tracking proposed by Paul Turner [117] in

kernels higher than 3.7 can be used in lieu of heartbeats.

Table 5.5 describes the benchmarks used in our experiments together with the

inputs. Table 4.7 summarizes heartbeat insertions in the benchmarks [54].

Controller Features. We deploy PID controllers for per-task resource share

controllers, per-task QoS controllers, and per-cluster DVFS controller. Table

69

Chapter 4. Hierarchical Power Management

Benchmark Benchmarks suite Description Inputs
swaptions PARSEC QoS sim native

Monte Carlo (MC) simulation.
bodytrack PARSEC QoS sim native

Tracks a human body with images.
x264 PARSEC QoS sim native

Video encoder.
blackscholes PARSEC QoS sim native

Solves partial differential equation.
h264 SPEC 2006 QoS foreman

Video encoder.
disparity Vision non-QoS fullhd

Motion, tracking and stereo vision.
sift Vision non-QoS fullhd

Image Analysis.
tracking Vision non-QoS fullhd

Motion, tracking and stereo vision.

Table 4.6: Benchmarks description.

Benchmark Heartbeat Location
swaptions Every ”swaption”

h264 Every frame
bodytrack Every frame

x264 Every frame
blackscholes Every 25000 options

Table 4.7: Heartbeats in QoS benchmarks.

4.8 summarizes our HPM framework, describes the terminologies and provides

the gain factor values associated with each of the controllers employed in our

experiments. The invocation period of RSC is a user-defined value. For example,

for video encoding it can typically be 30 frames per second, which translates to

RSC being evoked every 30 frames. The invoke period was chosen in such a way

that the per-task resource share controller and load balancer are invoked most

frequently followed by DVFS controller, per-task QoS controller, migrator and

finally the chip-level power allocator.

4.3.2 Results

We use the sequential version of the PARSEC benchmarks as QoS tasks. We

specify and track the heart rates for the QoS tasks using Heart Rate Monitor

infrastructure [54] integrated with our Linux kernel. Note that some of the

benchmarks are computationally demanding (e.g., x264) and requires hardware

70

Chapter 4. Hierarchical Power Management

Controller name Metrics Symbol Value

Resource Share Controller (RSC)

target heart rate hrref tuned by QoSC
measured heart rate hr measured by the task

slice s actuator tuned by RSC
proportional gain KRSC

p 0.8512
integral gain KRSC

i 0.01241
derivative gain KRSC

d 0.00941
invoked period TRSC = β × 1

hrideal
determined by the hrideal

heart rate measurement
β user-defined

frequency factor

CORE component
core utilization uk measured by each core
invoked period T c = 4×max(TRSC(Qi)) determined by the task with max hrideal

DVFS Controller (DVFSC)

target cluster utilization uref estimated by CHIP component
measured cluster utilization max(u(Ck)) measured by CORE component

cluster frequency freq tuned by DVFSC
proportional gain KDV FSC

p 0.9533
integral gain KDV FSC

i 0.2572
derivative gain KDV FSC

d 0.0014
invoked period TDV FSC = 5 ∗ T c slower than the CORE component

QoS Controller (QoSC)

ideal hr hrideal user-defined
throttle factor hrthrottle estimated by CHIP component

target reference hr hrideal × hrthrottle product of ideal hr and throttle factor
measured reference hr hrref measured by the task

proportional gain KQoSC
p 0.74175

integral gain KQoSC
i 0.0214

derivative gain KQoSC
d 0.0045

invoked period TQoSC = 30 ∗ TRSC much slower than RSC

CHIP level power allocator

thermal design power TDP user-defined
threshold power Pthresh user-defined
throttle factor hrthrottle estimated by CHIP component

invoked frequency T ch = 2× TQoSC slower than DVFSC
Balancer invoked period T b = 2× TRSC faster than DVFSC
Migrator invoked period Tm = 4× TQoSC slower than QoSC

Table 4.8: Controller Parameters.

accelerators for execution. As we run software-only versions of these benchmark,

they achieve low heart rate even on A15 core at highest frequency.

The evaluations are designed to demonstrate that HPM achieves the following

objectives: (1) HPM can exploit asymmetry to provide significant energy savings

compared to symmetric multi-cores, (2) HPM performs better than the Linaro

scheduler, (3) HPM can respond to thermal emergency in a graceful manner, and

(4) HPM does not interfere with the desired properties of Linux CFS, namely,

fairness and non-starvation of the non-QoS tasks.

Asymmetric versus symmetric multi-core. We use x264 benchmark that

exhibits phases with varying performance requirements during execution. The

symmetric architectures are emulated using only A7 cluster or A15 cluster. We

run x264 benchmark on each of these configuration. All the configurations use

HPM framework; but inter-cluster migration is disabled for symmetric archi-

tectures. Figure 4.6 plots the heart rate on the asymmetric and symmetric

configurations. The heart rate line type specifies the cluster on which the task is

71

Chapter 4. Hierarchical Power Management

0.04

0.12

0.2

0.28

0.36

0 200 400 600 800 1000 1200

H
e

a
rt

 r
a

te
 (

/
s)

Time (s)

 Energy (kJ)

Symmetric A7 – 1.11
Symmetric A15 – 2.02
Asymmetric – 1.39

H
e

a
rt

 r
a

te
 (

/
s)

Time(s)
hr range Asymmetric A7 hr Asymmetric A15 hr Symmetric A7 hr Symmetric A15 hr

Figure 4.6: x264: Heart rate on symmetric & asymmetric multi-core.

running: continuous line corresponds to A7 cluster and dashed line corresponds

to A15 cluster. The gray shaded area shows the specified heart rate range.

On symmetric configurations, the measured heart rate is below the minimum

heart rate most of the time when executing on A7 cluster, while the heart reate

mostly exceeds the maximum heart rate when running on A15 cluster. As ex-

pected, the energy consumption is very low (1.11kJ) in A7 cluster and quite

high in A15 cluster (2.02kJ). The asymmetric multi-core provides the best of

both worlds. On the asymmetric architecture, we can see that the application

migrates to A15 cluster for the demanding phases and moves back to A7 clus-

ter as the computational demand decreases. The HPM manages to maintain

the heart rate within the reference range with a very low energy consumption

(1.39kJ), which is 68% less than the energy consumption on A15 cluster alone.

HPM versus Linaro scheduler. We compare HPM scheduler with Linaro

scheduler kernel release 3.6.1, where we activate the power conservative governor.

The Linaro scheduler is aware of the different performance capabilities of the

asymmetric cores, but it does not react to different performance requirements

72

Chapter 4. Hierarchical Power Management

of the QoS tasks. Once the task load (defined as time spent on the runqueue

of the processor) increases above a predefined threshold, the Linaro scheduler

moves the task to the more powerful core. However, it never migrates the task

back to the weaker core when workload reduces. We launch three QoS tasks,

x264, bodytrack, h264, on three A7 cores. The results are shown in Figure 4.7. In

all the subgraphs the X-axis shows the time in seconds. The Y-axis in the first

three subgraphs shows the measured heart rate of the QoS tasks under HPM

and Linaro. Additionally, the figure shows the specified heart rate range for the

tasks as grey shared area. The last subgraph shows power comparison between

the two approaches.

bodytrack and h264 meet their specified heart rate on A7 cluster. As x264 does

not meet its heart rate on A7 all the time, it is migrated to A15 cluster by HPM

when necessary. All the while, HPM keeps the heart rate of all the applications

within the specified range. The Linaro scheduler, on the other hand, migrates

all the tasks to the A15 cluster based on task load. As a result, the tasks

complete execution much earlier compared to HPM; but exceeds the heart rate

by a large margin consuming significantly more energy. On an average, the

system consumes 2.27W using our scheduler compared with 5.83W consumed

under Linaro scheduler.

The average frequencies of the A7 and A15 clusters are 780MHz and 157MHz

when using our scheduler. Due to aggressive migration by Linaro scheduler, the

average A7 frequency is 170MHz and the average A15 frequency is 1044MHz.

We plot the frequency change along with the power values in Figure 4.8 where

frequency 0 corresponds to a switched off cluster.

Table 4.9 quantitatively shows the average power consumption and heart rate

miss percentage (i.e., how much time a QoS task spends below its minimum

specified heart rate) for HPM and Linaro scheduler using identical experimental

setup but five different combination of QoS benchmarks. In general, a small loss

73

Chapter 4. Hierarchical Power Management

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

0 100 200 300 400 500 600 700 800 900

Po
w

er
 (W

)

Time (s)

Power Power Linaro hr range
Linaro A15 hr Linaro A7 hr

HPM A7 hr HPM A15 hr

x
2
6
4

b
o
d
y
t
r
a
c
k

h
2
6
4

0.04

0.12

0.2

0.28

0.36

0 100 200 300 400 500 600 700 800 900
He

ar
t r

at
e

(/
s)

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600 700 800 900

He
ar

t r
at

e
(/

s)

0.06

0.12

0.18

0.24

0.3

0 100 200 300 400 500 600 700 800 900

He
ar

t r
at

e
(/

s)

Power HPM

Figure 4.7: HPM versus stock Linaro scheduler equipped with DVFS gover-
nor and inter-cluster migration.

in performance of the QoS tasks in our framework is heavily compensated by

the average power reduction. The Linaro scheduler performs quite badly even

in terms of performance in the two highlighted experiments. This is because the

benchmarks are very demanding. Linaro scheduler moves them all to the A15

cluster, where they suffer from lack of resources, even at the highest frequency

level. HPM uses the resources more efficiently and miss rate is reduced along

with considerable reduction in power consumption. The results clearly demon-

strate that HPM exploits the asymmetric architecture much more efficiently than

current Linux scheduler.

HPM scheduler Linaro scheduler

Benchmarks
Avg hr Avg hr

Power(W) miss % Power(W) miss %
swap h264 x264 3.35 8.27 6.18 5.95
swap h264 body 3.88 13.39 6.06 9.80

h264 body black 4.19 15.65 6.00 33.99
black x264 h264 4.21 19.93 6.19 29.76

x264 body h264 2.27 9.61 5.83 7.41

Table 4.9: Quantitative comparison of HPM with Linaro scheduler.

74

Chapter 4. Hierarchical Power Management

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900

Po
w

er
 (W

)

Fr
eq

ue
nc

y
(M

H
z)

Time (s)

HPM A15 freq HPM A7 freq Power HPM Power Linaro

Figure 4.8: Frequency and power consumption plot (HPM versus stock Linaro
scheduler).

Response under TDP constraint. This experiment evaluates the efficiency

of HPM in managing the chip power below the TDP through DVFS and graceful

degradation of the QoS of the tasks if necessary. For fair comparison, we add

a feature to the Linaro scheduler that switches off the A15 cluster once the

power exceeds the TDP threshold. We use bodytrack, swaptions, and h264 where

the first two benchmarks have high workload and are migrated to A15 cluster.

swaptions is the most demanding one and sets the frequency of the A15 cluster

to the highest value. As we cannot control the frequency of individual cores,

the core with bodytrack is forced to run at a higher frequency than required

and hence its heart rate exceeds the target. Figure 4.9a shows the heart rate

of swaptions (the application with maximum impact on power) together with

the median value of the target heart rate range. The subgraph at the bottom of

Figure 4.9a shows the chip power and the specified TDP cap. In this experiment,

we dynamically change the TDP cap between 4-8W to demonstrate how the

scheduler adapts to TDP budget. Once the chip power exceeds the TDP, the

power allocator immediately increases the target utilization value of the clusters,

which forces the DVFS controllers to decrease the frequency, and thereby reduce

total chip power. Meanwhile, the power allocator also sets the heart rate throttle

values, which in turn makes the QoS controllers reduce the target heart rates

correspondingly bringing down the workload to a more sustainable level. HPM

75

Chapter 4. Hierarchical Power Management

0.04

0.1

0.16

0.22

0 100 200 300 400 500 600 700 800

H
ea

rt
 ra

te
 (/

s)

0.06

0.12

0.18

0.24

0.3

0 100 200 300 400 500 600 700 800

H
ea

rt
 ra

te
 (/

s)

Max hr Min hr A15 hr A7 hr hr ref A7 hr A15 hr

swaptions

swaptions

0 100 200 300 400 500 600 700 800
0
1
2
3
4
5
6
7
8

Time (s)

Po
w

er
 (W

)

Power TDP

0 100 200 300 400 500 600 700 800
0
1
2
3
4
5
6
7
8

Time (s)

Po
w

er
 (W

)

Power TDP

(a) HPM

0.04

0.1

0.16

0.22

0 100 200 300 400 500 600 700 800

H
ea

rt
 ra

te
 (/

s)

0.06

0.12

0.18

0.24

0.3

0 100 200 300 400 500 600 700 800

H
ea

rt
 ra

te
 (/

s)

Max hr Min hr A15 hr A7 hr hr ref A7 hr A15 hr

swaptions

swaptions

0 100 200 300 400 500 600 700 800
0
1
2
3
4
5
6
7
8

Time (s)

Po
w

er
 (W

)

Power TDP

0 100 200 300 400 500 600 700 800
0
1
2
3
4
5
6
7
8

Time (s)

Po
w

er
 (W

)

Power TDP

(b) Cluster switch off

Figure 4.9: Comparison of HPM and Linaro extended with cluster switch-off
policy under TDP constraint.

always maintains the heart rate of swaptions at the target value. Note that the

target heart rate is decreased by the QoS controller when the power is above the

TDP, thereby degrading the performance of the tasks. Once TDP is increased,

the target heart rate switches back to the user-specified ideal value.

In case of the modified Linaro scheduler (Figure 4.9b) the A15 cluster is switched

on and off frequently in response to increase in chip power beyond TDP. This

oscillation happens because the workload is not throttled when the A15 cluster

is switched off. As soon as A15 cluster is switched off, the power decreases

much below the TDP, the tasks again migrate back to A15, the power increases

above TDP, and the cycle continues. This frequent powering down of clusters

and consequent migration makes bodytrack and swaptions run below their target

heart rate most of the time under modified Linaro scheduler. This experiment

confirms that a holistic approach is required to maintain the chip power below

TDP; our approach not only decreases the frequency of the clusters but also

solves the root cause of increased power by slowly degrading the QoS of the

tasks. As a result, our approach reaches a stable and sustainable level both

w.r.t. the heart rate and the chip power.

76

Chapter 4. Hierarchical Power Management

0

20

40

60

80

100

blacksholes,h264 h264,x264 swaptions,bodytrack

U
ti

li
za

ti
o

n
 (

%
)

sift tracking disparity

Figure 4.10: Fairness of non-QoS tasks.

Fairness of Non-QoS tasks. Our HPM framework is built on top of the

existing Linux kernel scheduler. This set of experiments validate that we do not

interfere with the scheduling of the non-QoS tasks handled by the Completely

Fair Scheduler (CFS), which guarantees equal (fair) share of processor utilization

among the tasks.

We run three experiments each with three non-QoS tasks (sift, tracking, dispar-

ity) and two QoS tasks. The behavior of the QoS tasks dictates the amount of

A7 cluster utilization that CFS can provide to the non-QoS tasks. The first ex-

periment uses blackscholes and h264 as QoS tasks that satisfy the target heart

rate on A7 cluster with close to maximum target utilization. Thus the CFS

scheduler clusters together non-QoS tasks on the third available core. Figure

4.10 shows that the non-QoS tasks have equal share of utilization (33%).

The second experiment involves h264 and x264 ; x264 has a demanding execution

phase where HPM migrates it to A15 cluster. Mostly the three non-QoS tasks

run on their cores receiving 60% utilization, while h264 runs on A7 cluster.

The final experiment uses swaptions and bodytrack, both of which migrate to

A15 cluster and non-QoS tasks receive almost 100% of the A7 cluster utilization.

77

Chapter 4. Hierarchical Power Management

4.4 Summary

In this chapter, we presented a dynamic power management framework for het-

erogeneous multi-cores that carefully coordinates multiple controllers. It is inte-

grated with Linux on ARM big.LITTLE platform. It exploits asymmetry among

the cores through selective migration and employs DVFS to minimize energy con-

sumption while satisfying QoS constraints. Our technique combines graceful QoS

degradation at task level with power reduction through DVFS at core level to

reach a stable and sustainable execution under TDP cap.

78

Chapter 5

Price Theory based Power

Management

In this chapter, we improve the dynamic power management technique proposed

in Chapter 4 by introducing features like scalability, priority-driven and priority

consciousness. As in chapter 4, the goal is to develop a power management

framework for heterogeneous multi-cores in mobile platforms, that can satisfy

applications’ demand expressed in terms of Quality of Service (QoS) with low

energy consumption footprint under Thermal Design Power (TDP) constraint.

We explain the features added to HPM technique in detail:

• Traditionally, centralized power management [26, 58, 122] have been em-

ployed in embedded mobile platform. However, centralized approaches

suffer from scalability issues, specially in future many-core systems [5, 29]

containing heterogeneity. For example, Samsung’s Exynos 5 Octa contains

8 cores: 4 Cortex A-15 and 4 Cortex A-7 cores. Scalable power manage-

ment technique for such platforms should have distributed decision making

strategies.

79

Chapter 5. Price Theory based Power Management

• Incorporating priority-driven feature gives a better user experience in mo-

bile platforms. For example, when power exceeds the TDP, it would be

favorable to penalize the lower-priority tasks higher compared to high-

priority tasks.

• Among the same priority tasks, it is favorable to allocate more compu-

tational resources to tasks with the bursty feature relative to a compute-

bound and long running tasks. Most of the interactive mobile applications

like browsers, speech recognition etc are bursty in nature.

To incorporate all objectives mentioned in Chapter 4 and fulfill the aforemen-

tioned challenges, we propose a framework based on the foundation of price

theory [71] from economics. The price theory framework has strong applicability

on resource management problems. All our evaluations are performed on a real

heterogeneous multi-core chip ARM big.LITTLE.

5.1 System Overview

In this section, we present the models for the different entities in the heteroge-

neous multi-core system where our proposed price theory based power manage-

ment scheme is employed.

Architecture model. We target single-ISA heterogeneous multi-core architec-

tures, which exhibit power-performance heterogeneity as in big.LITTLE [49] and

Tegra [5] platforms. The target system is comprised of a set of cores C grouped in

a set of voltage-frequency clusters V, with each cluster having a separate voltage

and frequency regulator. Each cluster v can operate at several discrete voltage-

frequency (V-F) levels and consists of a set of cores Cv ⊆ C. All the cores within

a cluster are symmetric in terms of micro-architecture and have to run at the

same V-F level.

80

Chapter 5. Price Theory based Power Management

Task model. A task t is a computational entity that can execute on a core.

Each task t is assigned a priority rt by the user, where higher value means higher

priority. T represents the set of all tasks.

Task to core mapping. Our framework dynamically maps the tasks to the

cores. A task t is mapped to a core ct. Tc ⊆ T represents the set of tasks mapped

to core c and Tv = ∪c∈CvTc denotes the set of tasks mapped to the cores in cluster

v. The idle task tidle executes on a core without any active task. If there are no

active tasks in an entire cluster, then we can power down that cluster.

We define Rc, Rv, R as the sum of the priorities of all the tasks mapped to core

c, cluster v, and the entire system, respectively.

Supply Model. Each core c can supply certain amount of computational re-

sources Sc, which is constrained by the maximum supply Ŝc. The computational

resource is defined in terms of of Processing Units (PU), where one PU is equiv-

alent to one million processor cycles per second. The higher the frequency of a

core c, the more it can supply PUs (i.e., higher the value of Sc) and the maxi-

mum supply of PUs Ŝc is determined by the maximum possible frequency of the

core. For example, a core running at 1000MHz (or 350MHz) produces a supply

of 1000PUs (or 350PUs). Note that the amount of work (instruction processing)

that can be achieved with one PU on a small core is generally less than the

amount of work that can be done with one PU on a big core; that is, one PU on

a big core is more valuable than one PU on a small core.

The supply of a cluster Sv is the same as the supply of any of the constituent

cores, which have identical Sc values. The supply of the entire chip S is the

summation of the cluster supply values. The current supply of PUs to task t on

core ct is represented by st (≡ sctt). The supply of PUs to a task t has to be less

than the supply produced on the core ct it is mapped to, that is, st ≤ Sct .

81

Chapter 5. Price Theory based Power Management

Demand Model. Each task t demands a certain amount of computational

resources (PUs), which can vary dynamically during the course of the execution.

In heterogenous multi-cores, a task demands different amount of PUs across

different core types. For example, a task would demand more PUs on a small

core compared to a big core to achieve the same application-level performance.

The differing demands for computational resources on different core types model

the heterogeneity of the architecture. The current demand of task t on core ct

is represented by dt (≡ dctt).

Let Dc represent the sum of demands of all the tasks mapped to core c. The

core with the highest demand in a cluster is called the constrained core of the

cluster. Let c̃v ∈ Cv represent the constrained core of the cluster v. Then the

demand of the cluster Dv = Dc̃v is defined as the demand of its constrained core

c̃v and the demand of the entire chip D is the summation of the demands of the

clusters.

Power model. The power consumption of a core c represented by Wc depends

on the core type, its V-F level, and the workload. The power consumption of

a cluster v is represented by Wv, while the entire chip power consumption is

represented by W .

The quality of the cooling solution determines the value of the TDP constraint

Wtdp. As mentioned before, our goal is to keep the total chip power consumption

below the TDP (W < Wtdp) while meeting the task demands at minimal energy.

5.2 Power management Framework

In this section, we introduce our novel price theory based power management

framework in heterogeneous multi-cores. Our power management framework is

designed on the foundation of the Price Theory [71] and the Quantity theory of

money [46]. The resource allocation, DVFS, task mapping and migration are all

82

Chapter 5. Price Theory based Power Management

Price
Control

DVFS

Core
Allowance
Distribution

Core

Price
Discovery

Task
Allowance
Distribution

CPU Time
(PUs)

Task

Dt

St Bid
Generation

St
CPU Time

(PUs)

Task

Dt

St
Bid

Generation

St

Task Agents Core Agents Cluster Agents Chip Agent

CPU Time
(PUs)

Task Core

dt

st

Price
Discovery

Task
Allowance
Distribution

Bid
Generation

st

bt

at

Price
Control

DVFS

Core
Allowance
Distribution

Cluster
Allowance
Distribution

Power
Sensor

Allowance
Control

Pc

Ac

Sc

Sv W, Wv

Δ

Av

Sv, Dv

Wth, Wtdp

Rv

Rc

rt

Pc

Figure 5.1: Agent Interaction Overview

controlled through the virtual market place, where the commodity being traded

is processing unit (PU) using virtual money.

The framework is realized as a collection of autonomous entities called agents.

Each agent represents a transactional body in the market. An agent can perform

various functionalities such as earning, bidding, purchasing, and distribution of

computational resources. Furthermore, the actions of an agent are prompted

by the goals of the client(s) it represents. For example, an agent representing a

task is motivated to meet the demand imposed by the task. Similarly, the agent

representing the entire chip ensures that the thermal design power constraint is

not violated.

The efficient functioning of the market is ensured through the regulations im-

posed on the actions of the agents. The regulations introduced in our market are

reflections of the power management goals to be achieved. According to Price

Theory, in a competitive market, the quantity and price at which a commodity

is traded will be determined by point of intersection of its supply and demand

curve, also known as economic equilibrium. Furthermore, based on Quantity the-

ory of money, if we increase(or decrease) the money in circulation while keeping

83

Chapter 5. Price Theory based Power Management

the supply and demand fundamentals unchanged, we will observe inflation(or

deflation) in equilibrium market price.

The economic market sans inflation (or deflation) exhibits a stable equilibrium

price only when the demand is completely satisfied. Thus, controlling inflation

(or deflation) is equivalent to providing enough supply to satisfy the current

demand in the market. The supply can be modified by adjusting the v-f levels.

In the market, high prices of the commodity is the reflection of high contention for

the resource, which leads to inflation (increase in supply) and thus higher power

consumption. Therefore, an efficient rearrangement of the market dynamics

leads to lower prices, thus less spending is more desirable. Interested readers

may refer to [46, 71] for more details on economic equilibrium, inflation and

deflation concepts.

Our power management framework consists of two main components: Supply-

Demand module and Load-Balancing plus Task migration module (LBT). Given

a task to core mapping, the supply-demand module attempts to satisfy the de-

mands of all the tasks with minimal power consumption under the TDP con-

straint. It relies on the concept of regulating inflation-deflation. The LBT mod-

ule aims to reach a power efficient task to core mapping through load balancing

and task migrations and employs the concept of reduced spending. Both the

modules work in tandem to achieve the final design goal of power management

in heterogeneous multi-cores.

5.2.1 Agents Overview

Figure 5.1 shows the interaction among the agents.

Task agent. Each task is represented by an agent, who is a buyer in the

market. A task agent can receive, spend, or save money to purchase the com-

putational resources (PU). An agent corresponding to a task gets an allowance

84

Chapter 5. Price Theory based Power Management

(virtual money) that it uses to bid for the resources according to the demands

of the task.

Core agent. Each core is represented by an agent who determines the price

of the computational resources produced by the core. The price for PUs in a

core emerges from the bids submitted by the task agents and the current supply

of the core. The core agent then distributes the available resources among the

task agents according to the bids. A core agent also distributes the allowances

received from the cluster agent to the task agents.

Cluster agent. A cluster agent controls the price of the resources by manipulat-

ing the supply of PUs in the cores under its purview. The increase (or decrease)

of the supply is achieved by varying the V-F levels of the cluster. A cluster agent

also distributes the allowance received from the chip agent to the core agents.

Chip agent. The chip agent controls the amount of money in circulation in

the system by manipulating the allowances, thereby ensuring that the total chip

power does not exceed the TDP constraint. It then distributes the allowances

to the cluster agents.

5.2.2 Supply-Demand Module

In this section, we explain the mechanisms employed by the supply-demand

module in manipulating the V-F levels to meet the task demands at minimal

power consumption. The supply-demand module requires all the task, core,

cluster, and chip agents to work in synergy. In terms of price theory, the demands

of all the tasks are satisfied only in an economic market without inflation (or

deflation). Thus, controlling inflation (or deflation) is equivalent to providing

enough supply to satisfy the current demand in the market. This is the basic

regulatory principle employed in the supply-demand module.

85

Chapter 5. Price Theory based Power Management

5.2.2.1 Task Dynamics

The main objective of the task agent is to sustain the demand of the task it

represents. This objective is achieved through an iterative process consisting of

three steps per round: bidding by the task agents, price discovery by the core

agent, and purchase of the resources. The iterative process continues till the

market stabilizes in an economic equilibrium.

The core agent gives an allowance at (the virtual money) to each task agent

according to the priority of the task. The task agent bids an amount bt to buy

resources based on the current demand of the task dt. If the bid is less than

the allowance, then the difference mt = at − bt is saved for future use. The bid

cannot exceed the sum of allowance and savings. We also require the bid to be

higher than a pre-defined minimum bid bmin. That is bmin ≤ bt ≤ at +mt.

For every round, each task agent submits a bid amount bt based on the experience

in the previous round. The task agent increases (or decreases) the bid amount if

the supply received was less (or more) than the demand in the previous round.

The agents keep the bid unchanged when the demand is satisfied.

Given the bids from all the tasks mapped to core c, the core agent representing

c discovers the price per PU Pc as follows

Pc =

∑
t∈Tc bt

Sc
(5.1)

Each task agent now purchases the resources at the value determined by the core

agent and obtains its current supply st.

st =
bt
Pc

∣∣∣∣
t∈Tc

(5.2)

The bids in the (N+1)th round by the task agents depend on the supply, demand

and prices observed in the N th round. As mentioned earlier, the bidding amount

86

Chapter 5. Price Theory based Power Management

is capped by the summation of allowance at and savings mt for the task.

bN+1
t = max

(
at +mt, bNt + (dt − st)× Pc

) ∣∣∣∣
t∈Tc

(5.3)

Table 5.1: Task and Core Level Dynamics Example

Round bta btb Pc sta stb Sc

1 1 1 0.0066 150 150 300
2 1.33 0.66 0.0066 200 100 300

Running Example Table 5.1 illustrates the working of the agents of two tasks

ta and tb executing on core c with supply Sc = 300 PUs. The current demands

are dta = 200 PUs and dtb = 100 PUs. Both the task agents begin with the initial

bid of $1. In round 1, the task tb is over-supplied, while ta is under-supplied. In

round 2, by adjusting bids based on the local supply-demand characteristics, the

resources are effectively shared among the tasks according to their requirements.

5.2.2.2 Cluster Dynamics

The cluster agents are responsible for controlling the price and preventing both

price inflation and deflation in the cores. When a core is undersupplied (over-

supplied), we observe price inflation (deflation). The cluster agent adjusts the

supply using DVFS to avoid either over-supply or under-supply situations in the

cores, which in turn is reflected in the stable price of the PU.

In our architecture, all the cores within a cluster have to run at the same V-

F level. Thus the supply can be modified only at the cluster level and not at

the core level. So the cluster agent observes and responds to price inflation (or

deflation) of only the constrained core because the constrained core represents

the highest demand among the cores within the cluster. Thus, the supply of

the cluster is controlled by the most constrained core. Note that given a task

mapping, a non-constrained core may suffer from deflation, while the constrained

87

Chapter 5. Price Theory based Power Management

core suffers from inflation. The cluster agent takes care of the inflation in the

constrained core, which can further magnify the deflation in the non-constrained

core. The LBT module (discussed in Section 5.2.3) is responsible for fixing the

deflation in the non-constrained core through load balancing.

In order to identify inflation/deflation, we need a base price from which the

relative changes can be observed. Every time the V-F level changes, we reset

the base price to the new price observed in the market. While the V-F level is

changing, we do not allow the task agents to change their bids until they have

observed the effect of the new supply on their existing bids.

A user supplied parameter called tolerance factor δ defines the rate of inflation

(or deflation) that the cluster agent can tolerate before increasing (or decreasing)

the supply, i.e., DVFS by one level. Let Pc and PBasec represent the current and

base price of the resources in a constrained core c, respectively. The cluster agent

increases the supply when the current price Pc ≥ PBasec+PBasec∗δ. Similarly,

a decrease in supply is observed when Pc ≤ PBasec−PBasec ∗ δ. The tolerance

factor δ determines the response sensitivity of the cluster agents. The lower the

value of δ, the faster the response of the cluster agent. The faster response results

in frequent V-F level transitions, and hence thermal cycling [96], which can be

detrimental to both the performance and the reliability of the hardware. Thus,

it is important to carefully select the value of δ by taking into consideration the

underlying hardware.

Table 5.2: Cluster Level Dynamics Example

Round bta btb Pc PBasec sta stb Sc

3 1.99 0.66 0.0088 0.0066 225 75 300
4 1.99 0.66 0.0066 0.0066 300 100 400

Running Example We demonstrate the cluster level dynamics by extending

the example from Table 5.1 to Table 5.2. In round 3, let us assume that the

demand of ta increases from 200 PUs to 300 PUs. Let the tolerance factor δ be

88

Chapter 5. Price Theory based Power Management

0.2. In round 3, the price increases to $0.0088, which is higher than the tolerable

value of $0.00796 = $(0.0066+0.0066×0.2), thus causing inflation in the system.

In round 3, the cluster agent responds by increasing the supply Sc from 300 PUs

to 400 PUs (highlighted in gray). At the new supply, both the tasks are satisfied

and per unit price observed in fourth round is $0.0066, which is set as new base

price of c. Also, in round 4, the task agents do not change their bids as the new

prices are determined only at the end of the round 4.

5.2.2.3 Chip Dynamics

While the cluster agent attempts to set the V-F level at the minimum value

so as to meet the demand of the tasks, the chip level agent is responsible to

ensure that the overall chip power does not exceed the TDP budget. The chip

agent indirectly controls the power consumption of the chip by manipulating the

allowance. It decides on the global allowance value A for the current round.

The allowance A is distributed hierarchically throughout the system using the

different cluster and core agents.

The global allowance is distributed as cluster allowances (Av) to the cluster

agents and the distribution is inversely proportional to power consumption. The

cluster consuming more power is given less allowance.

Av = A · W −Wv

W
(5.4)

The cluster allowance is distributed as core allowance (Ac) to the core agents of

the cluster based on the priorities of task agents running on them.

Ac = Av ·
Rc
Rv

(5.5)

89

Chapter 5. Price Theory based Power Management

Finally, the core allowance is further distributed as task allowances (at) to the

task agents proportional to their priorities.

at = Ac ·
rt
Rc

(5.6)

When the chip agent increases the global allowance A, the task agents receive

additional money to generate higher bids for the resources. The task agents with

unsatisfied demands increase their bid with the additional money. This causes

inflation in the under supplied clusters, triggering the respective cluster agents to

control the inflation by increasing the supply (increase V-F level). This increased

supply in the cluster results in increased power consumption.

On the other hand, when the chip agent decreases the global allowance A, all the

task agents have less money at their disposal and hence are forced to bid lower

values. This causes deflation in the clusters, which prompts the cluster agents

to decrease the supply (decrease V-F level) to control the deflation, resulting in

reduced power consumption.

When the chip agent decides to keep the allowance A constant, all the cores will

reach stable equilibrium prices. With stable prices, neither inflation or deflation

will be observed by the cluster agents resulting in a steady-state with no changes

in V-F levels.

The global allowance for the (N + 1)th round is set as follows

AN+1 = AN + ∆ (5.7)

where AN+1 and AN are the current and previous round allowances, respectively

and ∆ is the change in the allowance. The key question is how to dynamically set

the ∆ value. The ∆ value is set according to the current total power consumption

of the chip.

90

Chapter 5. Price Theory based Power Management

When the chip power consumption W is below the TDP, the primary goal of the

chip agent is to meet the demands of the tasks. On the other hand, if the chip

power exceeds TDP, then the chip agent is responsible to bring the power below

TDP. In case the system has a demand that is unsatisfiable within the TDP, due

to the discrete nature of the V-F levels the system will oscillate around the TDP.

To stabilize the system near TDP when overloaded, we introduce a buffer zone

near TDP where the system is ought to stabilize. The size of the buffer zone

is decided by the parameter Wth. Thus, the spectrum of power consumption is

divided into three regions:

Normal State. In the normal state, the power consumption of the entire chip

is less than the pre-defined threshold W < Wth. In this state, the chip agent

manipulates the ∆ value based on the current total supply S and total demand

D of the entire chip. When the demand is not satisfied in at least one of the

clusters, the chip is under-utilized and the task agents need extra money to buy

more resources. Therefore, the allowance is increased by an amount proportional

to the difference between the supply and the demand.

∆ = AN · D − S
D

(5.8)

Threshold State. In the threshold state, the power consumption of the chip

is observed between Wth and TDP Wtdp. Ideally, it is desirable for the power

consumption of the chip to stabilize in threshold state when the system is over-

loaded. The stability is attained in the threshold state by keeping the allowance

constant through ∆ = 0. With larger buffer zone (Wtdp − Wth), the number

of oscillations around the TDP reduces and the stable state is reached quickly,

but the chip might be severely under-utilized. On the contrary, a smaller buffer

zone leads to frequent oscillations around the TDP, but achieves higher utiliza-

tion. The idea of stability here is similar to the concept of hysteresis in control

systems.

91

Chapter 5. Price Theory based Power Management

Emergency State. In the emergency state, the power consumption of the chip

is above Wtdp and must be brought down quickly. The allowances of the task

agents have to be curbed to reduce the power consumption. In emergency state,

the reduction in allowance is proportional to the deviation from the TDP.

∆ = AN ·
Wtdp −W
Wtdp

(5.9)

Thus our system can achieve stability (stable equilibrium price) in either the

normal state (supply meets demand), or the threshold state (when overloaded),

but never in the emergency state.

Savings An important by-product of our price theory based power manage-

ment scheme is the concept of allowance savings by the task agents in the form

of non-zero mt values. How does a task end up with savings? The savings are

incurred under two scenarios. First we note that the global allowance is increased

by ∆ when the demand is not satisfied in at least one of the clusters. Thus, the

task agents belonging to the clusters in supply-demand equilibrium would have

additional allowance that will be saved for future bidding. Second, the price per

PU within a cluster is determined by the most constrained core. This leads to

the savings of allowances by the task agents belonging to the non-constrained

cores. The saved allowances would facilitate the task agents to outbid other task

agents for more resources during the supply constrained situation in both the

threshold state and the emergency state. The savings are especially beneficial

for tasks with alternating high and low demand requirement. Such task agents

save money during their dormant phase and use the saved allowance to outbid

other tasks during their active phase.

We choose to cap the savings of a task agent at a fraction of its current allowance.

This is because large amount of savings may allow the tasks to keep the system

92

Chapter 5. Price Theory based Power Management

Table 5.3: Chip Level Dynamics Example

R A ata atb bta btb mta mtb Pc PBasec dta dtb sta stb Sc D S W

4 4.5 3.0 1.5 1.99 0.66 1.01 0.84 0.0066 0.0066 300 100 300 100 400 400 400 .8W
5 4.5 3.0 1.5 1.99 0.66 1.01 0.84 0.0066 0.0066 300 300 300 100 400 600 400 .8W

6.0 4.0 2.0 1.99 1.98 3.02 0.85 0.0099 0.0066 300 300 200 200 400 600 400 .8W
6.0 4.0 2.0 1.99 1.98 3.02 0.85 0.0099 0.0066 300 300 200 200 500 600 500 .8W

6 6.0 4.0 2.0 1.99 1.98 5.03 0.86 0.0079 0.0079 300 300 250 250 500 600 500 2W
7 6.0 4.0 2.0 2.38 2.38 6.64 0.47 0.0095 0.0079 300 300 250 250 500 600 500 2W

6.0 4.0 2.0 2.38 2.38 6.64 0.47 0.0095 0.0079 300 300 250 250 600 600 600 2W
8 6.0 4.0 2.0 2.38 2.38 8.25 0.10 0.0079 0.0079 300 300 300 300 600 600 600 3W
9 4.0 2.67 1.33 2.38 1.42 8.53 0 0.0063 0.0079 300 300 375 225 600 600 600 3W

4.0 2.67 1.33 2.38 1.42 8.53 0 0.0063 0.0079 300 300 375 225 500 600 500 3W
10 4.0 2.67 1.33 2.38 1.33 8.81 0 0.0074 0.0074 300 300 320 180 500 600 500 2W
11 4.0 2.67 1.33 2.23 1.33 9.25 0 0.0071 0.0074 300 300 313 187 500 600 500 2W
·
·

16 4.0 2.67 1.33 2.01 1.33 12.26 0 0.0067 0.0074 300 300 300 200 500 600 500 2W

in an emergency state longer than permissible. The ideal factor for capping is

determined by the designer with knowledge of the underlying hardware.

Running Example To illustrate the chip level dynamics, we further extend

the example from Table 5.2 to Table 5.3. Let us set Wtdp and Wth to 2.25W

and 1.75W , respectively. Let us further assume that, for the given application,

the system reaches the emergency state at 600 PUs supply (3W power) and the

threshold state at 500 PUs supply (2W).

The global allowance is $4.5 in the beginning. Let the priorities of tasks ta and

tb be 2 and 1 respectively. Thus task ta receives higher allowance relative to

task tb due to the difference in priorities. In table 5.3, the change in values are

highlighted in gray.

So far in round 4, we have met supply and demand of both the tasks by increasing

the core supply to 400 PUs. Now the demand of task tb increases to 300 PUs

in round 5. As the demand at the core level by the two tasks cannot be met

with the current supply of 300 PUs, we observe an increase in allowance (from

$4.5 to $6.0) as well as price inflation. This price inflation forces the cluster

agent to increase the supply to 500 PUs, which brings the chip to threshold state

consuming 2W power. In the threshold state, the allowance is kept constant

93

Chapter 5. Price Theory based Power Management

(observed in rounds 6-7). Meanwhile, the savings (mta and mtb) are calculated

based on the allowance allocated and bids by the tasks in each round.

In round 7, the price inflation again causes the supply to increase to 600 PUs,

which pushes the system to the emergency state. Now we need to stabilize the

system in the threshold state. This is achieved by decreasing the system-level

allowance from $6.0 to $4.0. This decreased allowance percolates all the way

to the tasks. By round 9, the task tb has also used up all its savings. This is

because the allowance was held constant in the threshold state (rounds 6-7). So

with decreased allowance and zero savings, the task tb is now forced to lower its

bids. The lower bids cause price deflation, resulting in reduction of supply from

600 PUs to 500 PUs.

As the supply is brought down to 500 PUs, the system reaches the threshold

state again. This time the allowances are constant; hence the tasks cannot

increase their bids preventing price inflation and subsequent increased supply

(higher frequency) that takes the system back to emergency state. So the system

stabilizes (round 16) in the threshold state where the power consumption is close

to the TDP and the higher priority task (ta) meets its demand, while the lower

priority task (tb) suffers.

5.2.2.4 Stability of the Supply-Demand module

We show that given a fixed task-to-core mapping, the supply-demand module

ensures that the system reaches a stable state. By stable state here, we imply

that there are no changes in the V-F levels and the resources allocated to the

tasks.

The principle of price theory states that the market is only stable at a price

equilibrium, which is the price at which the supply is equal to the demand.

94

Chapter 5. Price Theory based Power Management

Once the supply meets the demand, it automatically prevents further inflation

or deflation within the market.

Let us assume that we start off in a stable state. The stability is perturbed as

tasks enter/exit the system, or the demand within a task changes due to phase

behavior or change in the input conditions. We show that the system will reach a

(possibly) different stable state assuming there is no task migration in between.

There are three possible scenarios when the demand changes. In the first sce-

nario, the demand can be satisfied in the normal state. In this case, we observe

price inflation/deflation till the supply is equal to the demand and the system

reaches stability. We always round up the demand to the next supply value so as

to prevent oscillation between two consecutive supply values. Note that the price

equilibrium is reached in the constrained core, which determine the V-F level.

For the non-constrained cores, the supply might be greater than the demand be-

cause all the cores have the same supply value (V-F level). In this case, the price

in the core(s) with over-supply will fall till the bid price hits the minimal bid

value bmin. The same situation happens when the demand on the constrained

core is less than the minimum supply value (minimum frequency level) and the

system stabilizes at the minimum frequency.

In the second scenario, the demand can be satisfied in the threshold state. Here,

the allowance is kept constant, which eventually translates to fixed bid prices

by the tasks (because bid price cannot exceed allowance), preventing further

inflation/deflation. In the absence of inflation/deflation, the V-F levels are not

modified and all the clusters in the system stabilize to fixed V-F levels.

The third scenario is the most interesting one where the system needs to be in

the emergency state to meet the demand. But we clearly cannot keep the system

in the emergency state for long and have to ensure that it quickly stabilizes in the

threshold state. This is the scenario illustrated in the example in Table 5.3. The

stability is ensured by defining a buffer zone near TDP (the difference between

95

Chapter 5. Price Theory based Power Management

Wtdp and Wth). The buffer zone should be designed such that the system cannot

move from the normal state to the emergency state or vice versa without passing

through the threshold state. Once the system reaches the emergency state, the

allowances are reduced, which moves the system to the threshold state. Once in

threshold state, the allowance is kept constant at reduced value, which leads to

fixed bidding prices and hence price equilibrium.

5.2.3 Load Balancing and Task migration (LBT) module

The supply-demand module achieves a steady-state with permissible power con-

sumption for any given task mapping by manipulating the V-F levels. But the

mapping itself may not be efficient in terms of performance and power leading

to a sub-optimal solution. Thus, the goal of the LBT module is to find a task

mapping that is superior in terms of both performance and/or power consump-

tion relative to the current mapping. The LBT module first attempts to meet

the task demands followed by improving power efficiency through load balancing

within a cluster and task migration across the clusters. Load balancing within

a cluster helps reduce the V-F level of the cluster, while task migration exploits

the heterogeneity of the different clusters to potentially improve both the power

and the performance behavior of the tasks. In the following, we first describe

our task migration policy across heterogeneous clusters.

Give a fixed task-to-core mappingM, let sMt and bMt be the steady-state supply

and bid corresponding to the task t on core cMt . Also dMt be the demand of task

t on core cMt . Recall that the demand of a task changes based on the core type;

the demand is lower on a more powerful core compared to a simpler core for the

same level of performance.

We define a metric perf(M) to compare the performance of two different task

mappings. Given two different mappings M and M′, we define perf(M′) >

96

Chapter 5. Price Theory based Power Management

perf(M) if and only if

(
∃t ∈ T :

sM
′

t

dM
′

t

>
sMt
dMt

)
AND

(
∀t′ ∈ T s.t. rt′ > rt :

sM
′

t′

dM
′

t′
≥ sMt′

dMt′

)

Basically we sort all the tasks T in the system according to their priority rt.

For the mappingM′ to be better than the mappingM in terms of performance,

we need two conditions to be satisfied. The first condition is that there should

exist a task t for which the supply-demand ratio in the mapping M′ denoted as

sM
′

t

dM
′

t

is higher than the ratio in M. The second condition requires all the tasks

with higher priority than t to have either better or equal supply-demand ratio

in M′ than M.

We also define another metric spend(M) to capture the aggregate spending by

the tasks in the steady-state for the mapping M.

spend(M) =
∑
t∈T

bMt

From the power perspective, it is desirable if a task movement brings down the

aggregate spending without affecting the performance. The aggregate spending

spend(M) reduces only when the steady-state bids from all the tasks combined

together is lower. This reduction in bid price is observed only when the steady-

state demand lowers due to appropriate load balancing across the cores within

a cluster and the migration of the tasks to the most efficient cluster in terms of

heterogeneity. The reduced bids cause deflation by lowering the price, which in

turn brings down the supply, i.e., V-F levels and hence the power consumption.

Therefore, any reduction in aggregate spending will translate to reduction in the

power consumption, provided that the performance remains unchanged. Thus

mapping M′ is more power efficient than mapping M, that is, power(M′) <

97

Chapter 5. Price Theory based Power Management

power(M) if and only if

spend(M′) < spend(M) AND perf(M′) ≥ perf(M)

In the LBT module, each task agent first estimates steady-state perf(M) and

spend(M) for the current mapping M. This is the baseline power-performance

behavior that we want to improve upon. Next, each task agent estimates perf(M′)

and spend(M′) for all possible mappingsM′ where only the task corresponding

to this agent migrates to another cluster while the remaining tasks do not move.

Let us consider the potential migration of task t from the cluster v to the cluster

v′. In order to estimate the performance and the spending of the current and

the new mapping, we need the steady-state supply, demand, and bid price for

the current cluster v and the target cluster v′. This steady-state behavior is

estimated as follows.

• Demand: In the current cluster v, the steady-state demand is assumed to

be the currently observed demand. For the target cluster v′ (with different

core type), the steady-state demand is estimated using off-line profiling,

which is explained in detail in Section 5.3. In chapter 3, we developed a

power-performance prediction model for single-ISA heterogeneous multi-

core systems using a combination of program analysis, mechanistic model-

ing, and empirical modeling. In future, we plan to include this estimation

model within our price theory based power management framework to

eliminate the off-line profiling step.

• Supply: The steady-state supply of a cluster is estimated to be the same as

the steady-state demand, unless the supply is constrained by the TDP con-

straint. The steady-state supply per task can be estimated by distributing

the total supply among the tasks in proportion to their priorities.

98

Chapter 5. Price Theory based Power Management

• Bids: The steady-state bids are calculated by estimating the price in the

steady-state. The price at a higher V-F level Z+1 can be estimated from

the price observed in the current V-F level Z using the following equations,

PZ+1 = PZ + (PZ × δ) (5.10)

where δ is the tolerance factor. Using recursion, the price at the steady-

state supply can be estimated. For example, let PZ and δ be $10 and 0.02

respectively. Let us also assume that the V-F level has to increase by 3

levels to achieve the steady-state supply. Then, by using Equation 5.10

recursively for each level, the price can estimated to be $10.612.

Note that the task agents perform performance and savings estimations in paral-

lel, which enables the computational overhead to be distributed across the entire

chip, thus ensuring scalability. All the information required for the estimation is

hierarchically disseminated from the cluster agents to the chip agents and subse-

quently to the task agents and is kept consistent with periodic message passing.

The overhead of the computation and communication increases with increasing

number of tasks, cores, and clusters.

To reduce this overhead, only the task agents in the constrained core of each

cluster contemplate movement of the tasks. Furthermore, the overhead is high if

the task agents consider migration possibility to all the other cores in the system.

We only let the task agents consider the most over-supplied unconstrained core

in the target cluster as a potential candidate for migration. Thus there exists

a trade-off between the overhead and the quality of the solutions obtained. We

demonstrate in Section 5.3 that this simple heuristic works quite well in practice.

Figure 5.2 illustrates the flowchart of the task migration module in the con-

strained core c of a cluster v. If the demands of all the tasks are expected to

99

Chapter 5. Price Theory based Power Management

Task Migrator
In Constrained

Core cv

All tasks
meet

demand in
M?

Select the mapping with
max supply-demand ratio

for high priority task

Task agents in cv
estimates perf and

spend for M’

Core
Agent

Select the most power-
efficient mapping

Yes No

Power Efficiency

Task agents with
unsatisfied demand
in cv estimates perf
and spend for M’

Core
Agent

Performance

Figure 5.2: Task Migration in Constrained Core.

be satisfied in the steady-state of the current mapping M, then the goal is to

reduce the power consumption. In this case, all the task agents in c estimate the

performance and spending, if the task migrates to the most over-supplied uncon-

strained core in each of the other clusters, leading to a new mapping. Each task

agent then sends the estimated perf(M′) and spend(M′) for the most power-

efficient new mapping M′ to the core agent. The core agent selects the most

power-efficient mapping from the task agents and forwards this mapping to the

chip agent through its cluster agent. The chip agent finally selects the most

power-efficient mapping from all the clusters.

On the other hand, if some tasks are not expected to meet the demand in the

steady-state in the constrained core, then only the clusters with unsatisfied de-

mand consider possible task migration. For each such cluster, only the task

agents with unsatisfied demand in the constrained core contemplate migration

to the other clusters. In particular, at all levels (chip level, cluster level, and core

level) we choose the highest priority task that improves its supply-demand ra-

tio through migration without impacting the supply-demand ratio of the higher

100

Chapter 5. Price Theory based Power Management

priority tasks. If two mappings have the same performance, then we select the

one with better spending, i.e., better power consumption.

The load balancing process is very similar to the task migration. The only

difference is that the target core is not in a different cluster but the most over-

supplied unconstrained core within the same cluster. Thus only the cluster agent

and the core agent are involved in this process. The chip or the cluster agent

approves only one task movement at any given time. The movement of the other

tasks, if any, will be performed in future LBT invocation.

5.2.3.1 Stability of the LBT module

We have shown earlier that given a task mapping, the supply-demand module

leads the system to a steady-state. Now we need to show that the LBT module

does not introduce any instability in the system. The LBT module performs task

migration either within the cluster or across clusters. It can introduce instability

if and only if there exists cyclic movement of the tasks. However, our heuristic

ensures that the number of task migrations is finite for the following reasons.

If the demands of some tasks are not met in the current mapping, then we choose

the mapping that improves the supply-demand ratio of the highest priority task

with unsatisfied demand through migration. This, by definition, ensures that

only the lower-priority tasks are impacted by this migration and the chain of

task movements will end with the lowest priority tasks. Thus the number of

migrations is bounded by |T |.

On the other hand, if all the tasks meet their demands, then task migration

reduces power consumption through reduced spending. This series of task mi-

grations to reduce spending ends when the spending cannot be reduced further.

101

Chapter 5. Price Theory based Power Management

5.2.4 Invocation Frequency

The different modules involved in our framework have to be invoked at different

rates to reduce the overhead in the system. As mentioned before, the bidding

process by the task agents takes place in a series of rounds. The change in the

supply level by the cluster agent occurs asynchronously based on inflation/de-

flation.

The load balancing within the cluster is invoked more frequently than the task

migrator because task migration across clusters is expensive (2-4 ms) compared

to migration within cluster (50-170 µs). The equations below summarize the

periods for load balancing and task migration where linux scheduling epoch is

10ms.

task migration period = 2× load balancing period

load balancing period = 3× bid rounds period

bid rounds period = max (linux sched epoch, task period)

For workloads with periodic tasks, we set the bidding interval as the maximum

of the linux scheduling epoch and the shortest period among the tasks. In our

experiments, the shortest period for any task is 31.7ms; so we invoke the bidding

round every 31.7ms, the load balancer every 95.1ms, and the task migrator every

190.2ms.

The LBT module is disabled in the emergency state as the immediate goal is to

bring the power below TDP through the supply-demand module.

102

Chapter 5. Price Theory based Power Management

5.3 Experimental Evaluation

We now proceed to evaluate our price-theory based power management frame-

work, called PPM, for asymmetric multi-cores. First, we present the experimen-

tal setup and the workload selection. We compare PPM with the hierarchical

based power management technique (HPM) proposed in chapter 4 and the Linux

asymmetry-aware scheduler [8]. Finally, we quantify the effects of savings and

priorities followed by the overhead of PPM.

5.3.1 Experimental Setup

We use the Versatile Express development platform [7] for our experimental eval-

uation. The details of our evaluation platform (Versatile Express) is provided

in Section 4.3. Section 3.1 summarizes the architectural features of big and

LITTLE core. For heterogeneous multi-cores, it is important to discern the mi-

gration penalties across different clusters. Section 4.1.3 elaborates the migration

costs observed in big.LITTLE.

In our framework, the agents are implemented in software as kernel modules. The

core, cluster, and chip agents are instantiated during kernel boot process. The

task agents are instantiated as and when the tasks are created. The communica-

tion between the tasks in user space and the agents in kernel space is performed

using system calls. The cluster agent uses cpufreq utility to manipulate the fre-

quency of the cluster. The voltage at each frequency level is automatically set by

the hardware. The task migration is handled by the cluster and the chip agents

using the task affinity through sched setaffinity interface in the Linux scheduler.

The core agents are responsible for distributing the available resources among the

tasks. This is achieved by manipulating the nice values of each task. In Linux

kernel, nice values are the indirect indications of priorities for task management.

For example, lower nice value manifests as higher priority and more resource

103

Chapter 5. Price Theory based Power Management

consumption. As we use nice values for resource allocation, the user-level prior-

ities of the tasks in our framework are set in the context of the Linux kernel by

adding a new member prio in the structure task struct. The prio value can be

modified from the user space using system calls. For the sake of simplicity, we

do not allow dynamic modification of the priorities (prio) of the tasks.

5.3.2 Workload Selection

Table 5.4: Illustration of conversion from heart rate to demand with min and
max heart rate being 24 hb/s and 30 hb/s respectively.

Prog. Current hr Frequency Utilization s d
phase (hb/s) (Mhz) (%) (PU) (PU)

1 15 500 100 500 900

2 10 800 50 400 1080

3 40 1000 100 1000 675

We use benchmarks from PARSEC [16], Vision [121] and SPEC 2006 [4] suites.

At present, our framework requires the tasks to express the performance demand.

We employ the Heart Rate Monitor (HRM) [55] infrastructure to capture this

information. HRM provides a simple and effective way to measure the perfor-

mance of a task in terms of heartbeats per second (hb/s), which is defined as

the throughput of the critical kernel in a task. For example, number of frames

processed per second defines the heart rate of a video encoder. For each appli-

cation, the user can define the performance goal in terms of reference heart rate

range and our goal is to maintain the heart rate within that range, while mini-

mizing energy. Note that an application may have highly variable computation

requirement due to phase behavior and hence may need different V-F levels or

even migration to a different core type to keep the heart rate within the specified

range. Table 5.4 illustrates the conversion of heart rate to demand for a partic-

ular task. Each row in table 5.4 represents the different program phases of the

same application. The user defines the performance goals in terms of minimum

and maximum heart rate (24 hb/s – 30 hb/s). From the current observed heart

104

Chapter 5. Price Theory based Power Management

rate, core frequency and task utilization, the demand of the task can be easily

computed. For example, with the supply of 500 PUs, the current heart rate is 15

hb/s in program phase 1. It is clearly well below the reference range prescribed

by the user. The required demand is estimated using the following equation,

dt =
target heart rate× st
current heart rate

(5.11)

where target heart rate is the mean of the minimum and maximum heart rate

range. In our example in table 5.4, the target heart rate = 27. Similarly, in

program phase 3, the current heart rate exceeds the predefined range and here

the demand is lowered.

In the absence of HRM infrastructure, an approximate way to determine the

demand in Linux operating system is to measure the time a task spends in

the run-queue in a given epoch of scheduling. This per-entity load tracking

proposed by Paul Turner [117] in kernels higher than 3.7 can be used in lieu of

heartbeats. Table 5.5 summarizes the benchmarks along with inputs and the

heartbeat insertion point.

Table 5.5: Benchmarks description

Benchmark Suite Description Inputs Heartbeat
Location

swaptions PARSEC Monte Carlo (MC) simulation native and large every “swaption”
bodytrack PARSEC Tracks a human body with native and large every frame

multiple images.
x264 PARSEC Video encoder. native every frame

blackscholes PARSEC Solves partial differential native and and large every 50000 option
equation .

h264 SPEC2006 Video encoder. foreman, soccer every frame
and bluesky

texture Vision Motion, tracking vga and fullhd every frame
and stereo vision.

multicnt Vision Image Analysis vga and fullhd every frame
tracking Vision Motion, tracking vga and fullhd every frame

and stereo vision.

105

Chapter 5. Price Theory based Power Management

Table 5.6: Workload Sets

light
l1 texture v, tracking v, h264 s

swaptions l, x264 l, blackscholes l
l2 texture v, multicnt v, h264 b

swaptions l, bodytrack l, blackscholes l
l3 tracking v, multicnt v, h264 s

x264 l, bodytrack 1, blackscholes l

medium
m1 swaptions l, bodytrack l, blackscholes l

texture v, tracking v, h264 b
m2 texture v, tracking v, h262 s

swaptions n, bodytrack n, x264 n
m3 tracking v, multicnt v, blackscholes n

bodytrack n, texture f, h264 fo

heavy
h1 h264 fo, x264 n, blackscholes n

texture f, swaptions n, multicnt f
h2 blackscholes n, x264 n, tracking f

bodytrack n, texture f, h264 s
h3 h264 b, h264 fo, x264 n

swaptions n, bodytrack n, tracking f

* v-vga, f-fullhd, n-native, l-large, s-soccer, b-bluesky, fo-foreman

We create 9 different multiprogrammed workload sets from the benchmarks based

on the following metric,

intensity =

∑
t∈T d

A7
t − S

max freq
A7

Smax freqA7

(5.12)

where
∑

t∈T d
A7
t is the total demand of all the tasks in the given workload and

Smax freqA7 is the supply at the maximum frequency in the A7 cluster. The metric

intensity shows whether the demand of the entire task set in a workload can

be accommodated in the A7 cluster at the highest frequency. If intensity ≤ 0,

the supply exceeds the demand and hence the demand from all the tasks can be

satisfied in A7 cluster at highest frequency. On the other hand, if intensity > 0,

some tasks will not meet their demand on A7 cluster and need to move to

the more powerful A15 cluster. Therefore, based on the intensity metric, we

classify the workload sets into three types: a) light (metric ≤ 0), b) medium

106

Chapter 5. Price Theory based Power Management

(0 < metric ≤ 0.30) and c) heavy (metric > 0.30). Table 5.6 summarizes the

workload sets and their classification based on the intensity value.

The LBT module requires the average demand and power consumption of a

task in different core types for speculation during load balancing and task mi-

gration. We obtain the average demand and power consumption of the tasks in

both Cortex-A7 and Cortex-A15 through off-line profiling. The average metrics

(demand and power consumption) do not capture the dynamic phases of a task.

Nevertheless, it leads to better speculation than the absence of any knowledge

whatsoever and the supply-demand module can handle wrong speculations by

manipulating the V-F levels. Moreover, as mentioned before, we plan to include

the power-performance estimation model for big.LITTLE multi-core within our

price theory based power management framework to eliminate the off-line pro-

filing step in the future.

5.3.3 Comparative Study

We compare our price theory based power management framework PPM with

Hierarchical Power Management (HPM) technique proposed in chapter 4 and

Heterogeneous aware scheduler in Linux kernel (HL) [8]. As discussed in chap-

ter 4, the HPM is a control-theory based power management framework that

employs multiple PID controllers to meet the demand of tasks in asymmetric

multi-cores under TDP constraint. However, the HPM scheduler uses naive load

balancing and task migration strategy.

The HL scheduler released by Linaro in Linux kernel release 3.8 is aware of

the heterogeneity in ARM big.LITTLE platform. The activeness of a task (the

amount of time spent in the active task run-queue) is used as a proxy for mi-

gration decisions. For example, the HL scheduler migrates a task to A15 cluster

(A7 cluster) once the time spent in the active run-queue exceeds (falls below)

certain predefined threshold. Furthermore, the HL scheduler does not react to

107

Chapter 5. Price Theory based Power Management

0%

5%

10%

15%

20%

25%

30%

35%

40%

l1 l2 l3 m1 m2 m3 h1 h2 h3

A
ve

ra
ge

 R
ef

. H
e

ar
t

R
at

e
 m

is
s

[%
]

PPM HPM HL

Figure 5.3: Comparison of the percentage of time the tasks do not meet the
reference heart rate range (no TDP constraint).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

l1 l2 l3 m1 m2 m3 h1 h2 h3

A
ve

ra
ge

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 [
W

]

PPM HPM HL

Figure 5.4: Comparison of power consumption (no TDP constraint).

the varying demands of the individual tasks. For the HL scheduler, we also

employ cpufreq on-demand governor that changes the frequency value based on

processor utilization. In all the experiments related to the comparative study,

we set all the tasks to run at the same priority because HPM and HL do not

take the priorities into consideration.

For the first comparative study, we assume that the system does not have any

TDP constraint and hence can consume arbitrarily high power. Figure 5.3 plots

the percentage of time the reference heart rate range of any task in the workload

is not met, that is, the percentage of time the observed heart rate was smaller

108

Chapter 5. Price Theory based Power Management

than the minimum prescribed heart rate for any of the task in the workload. It

is evident that the HL performs better under light workloads (l1, l2, l3). This is

expected as the HL scheduler migrates the tasks to the powerful A15 cluster at

the first opportunity while HPM and PPM both take a more judicious approach.

The impact is shown as significantly higher average power consumption for HL

compared to HPM and PPM as shown in Figure 5.4.

On the contrary, the PPM scheduler outperforms both HPM and HL for medium

(m1, m2, m3) and heavy (h1, h2, h3) workloads. The HPM scheduler implements

a relatively simple and non-speculative load balancer and task migrator that is

oblivious to the utilizations in the other clusters. As the HL scheduler migrates

all the tasks to the A15 cluster, it results in inefficient usage of the resources for

the more demanding workloads.

Figure 5.4 plots the average power consumption for the different techniques with

no TDP constraint. HPM and PPM have comparable average power consump-

tion across all types of workloads. The HL scheduler with on-demand governor

results in an average power consumption of 5.99W, which is much higher than

that of HPM (3.43W) and PPM (2.96W) across all the workloads.

0%

10%

20%

30%

40%

50%

60%

70%

l1 l2 l3 m1 m2 m3 h1 h2 h3

A
ve

ra
ge

 R
ef

. H
e

ar
t

R
at

e
 m

is
s

[%
]

PPM HPM HL

Figure 5.5: Comparison of the percentage of time the tasks do not meet the
reference heart rate range under TDP constraint of 4W.

109

Chapter 5. Price Theory based Power Management

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 50 100 150 200 250 300

No
rm

al
iz

ed
 h

ea
rt

ra
te

 [h
ea

rt
be

at
s/

s]

Time [s]

swaptions_native bodytrack_native

priority
swaptions = 1 bodytrack = 1

(a)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 50 100 150 200 250 300

No
rm

al
iz

ed
 h

ea
rt

ra
te

 [h
ea

rt
be

at
s/

s]

Time [s]

swaptions_native bodytrack_native

priority
swaptions = 7 bodytrack = 1

(b)

Figure 5.6: Normalized performance of swaptions and bodytrack where
[0.95,1.05] is the normalized performance goal.

Next we study how the different techniques cope with strict TDP constraints.

We observed through a series of experiments that the TDP of our evaluation

platform is 8W. To emulate a power-constrained environment, we artificially cap

the power budget to 4W. For the HL scheduler, we switch off the A15 cluster

once the power exceeds the TDP. This is because the observed maximum power

in A7 cluster and A15 cluster are 2W and 6W, respectively. Thus powering

down of the A15 cluster guarantees that the total power consumption will be

well below the TDP constraint of 4W.

Figure 5.5 plots the percentage of time any task in the workload do not meet

their reference heart rate range under TDP constraint of 4W. The tasks are able

to meet their reference heart rate more often with PPM approach compared to

HPM and HL. The improvements are 34% and 44% compared to HPM and HL,

respectively under 4W TDP constraint.

5.3.4 Impact of priorities and savings

A unique aspect of our price theory-based solution is that we take into con-

sideration the priorities of the tasks as well as their savings. To evaluate the

effectiveness of these concepts, we schedule two demanding tasks on one core.

110

Chapter 5. Price Theory based Power Management

We disable load balancing and task migration to study the behavior of the tasks

with different priorities and phases of execution (where savings become useful).

Figure 5.6a shows the dynamically changing performance in terms of heartbeats

per second for swaptions and bodytrack with the same priority. The black shaded

region shows the expected performance range. In this case, swaptions and body-

track spend 29.7% and 31.1% of time outside the expected performance range. In

Figure 5.6b, we change the priority level of swaptions to 7. As can be observed

from the figure, swaptions is now allocated more resources and hence spends

7.5% of time outside the performance range, while bodytrack now spends 57% of

time outside the range.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 P
er

f.
[h

ea
rt

be
at

s/
s]

Time [s]

swaptions_native x264_native

Figure 5.7: Normalized performance of swaptions and x264 when [0.95, 1.05]
is the normalized performance goal.

To evaluate the advantage of savings, we choose swaptions and x264. Both the

tasks are running at the same priority. In the initial phase (first 100s), x264

exceeds the performance goals due to relatively less demand (dormant phase),

while swaptions just about meets its demand. Thus x264 manages to save a

significant fraction of its allowance in this phase.

In the second phase (100 to 300 s), the performance demand of x264 increases

severely as it moves into its active phase. Now x264 uses up its savings to buy

more resources relative to swaption. At 300 s, the savings runs out and the high

performance demand of x264 cannot be sustained any further. This illustrate

111

Chapter 5. Price Theory based Power Management

that the concept of savings offers transient benefits to the tasks that spend long

time in the dormant phases with very few active phases.

5.3.5 Scalability

Our price theory based power management framework is scalable due to the

distributed nature of the agents that work in parallel. We first provide a com-

putational complexity analysis of our framework followed by quantitative results

from the implementation.

The computational overhead arises from the calculations performed in the supply-

demand module to decide on the bids, price, and supply level. It is evident that

these computations are straightforward with negligible overhead. The primary

overhead comes from the LBT module that needs to estimate the performance,

spending of current and candidate future task mappings.

Let V be the number of clusters on chip, C be the number of cores per cluster, and

T be the average number of tasks per core. Let M be the average computation

performed to estimate perf(M′) and spend(M′) for each possible task mapping

M′. We estimate the cost and benefit of migrating a task to the most over-

supplied unconstrained core in each cluster. Thus for each task in the constrained

core, we consider V task mappings. So the worst-case computational overhead in

the constrained core is T ×V ×M . Clearly, the overhead increases with number

of tasks and clusters.

Our evaluation platform has two clusters and five cores. To measure the over-

head of our approach, we inject all the 8 benchmarks in the system. The supply-

demand module is invoked every 31.7ms. As discussed in Section 5.2.4, the load

balancing and task migration are invoked every 95.1ms and 190.2ms, respectively.

The overhead per invocation of the LBT module in the ARM big.LITTLE plat-

form is only 0.003ms.

112

Chapter 5. Price Theory based Power Management

In order to quantitatively evaluate the scalability of our approach, we emulate

systems with large number of cores and clusters. We randomly generate tasks

with varying demands and feed this information to the A7 core running at the

lowest frequency level (350MHz), which is a highly pessimistic scenario. We

assume that this core is the constrained core. We randomly generate the sup-

ply/demand information for the other clusters (up to 256) and the cores (up

to 16), and provide this information to the constrained core. The supply and

demands are randomly chosen between 10–50 PUs, while the maximum supply

of the cores in different clusters are between 350–3000 PUs. We then measure

the time spent in the supply-demand module and the LBT module by this con-

strained core when the task migration module is triggered every 190ms (see in

Section 5.2.4). Table 5.7 summarizes the overhead in the constrained core for

varying number of tasks, cores, and clusters. As we measure the overhead in

the small core at the lowest frequency, the overhead will be much smaller on big

cores. As recommended for Linux kernel, we also compile the supply-demand

module and the LBT module with -O2 compiler optimization flag. For a system

with 256 clusters (16 cores per cluster, 32 tasks per core for a total of 131,072

tasks), we observe that the overhead drastically reduces from 11.4ms to 1ms with

-O3 optimization flag.

Some existing works [50, 79] provide mixed integer-linear programming (MILP)

formulation of the power management problem, which can provide the optimal

solution. The MILP-based approach has low overhead for small systems with

fewer core types, clusters, and tasks. The complexity of the MILP approach

increases exponentially with increasing number of clusters. The average over-

head reported in [79] for solving the MILP formulation is 29 minutes, whereas

a greedy approximation takes 5.16 minutes for 1000 homogeneous nodes, each

node consisting of four cores. All the experiments in [79] were performed on

a 3.2GHz dual-processor dual-core platform with 8GB of memory. In [50], the

authors report 800ms linear solver time per invocation at 10-minute interval in

113

Chapter 5. Price Theory based Power Management

Table 5.7: Computational overhead for varying number of clusters V , cores
per cluster C, and tasks per core T .

V C T Total Avg. Avg.
Tasks overhead overhead

[%] [ms]

4
2

8 64 0.02 0.038
32 256 0.11 0.21

4
8 128 0.03 0.057
32 512 0.16 0.30

16
8

8 1024 0.75 1.42
32 4096 0.96 1.82

16
8 2048 0.81 1.54
32 8192 1.37 2.67

256
8

8 16384 3.48 6.62
32 65536 5.12 9.74

16
8 32768 4.16 7.90
32 131072 6.0 11.4

a datacenter environment consisting of 160 Xeon nodes or 225 Atom nodes or

some combination of them. Clearly, the MILP based approaches are infeasible

in a modern embedded platform with dynamically varying workloads requiring

frequent invocation of the solver. In contrast, the estimated overhead of our price

theory-based approach in a 256 cluster system (16 cores per cluster, 32 tasks per

core for a total of 131,072 tasks) is only 11.4ms per invocation at 190ms interval

on a Cortex-A7 running at 350 MHz.

5.4 Summary

In this chapter, we propose a price theory based power management framework

for heterogeneous multi-cores to minimize the power consumption while satisfy-

ing the performance goals under a power budget constraint. Our approach, which

is highly scalable and distributive, is implemented in real ARM big.LITTLE

heterogeneous multi-core platform. We incorporate various power management

techniques like DVFS, load balancing and task migrations in a single, unified

and comprehensive framework. Our solution is integrated within the Linux fair

114

Chapter 5. Price Theory based Power Management

scheduler with minimal modifications to the kernel. Empirical results confirm

the superiority of our approach compared to the existing techniques.

5.5 Future Work

Our price theory based power management framework requires off-line profiling

of the application to estimate the average demand and power consumption. This

is not a feasible and scalable approach. Therefore, one can include the power-

performance estimation model proposed in Chapter 3. The model proposed in

Chapter 3 can handle only one core per cluster. On the other hand, the price

theory framework can handle any number of cores (and clusters). Therefore,

the power-performance model has to be scaled to incorporate it within the price

theory framework.

115

Chapter 6

Dynamic Reliability

Management

Non-ideal CMOS scaling has resulted in increased power density and on chip

temperature, which directly impact the processor lifetime reliability. Extensive

studies have demonstrated the detrimental impact of non-ideal scaling on per-

manent errors caused by wear out phenomena such as electro migration, stress

migration, gate oxide breakdown and thermal cycles [110]. As the lifetime degra-

dation at future technology generations is expected to increase, it has become

important to design reliability solutions at the architectural level.

Most of the intrinsic failure mechanisms [111] have exponential dependency on

the on-chip temperature consumption. In this chapter, temperature reduction

acts as an indirect method for reducing power consumption in the microproces-

sors. The power reduction mechanisms like DVFS, task scheduling, task migra-

tion, etc., are still applicable to any reliability management schemes. However,

research focussing on lifetime reliability [108, 110, 111] have shown that aggres-

sive power management techniques can induce failures in circuits due to thermal

cycling. Thus, it is imperative to design reliability management techniques that

116

Chapter 6. Dynamic Reliability Management

can maximize performance under both lifetime reliability and power/temperature

constraints. In this chapter, we propose dynamic reliability management (DRM

technique that exploits architectural adaptation in conjunction with dynamic

voltage/frequency scaling (DVFS). We employ an online Bayesian classifier that

can efficiently detect the reliable configurations, while a performance prediction

model selects the one with best performance among all the reliable configura-

tions. We later extend our approach to meet both reliability and thermal (power)

constraints.

The goal of any dynamic reliability management (DRM) technique is to improve

the lifetime reliability of the microprocessor with minimal impact on perfor-

mance. Most applications have limited instruction-level parallelism (ILP) and

cannot take advantage of extensive ILP exploitation techniques present in cur-

rent generation out-of-order architectures. When the ILP of an application is

limited, various architectural parameters can be scaled down to the appropri-

ate level such that performance remains the same but the power density and

consequently the reliability can be improved.

We propose a dynamic reliability management (DRM) technique that adapts

at runtime, in addition to the voltage and the frequency, a number of micro-

architectural parameters to achieve fine-grained control over reliability with min-

imal negative impact on performance. The micro-architectural parameter we

consider for runtime adaptation are as follows: (a) supply voltage and frequency,

(b) fetch gating (fraction of cycles where instruction fetching is disabled), (c) is-

sue width (number of instructions issued per cycle), (d) instruction window size

(maximum number of instructions in-flight), and (e) cache way disabling (num-

ber of cache ways disabled in the set-associative cache). The detailed rationale

behind the choice of these parameters will be presented in Section 6.1.

Figure 6.1 shows the impact of different adaptation mechanisms on both mean

time to failure (MTTF) and performance corresponding to the benchmark bzip2.

117

Chapter 6. Dynamic Reliability Management

Figure 6.1: MTTF vs. Performance for different adaptation mechanisms for
the benchmark bzip2

MTTF is defined as the mean time expected until the first failure of the pro-

cessor. The experimental setup will be described in Section 6.3. We assume

the lifetime reliability target (MTTF) as 30 years. The performance is plot-

ted as billion instructions processed per second (BIPS). The baseline contains

the highest performing value for each adaptation parameter and hence provides

maximum performance with minimum reliability (7.5 BIPS with MTTF equal

to 21 years). Then we adapt each parameter individually, while keeping the

remaining parameters constant at the highest performing value. Clearly, volt-

age/frequency scaling has the largest steps and can improve reliability to more

than 60 years at significantly lower performance of 5.25 BIPS. The other ar-

chitectural mechanisms, in contrast, improve reliability moderately with little

impact on performance. The figure also shows that adapting a combination of

these parameters (the yellow points in Figure 1) can satisfy the reliability target

with much better performance compared to DVFS alone. Our objective, thus, is

to engage a combination of these parameters so as to reach the reliability target

without sacrificing much performance.

It is challenging to design a DRM technique that exploits multiple different ar-

chitectural mechanisms in conjunction with DVFS. We need to identify, in each

118

Chapter 6. Dynamic Reliability Management

adaptation interval at runtime, the optimal configuration (choice of values for the

different parameters) that meets the reliability target with the best performance

for an application (or the phase of an application). To filter out unreliable con-

figuration points, we design a software-based Bayesian classifier [126]. In order

to identify the optimal configuration among the reliable ones, we develop an an-

alytical model that can predict the performance of a configuration corresponding

to the currently executing application.

20	

22	

24	

26	

28	

30	

32	

34	

36	

38	

40	

76	 78	 80	 82	 84	 86	 88	

M
TT

F
(y

ea
rs

)

Temperature (C)

UnReliable/TempUnsafe UnReliable/TempSafe Reliable/TempUnsafe Reliable/TempSafe

Figure 6.2: MTTF vs. temperature for different architectural configurations
for the benchmark crafty

Due to the exponential dependency of lifetime reliability on the temperature

[109], one can expect the dynamic thermal management solutions (DTM) to be

employed for DRM. However, there exist subtle differences between temperature

and reliability management goals. The objective of DTM techniques is to opti-

mize performance while keeping peak temperature below certain threshold. On

the other hand, DRM maximizes performance while meeting lifetime reliability

target. Lifetime reliability is impacted through chip-wide higher temperature

rather than just the peak temperature at a particular localized structure. More-

over, certain mechanism like DVFS used for thermal management might have

negative impact on reliability [109]. The need for independent but synergistic

DTM and DRM techniques is illustrated in Figure 6.2. We plot MTTF versus

119

Chapter 6. Dynamic Reliability Management

peak temperature observed for different micro-architectural configurations corre-

sponding to benchmark crafty. We assume peak temperature threshold of 82oC

and lifetime reliability target (MTTF) as 30 years. We partition the graph into

four regions (clockwise): (1) thermally safe and reliable, (2) thermally unsafe

and reliable, (3) thermally unsafe and unreliable, and (4) thermally safe and

reliable. It is evident from Figure 6.2 that there exist configurations in all the

four partitions. Therefore, it is imperative that we design customized techniques

specially targeted at improving reliability.

6.1 Parameter Selection

We identify the following parameters as potential adaptation candidates in con-

junction with DVFS: (a) fetch gating, (b) issue width, (c) instruction window

size, and (d) selective cache way disabling. These parameters are easy to adapt

at runtime and also have considerable impact on temperature and lifetime relia-

bility. We choose eight different frequency levels (3.6GHz to 2.5GHz) for DVFS.

We use five different fetch gating levels: 0 – 4. When the fetch gating level is set

to T (1 ≤ T ≤ 4), the fetch unit disables fetching once every T cycles (0 being

the default no fetch gating configuration). We employ five different issue widths:

2–6. When the issue-width is altered, the additional functional units and the

appropriate register file ports are disabled so as to reduce leakage power. The

instruction window can be scaled to four different sizes: 16, 32, 48, and 64 in-

structions. The adaptation is achieved by dividing the instruction window into

four banks of equal sizes, each containing 16 instructions. Each bank can be

enabled or disabled independently [21]. We have to wait for all the instructions

from a bank to be committed before it can be disabled. Thus instruction window

resizing has more overhead compared to fetch gating and issue width scaling. We

assume a 4-way set-associative 64KB L1 data cache. The data cache can be re-

sized through selective cache way disabling [10]. We can thus achieve 16KB to

120

Chapter 6. Dynamic Reliability Management

Figure 6.3: Performance-reliability tradeoff.

64KB L1 data cache size. To ensure the correctness of the program, the blocks

from the disabled cache ways have to be flushed before they are disabled. Note

that we only adapt the data cache and not the instruction cache. This is because

fetch gating can achieve similar effect as instruction cache resizing. We assume

that the architecture has specific instructions that can change the configurational

parameters at runtime.

The best adaptation mechanism is the one that can satisfy the reliability or

the thermal targets with minimal impact on performance. For each benchmark

program from SPEC 2000, we first identify the most compute intensive phase

that leads to either increased steady-state temperature or worst reliability under

the baseline non-adaptive configuration (see Section 6.3). Next we adapt each

parameter individually and quantify its impact on improving the reliability (or

reducing the steady-state temperature) of the identified phase.

Figure 6.3 (Figure 6.4) shows the percentage of performance lost in order to

increase the lifetime reliability MTTF (reduce the steady-state temperature) by

1% compared to the default configuration. As each parameter has a range of

values, we find the mean performance lost for 1% increase in MTTF (or de-

crease in temperature) compared to the default configuration. It is obvious from

the figures that instruction window resizing contributes to serious performance

degradation while attempting to improve either reliability or temperature. This

121

Chapter 6. Dynamic Reliability Management

Figure 6.4: Performance-temperature tradeoff.

is because, scaling window size has only localized impact on power consumption

and considerable performance overhead per transition. Therefore, we decide to

eliminate window resizing from further consideration.

In terms of reliability, cache way disabling is the clear winner with minimal im-

pact on performance. There are two reasons behind this behavior. First, for

applications with smaller memory footprint, small data cache size suffices and

reduces power consumption by disabling the unused cache ways. For applications

with larger memory footprint, smaller cache size increases the number of cache

misses and thus reduces the switching activity in the core due to the delayed

delivery of data from memory. This leads to reduced power density in the back

end of the core and hence increased reliability. Even though moderate hardware

modifications are required for selective cache way disabling [10], the benefits are

considerable from both thermal and reliability management perspective. How-

ever, employing only cache way disabling is not sufficient to meet the target

lifetime reliability. From Figure 1, it is evident a combination of mechanisms

should be employed to achieve the desired MTTF. Thus, our final set of parame-

ters adapted at runtime are issue-width scaling, fetch gating, selective data cache

way disabling in conjunction with DVFS.

122

Chapter 6. Dynamic Reliability Management

6.2 Dynamic Reliability Management

We now present our dynamic reliability and thermal management framework

based on architectural adaptation. The reliability and/or thermal management

module is periodically invoked once every adaptation interval: 107 cycles or 2.8ms

at 3.6 GHz. As our focus is on temperature induced lifetime reliability issues and

the temperature changes occur very slowly, we set the adaptation interval in the

order of milliseconds. At every adaptation interval, we first check if there is any

significant variation in the workload characteristics, that is, whether there is a

new application or the same application has moved into a new phase [31]. If the

workload characteristics change, then we may need to adapt the architectural

parameters. This is achieved through two major components: (1) the monitoring

module, and (2) the configuration search module.

Monitoring module: The monitoring module employs a combination of measure-

ments and modeling to estimate the MTTF and the temperature corresponding

to the current workload. We assume that the processor is fitted with circuit-

level multi-use sensors similar to the ones presented in ElastIC architecture [114].

These sensors can characterize performance, lifetime degradation, temperature,

and power consumption at finer granularity. Once the data from the sensors and

the physical parameters (such as supply voltage, current, and activity factor) are

collected, the MTTF and the temperature are estimated. The MTTF estima-

tion relies on the RAMP [109] model and is entirely implemented in software.

The MTTF computation in the RAMP model involves complex operations and

frequent exponentiation, which are avoided through pre-computation and fast

exponentiation. Thus the overhead is estimating MTTF and temperature is

negligible compared to the adaptation interval.

Configuration Search Module: The goal of this module is to select the config-

uration with maximum performance that satisfies the MTTF and/or thermal

constraints. The configuration search module is also implemented entirely in

123

Chapter 6. Dynamic Reliability Management

software and consists of two major components: A) naive Bayesian classifier and

B) performance prediction module.

6.2.1 Naive Bayesian Classifier

Our objective in configuration search is to quickly filter out the unreliable and/or

thermally unsafe configurations. We employ a naive Bayesian classifier for this

purpose. Classification problems are characterized by the need to classify an

input pattern into one of the output categories. Among the various classifiers

(naive Bayesian, decision trees and neural network) available, we chose naive

Bayesian classifier [126] because its simplicity allows each input pattern to con-

tribute towards the final classification decision. It offers several additional ad-

vantages such as fast training time, minimal computation time, and the ability

to add new attribute without re-training.

For our configuration filtering problem, we need to select both the workload

characteristics and the adaptive architectural configurations as input parame-

ters. Thus each input pattern consists of seven parameters: (a) issue width,

(b) fetch gating level, (c) operating frequency, (d) number of integer instruc-

tions issued per cycle, (e) number of floating point instructions issued per cycle,

(f) number of memory instructions issued per cycle, and (g) number of branch

instructions issued per cycle. The output is yes or no classification indicating

whether the workload, configuration pair satisfy the reliability and/or the ther-

mal constraint. Note that the inputs to the classifier are the number of instruc-

tions issued rather than number of instructions committed because the number

of instructions issued influence the temperature and hence the MTTF of the

microprocessor, whereas the number of instructions committed determines the

performance of the microprocessor. This estimation of number of instructions

issued per cycle is obtained through the performance prediction model discussed

in Section 6.2.2. Among the architectural parameters, we decide to leave out the

124

Chapter 6. Dynamic Reliability Management

number of cache ways as an input to the classifier. This is because the effect

of cache resizing can be captured sufficiently with the performance prediction

model.

We train the classifier off-line either during system installation and/or when

the system conditions (e.g., ambient temperature) change. The training set is

generated by running a set of micro-benchmarks under various configurations

and checking if the MTTF and/or thermal constraints are satisfied. The micro-

benchmarks contain loops with varying mix of integer, floating point, memory,

and branch instructions. The instruction mix are generated in a pseudo ran-

dom fashion to account for the variability in the workloads that may execute

on the processor. To overcome the problem of random sampling, we employ

Latin hypercube sampling to enumerate 100 representative configurations from

the configuration space. We train the classifier with 50 micro-benchmarks each

running on the 100 selected configurations.

After training, we test our classifier using a number of SPEC 2000 benchmarks.

We simulate each benchmark at 100 configurations points and determine if the

execution violates the MTTF constraint. We compare our simulation outcome

with the corresponding output from the classifier. Classification errors can be

categorized into false positive and false negative. A classifier commits false pos-

itive error when it erroneously classifies a reliable configuration point as un-

reliable. False negative errors are committed when the classifier erroneously

classifies an unreliable configuration point as reliable. We observe that our clas-

sifier is very accurate with only 6.4% false negatives and 8.5% false positives,

on an average, across all the benchmarks. Note that the only impact of a false

positive error is reduced performance as the configuration will not be selected,

while false negative errors may violate the reliability constraint. When a se-

lected configuration fails to meet the reliability target during execution, it will

be detected in the monitoring module. The module will then invoke emergency

125

Chapter 6. Dynamic Reliability Management

fail safe mechanisms such as clock gating and/or power gating to bring the sit-

uation under control. We extend our classifier to incorporate both the MTTF

and the temperature constraints to develop our dynamic thermal and reliability

management (DTRM) technique. We obtain the training set by running the

micro-benchmarks under various configurations and checking if both the MTTF

and the temperature constraints are satisfied. We train this combined classifier

and observe 7.9% false negative and 9.2% false positive.

6.2.2 Performance Prediction Model

The performance prediction model is required for two reasons. First, we need to

predict the performance of the reliable and thermally safe configurations for the

current workload so as to choose the optimal one. Secondly, the classifier requires

the workload characteristics (instruction mix issued per cycle) for a configuration

to be classified.

The inputs to the performance prediction model are the number of integer, float-

ing point, memory and branch instructions committed in the previous adaptation

interval as well as the total number of instructions committed Nuseful, which

could be obtained from hardware performance counters present in modern mi-

croprocessors.

Our performance prediction model is inspired by the interval based models pro-

posed in [65, 83]. The interval based model suggests that there exists a sustained

background performance level that is punctuated by transient miss-events such

as branch mis-prediction and cache misses. The cycles per instruction (CPI) can

be expressed as

CPI = CPIsteady + CPImiss (6.1)

CPImiss = CPIbmiss + CPIicmiss + CPIdcmiss (6.2)

126

Chapter 6. Dynamic Reliability Management

where CPIsteady is the sustained background performance in the absence of miss-

events and CPIbmiss, CPIicmiss and CPIdcmiss denote the performance loss in-

curred due to branch mis-predictions, instruction cache miss and data cache miss,

respectively. CPImiss can be computed by counting the number of corresponding

miss-events and miss penalties as follows,

CPImiss =
Nicmiss × Picmiss +Nbmiss × Pbmiss +Ndcmiss × Pdcmiss

Nuseful
(6.3)

where Nicmiss, Nbmiss and Ndcmiss are the number of instruction cache miss, data

cache miss, and branch mispredictions over our adaptation interval. Data cache

miss can be further divided into L1 data cache miss CPId1cmiss and L2 cache

miss CPId2cmiss. The penalty values (Picmiss, Pbmiss and Pdcmiss) are computed

using the first order superscalar model [65]. We observe that the performance

impact of miss events CPIbmiss, CPIicmiss, CPId2cmiss are fairly constant across

configurations except for L1 data cache (CPId1cmiss), which we adapt. This

is because changing issue width and fetch gating has minimal impact on the

number of miss events.

Memory Exploration Module: As we adapt L1 data cache dynamically, CPId1cmiss

varies across the cache configurations. When a new program phase P
′

is encoun-

tered, the memory exploration module is triggered. As there are only four data

cache configurations, we execute phase P ′ with all the four cache configurations,

one per adaptation interval. We sample and memoize the L1 data cache miss

rate CPId1cmiss for the various cache configurations. We use this information if

phase P
′

is encountered again.

Prediction: For the current configuration C,

CPIsteady(C) = CPI(C)− CPImiss(C) (6.4)

CPImiss(C) = CPI
′
miss(C) + CPId1cmiss(C) (6.5)

127

Chapter 6. Dynamic Reliability Management

where CPI
′
miss(C) represents all the miss events except L1 data cache miss. In

general, at a new configuration C ′

CPI
′
miss(C

′
) = CPI

′
miss(C) (6.6)

Now the CPI for the configuration C
′

can be expressed as,

CPI(C
′
) = CPIsteady(C

′
) + CPI

′
miss(C) + CPId1cmiss(C

′
) (6.7)

CPId1cmiss is provided by the memory exploration module.

We now need to determine CPIsteady(C
′
). At fetch gating level T, the number

of instructions delivered per cycle to the pipeline is T
T+1 ×FW , where FW is the

fetch width. In the steady state, the number of instructions issued per cycle must

be the same as the number of instructions fetched per cycle. Thus IPCsteady(C
′
)

at configuration C
′

= 〈IW,FG〉 can be expressed as

IPCidealsteady(IW,FG) = min(IW,
T

T + 1
× FW) (6.8)

We refer IPCsteady(C
′
) as IPCidealsteady(C

′
) because the equation assumes that all

the instructions are of unit latency. To account for variable functional unit

latency, we compute a ratio µ between ideal steady state IPC and observed

steady state IPC for the current configuration C.

µ =
IPCsteady(C)

IPCidealsteady(C)
=

1

CPIsteady(C)× IPCidealsteady(C)
(6.9)

As the latency of the functional units are not adapted, the value µ remains

constant across the configuration.

IPCsteady(C
′
) = µ× IPCidealsteady(C

′
) (6.10)

128

Chapter 6. Dynamic Reliability Management

CPI(C
′
) =

1

IPCsteady(C
′)

+ CPI
′
miss(C) + CPId1cmiss(C

′
) (6.11)

Our Bayesian classifier accepts the number of instructions issued corresponding

to different classes as input.

IPCXissue(C
′
) = IPCissue(C

′
)×

NX
useful

Nuseful
(6.12)

where IPCXissue(C
′
) (NX

useful) is the number of instructions issued per cycle (total

number of instructions committed) of type X (integer, floating point, memory,

or branch).

6.2.3 Search Space Pruning

Our configuration design space consists of four axes (frequency, issue width, fetch

gating and cache ways). From Equation 6.8, it is evident that IPCsteady is lim-

ited by both issue width and fetch gating. Increasing either of them alone will

not facilitate increase in performance. Thus the four dimensional design space

can be reduced to three dimensional design space (frequency, cache ways, and

IPCsteady). For each point in this space, the classifier determines whether that

particular configuration meets the constraints. The search process can be fur-

ther optimized by doing linear search for frequency, cache ways and binary search

along the IPCsteady axis. This optimization is based on the fact that at a partic-

ular frequency level F
′

and steady IPC IPC
′
, if IPC

′
does not meet the MTTF

constraints, then all the configurations with IPCsteady values higher than IPC
′

will not meet the reliability or temperature constraint either. This is because

higher performance leads to higher temperature, which has negative impact on

the lifetime reliability. For F frequency levels, I levels of IPCsteady values and

C cache configurations, the maximum number of configurations explored are

O(F × C × ln(I)). In our adaptive framework, we have eight frequency values,

129

Chapter 6. Dynamic Reliability Management

six IPC steady values and four cache ways, resulting in a total of 192 configu-

ration points. The configuration search module takes approximately 10K cycles

(2.8 µs at 3.6 Ghz) to determine the optimal point in the worst case.

6.3 Experimental Evaluation

We use SimpleScalar [11] simulator with Wattch [20] power models for our exper-

iments. Our baseline non-adaptive processor is modeled as 6-way issue, 64-entry

instruction window, 64 KB L1 data and instruction cache, 2MB L2 unified cache

and 4K entry bimod branch predictor. Our adaptive architecture has four pos-

sible issue widths (2–6), five possible fetch gating (1–4, no fetch gating), four

possible L1 data cache sizes (64KB – 16KB). We vary the processor frequency

from 3.6 GHz to 2.5 GHz.

We assume 10 µs penalty to change the frequency settings [106]. We use Hotspot-

5.0 [107] for thermal simulation with a floor plan similar to Alpha 21364. To

include the effects of temperature on leakage power, we use the leakage power

density value provided in [110]. RAMP [109] is employed to evaluate the lifetime

reliability. We set the reliability budget (MTTF) in our experiments as 30 years

[109]. For DTRM technique, the maximum temperature allowed is 82oC. We use

14 benchmarks from SPEC 2000.

We compare our architectural adaptation based DRM technique, called Adap-

tive, with the following approaches: (a) DVFS: state-of-the-art hardware based

DRM technique employing only DVFS. We use a PI-controller based scheme[33],

and (b) Freq-FG: a technique combining two different mechanisms for reliability

management, PI-controlled DVFS and fetch gating [106]. For mild stress, a con-

stant fetch gating level of 3 is engaged. As the stress becomes severe, controller

based DVFS is employed.

130

Chapter 6. Dynamic Reliability Management

Figure 6.5: Comparison of different DRM techniques

Figure 6.5 plots the slowdown in performance compared to the baseline non-

adaptive architecture at maximum frequency (without any thermal or reliability

constraints). Our adaptive technique outperforms others, i.e., it achieves lower

performance degradation. On an average, Adaptive has 10.22% slowdown, while

DVFS and Freq-FG have 17.72% and 14.33% slowdown, respectively. Thus

Adaptive reduces performance degradation by 42.30% compared to DVFS and

28.68% compared to Freq-FG.

Figure 6.6 plots the time varying trends in IPC, frequency, architectural pa-

rameters, and performance (BIPS) for bzip2. These plots provide insight into

why Adaptive performs better. A higher value of an architectural parameter

implies better performance. We do not adapt the architectural parameters in

Base and DVFS. Adaptive manages to operate at higher frequency (and thus

have better performance) because it scales micro-architecture structures to re-

duce power consumption. We also observe more transitions in frequency in other

techniques compared to Adaptive, resulting in thermal cycling and consequently

worse reliability.

As there is no existing techniques for integrated temperature and reliability man-

agement, we compare our DTRM technique with the DRM technique. The set

point for DRM technique is only MTTF=30 years but DTRM technique has

131

Chapter 6. Dynamic Reliability Management

4	

9	

14	

Pe
rf

or
m

an
ce

(B

IP
S)

70	
75	
80	
85	
90	
95	
100	

Te
m

pe
ra

tu
re

(C

)

2	
3	
4	
5	
6	

Fe
tc

h
G

at
in

g

2	

7	

Is
su

e
W

id
th

1	
2	
3	
4	
5	

C
ac

he

W
ay

s

2.5	

3	

3.5	

4	

Fr
eq

ue
nc

y
(G

hz
)

0.5	

2.5	

4.5	

IP
C

Time	 	 !"#$

%"#$

&"#$

'"#$

("#$

!"
#$

%&'($$

)*+,-./$ 0+1/$ 2345$

Figure 6.6: Time varying trends for bzip2.

the additional set point for temperature (82oC). DTRM technique is an easy ex-

tension of our adaptive DRM technique where the classifier is trained to choose

the configurations that meet both the temperature and the reliability target.

We observed that, the DRM technique, on an average, has to sacrifice 14.47%

performance to meet both the temperature and the reliability targets.

6.4 Summary

We propose a dynamic reliability management technique that adapts micro-

architectural parameters in conjunction with DVFS. Our adaptive method achieves

the reliability target while reducing performance overhead by 42.30% compared

to DVFS alone and 28.68% compared to DVFS with fetch gating. We also ex-

tend our technique to incorporate temperature constraints along with reliability

constraints.

132

Chapter 7

Energy-Aware Synthesis of

Application Specific MPSoCs

In this chapter, we focus on exploiting functional heterogeneity for minimizing

the energy consumption. This is achieved by synthesizing customized MPSoCs to

suit the needs of a given multimedia application. Unlike the power management

techniques proposed in previous chapters, the technique discussed in this chap-

ter is static in nature. In modern era, MPSoCs have significantly proliferated in

portable devices, where these MPSoCs have to satisfy stringent requirements of

the target application(s) and/or the target device. Therefore, application specific

MPSoCs are deployed in portable devices [41] where an MPSoC is (extremely)

customized for a given application under an objective function and various con-

straints. The benefits of processor customization has been extensively studied in

existing literature [52]. An MPSoC can be customized in several different ways

for energy reduction. Following are the four design techniques that are currently

being widely used:

• Dynamic Voltage and Frequency Scaling (DVFS) allows processors to oper-

ate at multiple discrete voltage-frequency (v-f) levels. DVFS is particularly

133

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

suitable for multimedia applications where the slack of non-critical tasks is

exploited by the use of a lower v-f level to reduce the energy consumption

without sacrificing the performance [104].

• Customization of processors aims to match the processing elements of an

MPSoC to the computational requirements of the tasks at hand. Proces-

sor customization involves addition/removal of functional units, hardware

accelerators, custom register files, etc. Custom processors are typically re-

alized through the use of Application Specific Instruction set Processors

(ASIPs) [113], where custom instructions are added to access the custom

hardware. These custom instructions, when carefully designed, can reduce

instruction fetches and register file accesses and improve the energy effi-

ciency of a processor [76]. The designers should take into consideration the

increase in on-chip area due to the addition of custom instructions which

can increase static power, and hence offset their benefits.

• The cache of a processor contributes significantly to its power consump-

tion [48, 73], in particular static power because it consumes significant

amount of on-chip area. Customization of cache according to memory ac-

cess pattern of a task can significantly reduce energy consumption [125].

• Task mapping allows a designer to map tasks of an application to the

processors. Task mapping is done so as to balance the workload across all

the processors in an MPSoC, improving their utilization and thus reducing

energy consumption of the MPSoC [15].

Given the above design parameters, customization of an MPSoC for a target

application becomes an optimization problem where the MPSoC’s design space

(resulting from the options available for the design parameters) is explored for

an optimal solution. While there exist several works in literature that have fo-

cused on a subset of the aforementioned design parameters (for example, [113]

134

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

considered processor customization and task mapping; [48] considered cache cus-

tomization), these optimization techniques are designed to work efficiently only

with the considered set of design parameters. A mere combination of these

individual optimization techniques to cover all the aforementioned design pa-

rameters is not the most effective solution. In fact, the authors of [113] illustrate

that optimization with simultaneous processor customization and task mapping

resulted in 16% better solutions compared to when processor customization and

task mapping was performed independently one after the other (in any order). It

should be noted that probability of getting suboptimal solutions increases when

more design parameters are considered in the design space.

Motivational Example. We analyze three typical multimedia applications

(JPEG encoder, MP3 encoder and H.264 encoder) to observe the sub-optimality

in using independent optimization techniques for DVFS, processor customiza-

tion, cache customization and task mapping. For each application, we optimized

the MPSoC for minimum energy consumption under performance and area con-

straints, where multiple v-f levels per task, multiple custom instructions per task,

multiple cache configurations per processor and general task mapping were used

as the design parameters. Further details of the experimental setup are provided

in Section 7.3. Figure 7.1 plots the minimum energy design point obtained by

0

2

4

6

8

10

12

14

16

JPEG MP3 H.264

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J

]

independent integrated

-27.5%

-47.7%

-26.1%

Figure 7.1: Comparison of ‘independent’ and ‘integrated’ optimization tech-
niques.

135

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

the “independent” and “integrated” optimization techniques. In the “indepen-

dent” technique, an optimal solution is sought for each design parameters one

after the other. For example, first an optimal task mapping is selected, then

optimal v-f levels for all the tasks are identified given the task mapping, and

so on. It is important to note that the sequence of independent optimization

techniques affects the optimality of the solution, and thus we exhaustively at-

tempted all possible orders of individual optimizations (for n design parameters,

independent optimizations can be performed in n! ways). Therefore, the solu-

tion of “independent” optimization technique is the best possible solution from

the use of independent individual optimization techniques. The “integrated”

optimization technique explores all the design parameters in an integrated and

synergistic fashion so as to take into account the complex interplay of DVFS,

processor customization, cache customization and task mapping. For example,

use of custom instructions for a task modifies its code size and memory access

pattern, which in turn affects the customization of the cache for the processor on

which this task will be mapped. Thus, the interplay of design parameters must

be considered to find a globally optimal solution.

It is evident from Figure 7.1 that a “integrated” optimization technique has

a far better potential of reaching the globally optimal solution than the “in-

dependent” technique. More importantly, the quality of the solutions from the

“independent” technique are significantly inferior even when all the possible ways

of combining optimal solutions from individual techniques are exhausted. For

example, as shown in Figure 7.1 the amount of energy saved using “integrated”

technique is atleast 26.15%. The advantage of synergistic use of DVFS, pro-

cessor customization, cache customization and task mapping comes at a price.

The complexity of the optimization problem, which depends on the number and

types of the design parameters, and the number of options considered for those

parameters, increases manifold. In fact, the optimization problem with DVFS,

processor customization, cache customization and task mapping is an NP-Hard

136

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

problem [15]. For a glimpse of the optimization problem’s complexity, consider

an application with only four tasks, four custom instructions per task, four v-f

levels and four cache configurations. Then, the total number of design points

is more than a billion. Therefore, a carefully crafted optimization technique

that takes into account the interplay of DVFS, processor customization, cache

customization and task mapping is required to quickly find globally optimal or

near-optimal solutions. In this chapter, We propose a comprehensive framework

for exploration of a complex design space consisting of four design parameters:

DVFS, processor customization, cache customization and task mapping. As part

of the framework, we propose two analytical estimators that use a minimal num-

ber of cycle-accurate simulations, and hence speed up design space exploration.

Additionally, we propose an optimal algorithm and a heuristic to search the com-

plex, exponential design space for optimal or near-optimal solutions. Finally, we

demonstrate the effectiveness of our framework compared to an optimization

technique consisting of existing techniques using real multimedia applications.

7.1 Problem Formulation

MPSoC architecure. We target application specific MPSoCs that consist

of customizable processors, which can be realized with the use of ASIPs. As

shown in Figure 7.2, each processor has a private cache and local memory, and

communicates with other processors via dedicated communication buffers (for

example, FIFO queues). Each processor can be customized by both extending

its baseline instruction set architecture (with the addition of custom instructions)

and customizing its cache (size, line size, etc.). Additionally, each processor can

operate at several discrete voltage-frequency (v-f) levels. Thus, the heterogeneity

in the MPSoC is manifested in terms of DVFS, processor customization and cache

configurations.

137

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

T1

T2

T3 T4

I-Cache D-Cache

T1 T2

P1 P2 P3

Local
Memory

(a) (b)

I-Cache D-Cache

T3

Local
Memory

I-Cache D-Cache

T4

Local
Memory

Figure 7.2: (a)Task graph (b)MPSoC architecture.

Application model. The target application domain comprises of multimedia

applications, which contain compute-intensive sub-kernels or tasks that are ex-

ecuted repeatedly. We represent these applications as directed acyclic graphs1,

where vertices represent tasks and edges represent communication between the

tasks. The tasks are mapped to the processors, and then buffers are instanti-

ated only between those processors whose mapped tasks need to communicate

data. Benoit et al. [15] categorizes mapping of a task graph on an MPSoC with

fixed number of processors into: one-to-one mapping, where only a single task is

mapped to a processor; interval based mapping, where only adjoining tasks are

mapped to a processor; and, general mapping, where no restrictions are placed at

all. The type of task mapping determines the placement of the communication

buffers between the processors in an MPSoC. We use general mapping because

it offers greater flexibility and has the potential to reach a better solution (ex-

plained later). Once the tasks are mapped, the MPSoC executes those tasks in

the form of a virtual pipeline because multimedia applications inherently benefit

from a pipelined execution [102].

Figure 7.3 illustrates mapping of a task graph to a two processor MPSoC using

interval and general mappings. In interval mapping, tasks T1 and T2 are mapped

to the first processor while T3 is mapped to the second processor. The execution

of the processors is similar to a virtual pipeline with two stages. During an

1Cyclic graphs are converted to acyclic graphs by graph unfolding [124].

138

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

iteration of the pipeline, all the tasks mapped on a processor are executed once.

The period of the virtual pipeline is equal to the maximum latency from all of

its stages in the steady-state, as marked in Figure 7.3. In general mapping, tasks

T1 and T3 are mapped to the first processor and T2 is mapped to the second

processor to better balance the workload. In this case, the period is determined

by P2 which is smaller compared to the period from interval mapping. The price

is paid in terms of a longer “initialization” period; however, this is done only

once at the start of the application. Note that the “initialization” schedule (for

example, execution of T1 twice before the execution of T3) and “steady-state”

schedule (for example, execution of T3 followed by T1) for any general mapping

can be produced using software pipelining [15].

Problem Statement. In the MPSoC architecture and application model de-

scribed above, each processor has a number of cache configurations available for

it. Each task can be accelerated with a set of custom instructions, and thus each

task has multiple implementations corresponding to different sets of custom in-

structions that can be used for it. Each set of custom instructions for a task has

an additional area cost. Additionally, each task can be executed at one of the

available v-f levels. The latency and energy consumption of a task then depends

on the cache configuration of the processor on which it is mapped, and the set of

custom instructions and v-f level selected for it. The areas of the baseline proces-

sor, additional custom instructions (from all the tasks mapped on the processor)

and the cache configuration determine the total area of the custom processor.

The area of the MPSoC is then the summation of the area of all the processors

and the communication buffers. Likewise, energy consumption of the MPSoC

is the addition of the energy consumption of the processors (including custom

instructions, their caches and local memories) and the communication buffers.

Putting it all together, the optimization problem can be formally stated as fol-

lows: Given an application task graph, several discrete v-f levels for each task,

different sets of custom instructions for each task, different cache configurations

139

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

T1

T2

T3

T1
T2 P1

P2

P1

P2

T3

T1
T3

T2

1 2

3

initialization steady-state

1 2 1 2 1 2

3 3

1

2

3 1

2

3 1

2

3 1

2

period

period

Interval
Mapping

General
Mapping

1

initialization steady-state

Figure 7.3: Different task mappings on an MPSoC.

for each processor, a steady state period constraint, and an area constraint, the

goal is to minimize the total energy consumption of the MPSoC under the pro-

vided constraints. To solve this optimization problem, one needs to search the

resulting design space for: (1) the optimal number of processors and mapping

of the tasks on them, (2) optimal cache configuration for each of the individual

processors, and (3) optimal set of custom instructions and v-f level for each of the

tasks. It is important to note that our optimization problem cannot be solved

naively because of its exponential complexity that results from all the possible

combinations of v-f levels, sets of custom instructions, cache configurations and

task mappings.

7.2 Proposed Framework

We propose a framework, shown in Figure 7.4, to solve the optimization prob-

lem described in the last section. At high level, our framework integrates three

components. The profiler component uses a cycle-accurate simulator to produce

profiling information for all the application tasks. Next, the profiling information

is exploited by the estimation component to estimate the steady-state latency

140

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

and energy consumption of the application tasks. Finally, the design space ex-

ploration component searches for an optimal or near optimal design point. The

following paragraphs explain these components in more detail.

7.2.1 Profiler

The input to the profiler consists of the following:

• A multimedia application and its task graph, represented as {T1, T2, ..., TN}.

• Baseline processor and input data representative of the worst-case.

• R v-f levels for each task, represented as {V1, ..., VR}.

• Oi sets of custom instructions for task Ti, represented as {CIi1, ..., CIiO}.

For a task Ti, CIi1 refers to the use of only baseline processor without any

custom instructions (zero additional area).

• Q cache configurations for the processors, represented as {C1, ..., CQ}.

The profiler uses a cycle-accurate simulator to profile all the possible implemen-

tations of a task, where an implementation refers to a combination of a set of

custom instructions and a cache configuration with the highest v-f level in the

Cycle-

Accurate

Simulator

Profiler

Acure

 OR

Fast

Estimation

Push Algorithm

OR

MaC heuristic

Design Space Exploration

 profiling

information

memory

trace

{Ti,Tj…},

{CIoi, Cioj,..},

{Vi,Vi…}, Cc

steady-state

latency/energy

for each task

Application specific

MPSoC with min energy

Worst-case

Representative

Input

Baseline

Processor

Application

N tasks {T1, T2 … TN}

DVFS

R v-f levels

Processor Customization

Oi sets of CIs for Ti

Cache Customization

Q cache configurations

Period and

Area

Constraints

Figure 7.4: Framework Overview.

141

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

baseline processor. For example, for task Ti, Oi × Q simulations, all at the

highest v-f level, are run to capture its latency, power consumption and memory

trace for all combinations of sets of custom instructions and cache configurations.

During these simulations, input data representative of the worst-case (provided

by the designer) is used so that the MPSoC can deliver the required performance

at all times when deployed. Estimation of the steady-state latency and power

consumption for a task at a v-f level other than the highest level is done in the

estimation component of our framework. It is important to note that simulation

of all possible task mappings with different v-f levels, sets of custom instructions

and cache configurations is not practically feasible due to exponential nature of

the design space. Therefore, our profiler uses a minimal number of simulations

so as to keep simulation time low while gathering enough information for the

estimation component.

7.2.2 Latency and Energy Estimation

Two estimators are proposed in this section to estimate steady-state latency

and energy consumption of a number of tasks mapped on a baseline processor

with their corresponding sets of custom instructions and v-f levels, and a cache

configuration.

7.2.2.1 Accurate (Acure) Estimator

Single task. For a task with a given set of custom instructions and a cache con-

figuration, we estimate its first iteration’s latency (Lv) and energy consumption

142

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

(Ev) at a v-f level v using:

Lv =
Lh × Fh
Fv

Pv =
Ph × (Vv)

2 × Fv
(Vh)2 × Fh

Ev = Pv × Lv

where Lh and Ph are the latency and power consumption at the highest v-f

level, captured in the profiler component. Given the first iteration’s latency and

energy consumption at a certain v-f level, the steady-state latency and energy

consumption at the same v-f level depends primarily upon the cache configura-

tion. During repeated execution of a task, some of the cache misses from the

first iteration may become hits in subsequent iterations due to reuse. We define

“local miss” and “global miss” to distinguish between those cache misses. Let

M be the sequence of memory requests accessed in an iteration of a task. Let m

be a memory request in M and let sm be the cache set that m maps to. If M is

simulated in isolation starting with an empty cache and a reference to m results

in a cache miss, then m is classified as: a) Local miss if there are less than N

unique references to cache set sm in M before m, where N is the associativity

of the cache and b) Global miss if m is not a local miss. If m is a global miss or

hit, it is not affected by the cache state at the start of an iteration of M , that is,

it behaves the same way in every iteration. However, if m is a local miss, then

it may hit or miss in subsequent iterations depending on the cache state at the

start of an iteration of M . Intuitively, local misses are the first n cold misses

to each cache set that may benefit from reuse later. For an example, assume a

direct mapped cache with four sets, c[0...3]. Additionally, assume that the mem-

ory request pattern of a task is {m0,m1,m2,m3,m5,m6,m7}, where {m0} maps

to c[0], {m1,m5} map to c[1], {m2,m6} map to c[2] and {m3,m7} map to c[3].

Let LM1 be the set representing memory requests that resulted in local misses

during the first iteration of the task, and CS1 be the set representing cache state

143

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

at the end of the first iteration. Then, LM1 = {m0,m1,m2,m3} ({m5,m6,m7}

are global misses) and CS1 = {m0,m5,m6,m7}. In the steady-state, m0 from

LM1 will always be a hit while {m1,m2,m3} will always result in local misses.

Table 7.1 illustrates local misses, global misses and cache states across different

iterations for the running example.

Iter. Cache State (CS) Local Misses (LM) Global Misses

1 {m0,m5,m6,m7} {m0,m1,m2,m3} {m5,m6,m7}
2 {m0,m5,m6,m7} {m1,m2,m3} {m5,m6,m7}
3 {m0,m5,m6,m7} {m1,m2,m3} {m5,m6,m7}

Table 7.1: Cache state across iterations of a task.

In summary, the steady-state latency will be less than or equal to the first iter-

ation latency because the number of local misses might reduce. The reduction

in the number of local misses is LMr =
∣∣CS1 ∩ LM1

∣∣. The steady-state la-

tency (Lss) and energy consumption (Ess) is then estimated using the following

equations:

Lss = L1 − (LMr ×ML)

Ess = E1 − (LMr ×ME)

where ML and ME refer to lower-level memory latency and energy per access.

L1 and E1 refer to the first iteration’s latency and energy consumption of a task,

including its communication latency and energy respectively. Since the global

misses remain constant across iterations and have already been captured in L1

and E1, they do not affect steady-state latency and energy consumption. For

estimation, both CS1 and LM1 are computed by processing the memory trace

captured in the profiler component. Note that the steady-state latency and

energy consumption of a task can also be computed by simulating it for multiple

iterations in the profiler. However, for long running tasks, the simulation time

144

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

for multiple iterations might be significant. Our estimation technique had errors

of less that 1% compared to cycle-accurate simulations of multiple iterations (see

Section 7.4), and hence we did not simulate multiple iterations of a task in the

profiler.

Multiple tasks. Now, we extend our estimation technique for multiple tasks.

We assume that all the tasks are non-preemptible which is a valid assump-

tion [103] for multimedia applications because each task has to process its input

data before outputting it to the next task. When more than one task is mapped

to a processor, then each task can pollute the cache state of other tasks. For the

sake of simplicity, we explain our estimation technique with two tasks T1 and T2;

however it can easily be extended to any number of tasks. Let CS1
1 and CS1

2 be

the cache states at the end of the first iteration of tasks T1 and T2 respectively,

and LM1
1 and LM1

2 be the sets containing local misses during the first iteration.

In steady state, the number of misses reduces for a particular task when its lo-

cally missed memory requests survive through the execution of the other task.

For a particular cache set sm, we define the operator
⊙

as m′
⊙
m′′ = m′′, if

m′′ is not null or else m′
⊙
m′′ = m′. This means that the memory request m′′

(when m′′ 6= null) has replaced m′ in the cache set sm. Then, the reduction in

the number of local misses for T1 and T2 is:

LMr,T1 =
∣∣∣(CS1

1

⊙
CS1

2) ∩ LM1
1

∣∣∣
LMr,T2

=
∣∣∣(CS1

2

⊙
CS1

1) ∩ LM1
2

∣∣∣
Therefore, the steady-state latency and energy consumption of the two tasks are:

Lss
T1,T2

= L1
T1

+ L1
T2
− ((LMr,T1 + LMr,T2)×ML)

Ess
T1,T2

= E1
T1

+ E1
T2
− ((LMr,T1

+ LMr,T2
)×ME)

If two communicating tasks are mapped to the same processor, then they do not need to

communicate through a communication buffer. We capture the amount of data trans-

ferred (in words) and the latency per word during the first iteration of a task in the

profiler component. Given this information, we estimate the communication latency of

145

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

a task by multiplying the latency per word with the amount of data transferred. A

similar approach is used for estimation of the communication energy. Once the com-

munication latencies and energies of the two tasks are available, we subtract them from

Lss
T1,T2

and Ess
T1,T2

to account for the saving in communication latency and energy from

their mapping on the same processor.

It is clear that our estimation technique allows to calculate the steady-state latency and

energy consumption of any number and order of tasks from latency, energy consumption

and memory trace of first iterations of the individual tasks. Therefore, we do not simulate

all the possible mappings of tasks in the profiler component, which reduces simulation

time significantly.

7.2.2.2 Fast Estimator

The computational complexity of estimating steady-state latency and energy consump-

tion in Acure estimator depends upon the number of tasks and the size of their memory

traces. When the number of complex tasks mapped on a processor increases, Acure

estimator might become slow for rapid design space exploration. Therefore, in Fast es-

timator, we trade-off the time spent in processing of memory traces (to compute LM1
i

and CS1
i for a task Ti) with the estimation accuracy.

Single task. Like Acure estimator, first of all, the latency and energy consumption

of first iteration is estimated at the given v-f level. Afterwards, rather than analyzing

the memory trace, we use the first iteration’s latency and energy consumption as the

steady-state latency and energy consumption of a task.

Multiple tasks. The steady-state latency and energy consumption of two tasks, T1

and T2, is computed by adding the steady-state latency and energy consumption of the

individual tasks. The communication latency and energy are accounted for in a similar

fashion to the Acure estimator.

Note that the accuracy of Fast estimator depends upon the cache behavior. If the

reduction in local misses across different iterations of a single task or across multiple

tasks is significant, then the error in estimation will be high.

146

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

Algorithm 1: Push Algorithm

1 tasks = {T1, T2...TN};
2 eProcs = {} ; // existing processors

3 map[] = {} ; // map[P] contains tasks mapped on P

4 currMetrics = {currA = 0, currP = 0, currE = 0};
5 bestSol = {};
6 PUSH(tasks, eProcs,map,Ac, Pc)
7 if areaPruning(tasks, Ac) then return;
8 if periodPruning(tasks, Pc) then return;
9 if energyPruning(tasks, bestSol) then return;

10 if tasks 6= null then
11 Ti ← task i from tasks;

12 // map to an existing processor

13 for each P in eProcs do
14 for o = 1 to Oi do // custom instructions

15 for v = 1 to R do // v-f levels

16 map[P] ← Ti with CIio and Vv;
17 currMetrics = metrics(eProcs, map);
18 if currP ≤ Pc and currA ≤ Ac then
19 PUSH(tasks, eProcs,map,Ac, Pc);

20 else
21 restore currMetrics previous value;
22 remove Ti from map[P];

23 // map to a new processor

24 for c = 1 to Q do // cache configurations

25 for o = 1 to Oi do // custom instructions

26 for v = 1 to R do // v-f levels

27 nP = new processor with Cc;
28 eProcs ← nP;
29 map[nP] ← Ti with CIio and Vv;
30 currMetrics = metrics(eProcs, map);

31 if currP ≤ Pc and currA ≤ Ac then
32 PUSH(tasks, eProcs,map,Ac, Pc);

33 else
34 restore currMetrics previous value;
35 remove Ti from map[P];
36 remove nP from eProcs;

37 if tasks 6= null then
38 return failure;
39 else
40 update bestSol if required; return;

147

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

7.2.3 Design Space Exploration

7.2.3.1 Prune and Search (Push) Algorithm

The Push algorithm uses two basic operations “prune” and “search” to quickly push itself

through the complex design space towards the optimal design point. The “prune” oper-

ation prunes certain parts of the design space based on constraints, while the “search”

operation finds a partial solution in a subset of the design space. These partial solutions

are combined successively to reach the globally optimal design point. Theoretically the

worst-case complexity of the Push algorithm is exponential because it searches for the

optimal design point (based on the branch and bound algorithm); practically, it is able

to prune a large part of the complex design space by exploiting the constraints.

Algorithm 1 shows the pseudo code of the Push algorithm. For ease of understanding,

consider that the design space is represented as a tree, which is shown in Figure 7.5. The

parameters of the design space are summarized in the table. For the sake of simplicity, we

do not show all the nodes in the design space tree. Note that L1111 represents the latency

of the task T1 with custom instruction set CI1, v-f level V1 and cache configuration C1

(a similar notation is used for energy as well). The annotations on edges illustrate

the options of the design parameters. Each level i of the tree corresponds to a call of

the Push procedure, where the algorithm has a partial solution for tasks T1, T2, ..., Ti−1

(their corresponding sets of custom instructions and v-f levels, stored in map[]), and the

processors (with their corresponding cache configurations, stored in eProcs) that have

already been mapped with those tasks. Let period, area and energy consumption of the

partial solution be currP, currA and currE respectively (stored in currMetrics). With

this partial solution at level i, the algorithm prunes the subtrees based on constraints

(lines 7-9) which are explained later. Note that the areaPruning, periodPruning and

energyPruning functions return true when the subtrees are pruned. If the pruning is

unsuccessful, then the algorithm maps task Ti either to one of the existing processors

(lines 13-22) or a new processor (lines 24-36) ensuring the area and period constraints

are met, and then moves on to the next task by calling the Push procedure. Here,

the algorithm uses the metrics function (lines 17, 30) to calculate the area, period and

energy consumption of the new mapping using either the Acure or Fast estimator from

Section 7.2.2. This process is repeated until all the tasks have been mapped or no more

148

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

T# CI# V# C# CI#Area# L# E#

T1#
1#

1#
1# A11=0# L1111=2# E1111=2#

2# 2# A12=5# L1212=1# E1212=1#

T2# 1# 1#
1#

A21=0#
L2111=3# E2111=4#

2# L2112=4# E2112=5#

Area of baseline
processor = 5

T1 CI11 CI12

V1 V1

C1 C1

T2 T2

e n e n

CI21

V1

C1 C2

Level 1

Level 2

Oi sets of
CI

V v-f
levels

C cache
configs

currP = 1
currA = 10
currE = 1

Current
Node

Figure 7.5: Illustration of Push algorithm.

tasks can be mapped given the area and period constraints (lines 37-38). Mapping of

all the tasks means a new solution is found, which is used to update the best solution

seen so far (stored in bestSol, line 40) if the new solution’s energy consumption is better

than the best solution.

For example, at level 1 in Figure 7.5, the current node indicates that CI12 set of cus-

tom instructions and V1 v-f level have been selected for task T1 which is mapped to a

processor with C1 cache configuration. The algorithm reaches the current node only

after traversing the entire left subtree for the task T1. The metrics for partial solution

at level 1 are in currP, currA and currE, while bestE is the energy consumption of the

best solution seen so far. From the current node, task T2 can be mapped either to the

existing processor (left subtree, edge annotated as e) or a new processor (right subtree,

edge annotated as n). The algorithm can prune the subtrees based on the following

observations:

Area constraint. If all the remaining tasks are mapped to existing processors without

any custom instructions (use of baseline processor only), then the total area will still

be equal to currA because no additional area will be used for the unmapped tasks. If

149

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

currA violates the area constraint Ac, then it is safe to prune the subtree. In the running

example, if Ac = 9, then the entire subtree will be pruned (because currA = 10).

Period constraint. A lower bound on the period can be estimated by mapping re-

maining tasks to separate processors and using their lowest latency implementations (i.e

Lmin
i), that is, max(currP, Lmin

i , ..., Lmin
N)). In the running example, currP = 1 and

Lmin
2 = L2111 = 3, so lower bound on period equals max(1, 3) = 3. If Pc = 2, then the

entire subtree will be pruned.

Lowest possible energy consumption (LPE). For all the unmapped tasks, LPE is

estimated as the summation of their minimum energy consumptions, less their commu-

nication energies. That is, LPE refers to the scenario where minimum energy imple-

mentations of all the tasks are used with no energy spent in data communication. If

(LPE+ currE) is greater than the energy consumption of the best solution seen so far,

then the entire subtree can be pruned as the partial solution is already worse than the

best solution. In the running example, if the best solution’s energy is 4, then the entire

subtree will be pruned because LPE + currE = 5.

7.2.3.2 Map and Customize (MaC) Heuristic

To better handle the exponential complexity of the design space, we propose a two

stage algorithm consisting of the “map” stage and “customize” stage. In the “map”

stage, candidate task mappings are produced considering a homogeneous MPSoC. In the

“customize” stage, already produced task mappings are used to customize the MPSoC

with the selection of custom instructions, v-f levels and cache configurations. One can

think of the “map” stage as application-level balancer and the “customize” stage as

system-level balancer, which work in synergy to find a near-optimal solution.

Map stage. In this stage, a homogeneous MPSoC with variable number of processors

is considered. The input to this stage consists of tasks = {T1, T2...TN}, and their code

sizes and latencies on a baseline processor with smallest cache configuration, lowest v-f

level and without any custom instructions. The goal is to generate a set of task mappings

that will possibly lead to a globally optimal solution.

150

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

Ideally, we would like to combine tasks that will complement each other in terms of

both the latency and the energy consumption. Let us categorize tasks based upon their

latencies as short and long tasks. Likewise, we categorize tasks based upon their code

size as small and big tasks. Our intuition is that a small task well complements a big

task in terms of the cache configuration, while a short task well complements a long

task in terms of latency. Thus, we propose to combine small-short tasks with big-long,

and small-long with big-short tasks, because they will result in a complementary effect

in their combined latency and energy consumption. If codei and Li is the code size and

latency of a task Ti respectively, then we define code-latency product for a set of tasks

{Ti, Tj , ...} as

CLP (i, j, ...) =
∑

x={i,j,...}

codex × Lx

If the tasks are sorted in ascending order according to CLP metric, then the smallest-

shortest task will set the lower bound while the biggest-longest task will set the upper

bound. All the other tasks will be dispersed in between these bounds. We use the CLP

metric to obtain a task sequence Γ(N) where tasks with complementary characteristics

are adjacent to each other. Given N tasks, we consider them as N subsequences and

compute the CLP metric for each of them, followed by sorting them in ascending order

according to CLP . Then, we combine the i-th subsequence with (N + 1 − i)-th subse-

quence, that is, combining subsequences with complementary characteristics. After the

first run, a total of dN2 e subsequences are obtained. We repeat the above process till

only one subsequence is left, which is the final sequence of tasks with complementary

characteristics. An example of task sequencing for four tasks is shown in Figure 7.6.

The annotation in each node of the task graph on the left-hand side is (code, latency),

while the right-hand side illustrates the number of task subsequences and their corre-

sponding CLP metrics for each run. The final sequence Γ(N) = {T2, T3, T1, T4} where

{T2, T3} subsequence represents a small-long and big-short combination, while {T1, T4}

represents a small-short and big-long combination.

After obtaining the task sequence using the CLP metric, we proceed to enumerate

different mappings of the task sequence considering variable number of processors as

follows:

mapi = ∀Tj 7→ {P1, P2, ..., Pi} : 1 ≤ j ≤ N, i ≤ N

151

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

T1
(1, 2)

T2
(1,7)

T3
(4, 2)

T4
(14,5)

T1

2

T2

7

T3

8

T4

70

T1-T4

72

T2-T3

15

T2-T3-T1-T4

CLP=87

Procs Period Mappings

1 16 {T2,T3,T1,T4}

2 9 {T3,T1,T4}{T2}

3 7

 {T2}{T3}{T1,T4}

 {T2}{T1,T3}{T4}

 {T2}{T3}{T1,T4}

4 7 {T2}{T3}{T1}{T4}

(code, latency)

(a) (b) (c)

Figure 7.6: Illustration of map stage: (a)Task graph (b)Task sequencing
(c)Different task mappings.

In essence, mapi represents mapping of all the tasks onto i number of processors. We

model the enumeration of task mappings as a chains-on-chains problem [91], where the

aim is to map j tasks on i processor such that the mapping is load balanced, that

is, the period is minimized. Our intuition is that a balanced mapping at this stage

will possibly lead to a better customization in the later stage. Although there exist

several polynomial-time algorithms for solving the chains-on-chains problem [91], we

use a dynamic programming based solution from [15]. Figure 7.6(c) illustrates different

task mappings for the final task sequence of Figure 7.6(b) with their optimal periods.

Task Mapping: {T2} {T3} {T1,T4} Ac = 20 Pc = 5

Run
 P1 (period = 7) P2 (period = 2) P3 (period = 7) sArea

(20) A[P1] PushM A[P2] PushM A[P3] PushM

1 8.75 -- 2.5 1.5 8.75 -- 18.5

2 9.25 -- -- 1.5 9.25 9.0 9.5

3 9.5 9.4 -- 1.5 -- 9.0 0.1

Figure 7.7: Illustration of customize stage.

Customize stage. The algorithm for customization of the MPSoC for different task

mappings is shown in Algorithm 2. For a task mapping (stored in mapi), some area

from the total available area (stored in sArea) is allocated to each processor (stored in

A[P]) proportional to its period (lines 9-10). This is based on the intuition that a pro-

cessor with higher period may have to use complex custom instructions and bigger cache

configuration to reduce its period. Given the allocated area for a processor, we employ

a modified version of the Push algorithm, PushM (line 12), to find the optimal set of

custom instructions and v-f levels for all the tasks of the given processor, and its optimal

152

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

cache configuration. The PushM algorithm uses lines 13–22 of the Push algorithm, that

is, an optimal solution is searched for the given (existing) processor only, ignoring the

addition of new processors. The custom processor returned by the PushM algorithm

is added to the best solution for the current task mapping (stored in bestSol[i]), while

the area of the custom processor is subtracted from the total available area (line 16).

This process is repeated until all the processors have satisfied the period constraint (line

11-16) or all the processors currently in vProcs could not satisfy the period constraint

(lines 17-18). Finally, the algorithm returns the task mapping and customized MPSoC

with minimum energy consumption from all of the input task mappings (line 22).

A working example of the algorithm is shown in Figure 7.7 for one of the task mappings

from Figure 7.6. The first column reports the run of the algorithm while the rest of the

columns report the area allocated to each processor and the total available area. For

example, in the first run, P1 and P2 are allocated an area of 8.75 and 2.5 respectively

from total available area of 20. During the first run, the PushM algorithm succeeds for

P2 and fails for P1 and P3. Thus, the area of the custom processor for P2 (1.5) is

subtracted from the total available area, which is redistributed among P1 (9.25) and P3

(9.25) for the next runs. In the second and third runs, the PushM algorithm successfully

customizes P3 and P1 under the allocated area and period constraint.

7.3 Experimental Methodology

We used a commercial environment from Tensilica [57] to realize application specific

MPSoCs. We used Xtensa LX2 processors and accompanying toolset RD-2011.2 which

includes Xtensa ISS cycle-accurate simulator, XTMP multiprocessor simulation envi-

ronment, and XPRES compiler. For each application task, we used XPRES compiler to

generate different sets of custom instructions, which consist of any combination of FLIX

instructions, fused, vector and specialized operations. At least, five sets of custom in-

structions were generated per application task. We used five different instruction cache

configurations by changing cache sizes from 1 KB to 16 KB. Although we only tested our

framework with instruction cache configurations, a designer can easily apply it to data

cache configurations. For each processor, we used five different frequency levels ranging

from 533 MHz to 1.5 Ghz with their corresponding voltage levels. The Xt-Xenergy tool

153

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

Algorithm 2: Customize MPSoC

1 maps = {map1,map2, ...,mapN};
2 bestSol[] = {} ; // bestSol[i] for mapi

3 while maps 6= {} do
4 vProcs[] ← all the processors from mapi;
5 tasks[] ← tasks mapped to processors in vProcs;
6 sArea = Ac;

7 while vProcs 6= {} do
8 // allocate area proportional to period

9 for each P in vProcs do
10 A[P] ← proportion of sArea using P’s period;

11 for each P in vProcs do
12 r = PushM(tasks[P], vProcs[P], {}, A[P], Pc);

13 if r 6= failure then
14 update bestSol[i][P] ; // solution for P

15 remove P from vProcs;
16 sArea –= area returned by PushM();

17 if all P in vProcs failed then
18 break;

19 if vProcs 6= {} then
20 bestSol[i] ← failure;

21 remove mapi from maps;

22 return minimum energy solution from bestSol;

from Tensilica is used to compute the energy consumption of a processor at the high-

est v-f level, including its caches and local memory for a given 90nm technology. The

area of the processor and its caches and local memories is also obtained from Tensilica

toolset. For communication buffers, we estimated their area and energy consumption

using CACTI [40].

For evaluation, we used both real multimedia applications and synthetic applications.

We partitioned the multimedia applications into their tasks as mentioned in [25] for

JPEG encoder (5 tasks) and MP3 encoder (5 tasks), and in [61] for H.264 encoder (7

tasks). For synthetic applications, we generated task graphs using TGFF [32], and used

kernels from Mibench [51] and StreamIt [116] as tasks in those task graphs. We chose

ten kernels from Mibench and StreamIt where a reasonable trade-off in performance

and area was observed for different custom instructions and cache configurations. We

created three synthetic applications: SA1 with 10 tasks, SA2 with 15 tasks and SA3

with 20 tasks to evaluate the scalability of the proposed algorithm and heuristic. Given

154

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

the above setup, the design space of each application contained at least a billion design

points. All the experiments were conducted on an Intel Xeon 2.53 Ghz processor with

16 GB memory.

7.4 Results

Table 7.2 summarizes the error observed in computation of the steady-state latency and

energy using the Acure and Fast estimators, compared to cycle-accurate simulation.

The table reports the maximum error observed, from amongst all the applications,

when different number of tasks are mapped on a processor with different sets of custom

instructions and cache configurations. The errors observed in Acure estimator are very

low and remain fairly constant across the number of tasks. On the other hand, the

errors in the Fast estimator increase with the number of tasks, reaching to a maximum

of 15.71%. This is because the cache behavior is significantly disrupted when a greater

number of tasks are mapped to the same processor. Thus, the Acure estimator will better

guide the design space exploration algorithms than the Fast estimator. In our framework,

Mapped Latency Error [%] Energy Error [%]
Tasks Acure Fast Acure Fast

1 0.54 1.72 0.69 2.92

2 0.61 1.99 0.82 3.10

4 0.75 4.82 0.97 6.65

8 0.86 8.31 1.04 9.98

16 0.91 11.20 1.22 13.52

20 1.07 13.64 1.29 15.71

Table 7.2: Maximum error in the Acure and Fast estimators.

the Acure and Fast estimators can either be combined with the Push algorithm or MaC

heuristic, which results in four possible optimization techniques. Additionally, we also

use the “independent” optimization technique, where optimal solutions are sought for

in individual optimization problems, and all the possible ways of combining individual

optimal solutions are exhausted. Since the “independent” technique can be constructed

from existing techniques, we use it as the state-of-the-art for comparison purposes. Note

that the use of Acure estimator with the Push algorithm will yield the most optimal

solution from amongst all the five optimization techniques. Since our design spaces

155

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

contain at least billion points, it is not practical to apply all the possible period and area

constraints. We used Latin Hypercube Sampling to generate 50 uniformly distributed

tuples for each application, where each tuple represents a combination of area and period

constraints.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

JPEG MP3 H264 SA1 SA2 SA3

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Acure-Push Fast-Push Acure-MaC Fast-MaC independent

Figure 7.8: Comparison of different optimization techniques, normalized to
Acure-Push.

0

0.2

0.4

0.6

0.8

1

1.2

Fast-Push Acure-MaC Fast-MaC independent

O
p

ti
m

a
li

ty
 h

is
to

g
ra

m

0-5% 6-20% 21-35% >35%

Figure 7.9: Error distribution in different optimization techniques for SA3
application.

Figure 7.8 plots the average energy consumptions of the solutions obtained from various

optimization techniques, normalized to the energy consumption of the solution from

Acure-Push technique under 50 different constraints. From amongst all the applications,

on average, Fast-Push, Acure-MaC and Fast-MaC found 8%, 6% and 9% sub-optimal

solutions respectively. It is noteworthy that the Acure-MaC outperformed Fast-Push

for H.264 and SA3 applications even though the Push algorithm is optimal. This is due

to higher estimation errors in the Fast estimator compared to the Acure estimator for

H.264 and SA3 applications, which misguided the Push algorithm. Out of all the five

optimization techniques, the “independent” technique performs the worst; on average, it

156

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

resulted in up to 37.9% sub-optimal solutions. More importantly, our most sub-optimal

heuristic, Fast-MaC, improved the optimality of the solutions by up to 76.25% on average

when compared to the “independent” technique. The maximum error in solutions from

various optimization techniques yielded similar findings. The “independent” technique

resulted in solutions that were up to 57.1% sub-optimal compared to a maximum of

16%, 13% and 19% sub-optimal solutions from Fast-Push, Acure-MaC and Fast-MaC

respectively. To better highlight the sub-optimality of the optimization techniques,

Figure 7.9 plots the distribution of energy difference between the solutions obtained

from those technqiues with the one obtained from Acure-Push for SA3 application. It is

evident that 85% of the solutions from the “independent” technique have more than 20%

increase in energy with respect to Acure-Push, while all the solutions from Fast-Push,

Acure-MaC and Fast-MaC have less than 20% increase in energy. This signifies the fact

that a carefully crafted optimization technique which explores all the design pa rameters

in a synergistic and integrated fashion is required for effective exploration of large and

complex design spaces.

Apps. # Acure Fast Acure Fast Ind.
Tasks Push Push MaC MaC

JPEG 5 910 770 4 3 75

MP3 5 1181 890 12 9 75

H.264 7 1492 1028 84 17 492

SA1 10 3662 2621 299 87 991

SA2 15 5021 3267 450 230 1982

SA3 20 7732 4919 785 540 3811

Table 7.3: Exploration time (in secs) of optimization techniques.

Table 7.3 reports the exploration time of all the five optimization techniques in seconds.

For each application, these exploration times are calculated by taking an average of the

total time spent in finding solutions for all the 50 constraints. It is evident that the

optimization techniques with the Fast estimator are faster than the Acure estimator.

More importantly, the MaC heuristic is significantly, at least 9 times (SA3 application),

faster than the Push algorithm. It is also noteworthy that the “independent” technique’s

exploration time is at least 7 times more than our fastest heuristic Fast-MaC even with

76.25% sub-optimal solutions. Thus, our MaC heuristic based optimization techniques

provide superior solution with lower exploration times than the “independent” technique.

157

Chapter 7. Energy-Aware Synthesis of Application Specific MPSoCs

7.5 Summary

In this chapter, we have proposed a framework to synthesize an energy-aware application

specific MPSoC. We synergistically explore the complex interplay of DVFS, custom

instructions, cache configurations and task mapping. Our framework uses two analytical

estimators, the Push algorithm for optimal solutions and MaC heuristic for near-optimal

solutions. The experimental results show that the MaC heuristic is at least 14 times

faster than the Push algorithm with average errors of up to 9%. Also, our MaC heuristic

reduces energy consumption by up to 76.25% on average with 7 times lower exploration

time compared to the “independent” optimization technique.

158

Chapter 8

Conclusions

This chapter concludes the thesis by summarizing the major contributions. This thesis

focuses on developing efficient power management schemes for heterogeneous multi-cores.

Most of the previous works focussed on developing power management mechanisms

for homogeneous multi-cores. Our contributions differ by addressing the challenges

introduced by heterogeneity that are not present in homogeneous multi-cores.

Our first major contribution is in terms of dynamic power management techniques for

heterogeneous multi-cores. Among the dynamic techniques, we first present accurate

models that can predict the power-performance behavior across different core types in

heterogeneous systems. Second, we discuss a control theory based power management

scheme that incorporates multiple PID controllers. Then, we propose price theory based

power management scheme with desirable features like scalability, priority-driven and

priority consciousness. All the dynamic power management schemes are evaluated in

a real heterogeneous platform – ARM big.LITTLE. Lastly, we propose a dynamic reli-

ability management technique with thermal/power constraints and performance as an

optimization goals. Our second major contribution is in terms of design of hetero-

geneous application-specific MPSoC with minimal energy consumption as a first class

design constraint.

159

Chapter 9

Future Work

In this chapter, we summarize the future work that can be applied to the contributions

in this thesis in the chronological order. Emerging applications like computer vision,

data mining, search, media processing, etc., have a unique property of tolerating er-

roneous solutions for a decreased computation time. For example, video encoders can

discard computations to return lossy encoded video frames that can still be tolerated

by the users. We want to explore these kinds of applications that allow approximate

computing to improve the energy efficiency in heterogeneous multi-cores. In [105], the

authors have introduced a concept of approximate computing, where multiple iterations

are skipped to tradeoff performance and accuracy of the results. We believe that incor-

porating approximate computing in our dynamic power management techniques (HPM

and PPM) will be a notable contribution.

Most of the modern mobile devices can operate at different voltage-frequency levels to

extend their battery life. In [42], the authors proposed a power-performance model for

a superscalar out-of-order processor with DVFS capability. Therefore, we hope to build

a similar model that not only estimates performance/power across different core types

but at different voltage-frequency operating points.

In this thesis, we have focused on single-threaded serial applications on multi-cores. As

more cores will be integrated in future many core architecture, it is important that

any power management technique should be able to handle multi-threaded applications.

The major challenge in multi-threaded application is thread clustering based on the

160

Chapter 9. Future Work

amount of data sharing. Therefore, we hope that this thesis will inspire the future

research in developing power management techniques for multi-threaded applications on

heterogeneous multi-cores.

161

Bibliography

[1] ARM infocenter. http://infocenter.arm.com/.

[2] GCC Processor pipeline description, http://gcc.gnu.org/onlinedocs/gccint/processor-

pipeline-description.html.

[3] SPEC CPU Benchmarks. http://www.spec.org/benchmarks.html.

[4] SPEC CPU Benchmarks. http://www.spec.org/benchmarks.html.

[5] Nvidia. the benefits of multiple cpu cores in mobile devices,

2010. http://www.nvidia.com/content/PDF/tegra_white_papers/

Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf.

[6] The death of microprocessors, 2010. http://www.embedded.com/design/

embedded/4025001/The-death-of-microprocessors.

[7] ARM Ltd., 2011. http://www.arm.com/products/tools/development-boards/

versatile-express/index.php.

[8] Linaro Ubuntu release for Vexpress, November 2012. http://releases.linaro.

org/12.10/ubuntu/vexpress/.

[9] Mohammad Abdullah Al Faruque, Janmartin Jahn, Thomas Ebi, and Jörg Henkel.

Runtime thermal management using software agents for multi-and many-core ar-

chitectures. Design & Test of Computers, IEEE, 27(6):58–68, 2010.

[10] David H Albonesi. Selective cache ways: On-demand cache resource allocation.

In Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International

Symposium on, pages 248–259. IEEE, 1999.

162

http://infocenter.arm.com/
http://www.spec.org/benchmarks.html
http://www.spec.org/benchmarks.html
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.embedded.com/design/embedded/4025001/The-death-of-microprocessors
http://www.embedded.com/design/embedded/4025001/The-death-of-microprocessors
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://releases.linaro.org/12.10/ubuntu/vexpress/
http://releases.linaro.org/12.10/ubuntu/vexpress/

Bibliography

[11] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for

computer system modeling. Computer, 35(2):59–67, 2002.

[12] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The im-

pact of performance asymmetry in emerging multicore architectures. In ACM

SIGARCH Computer Architecture News, volume 33, pages 506–517. IEEE Com-

puter Society, 2005.

[13] Michela Becchi and Patrick Crowley. Dynamic thread assignment on heterogeneous

multiprocessor architectures. In Computing frontiers, pages 29–40. ACM, 2006.

[14] Luca Benini, Davide Bertozzi, Alessio Guerri, and Michela Milano. Allocation,

scheduling and voltage scaling on energy aware MPSoCs. In Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, pages 44–58. Springer, 2006.

[15] Anne Benoit and Yves Robert. Mapping pipeline skeletons onto heterogeneous

platforms. Journal of Parallel and Distributed Computing, 68(6):790–808, 2008.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

benchmark suite: characterization and architectural implications. In Proceedings

of the 17th international conference on Parallel architectures and compilation tech-

niques, pages 72–81. ACM, 2008.

[17] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Paolo Ienne, and Laura Pozzi.

Performance and energy benefits of instruction set extensions in an FPGA soft

core. In VLSI Design, 2006. Held jointly with 5th International Conference on

Embedded Systems and Design., 19th International Conference on, pages 6–pp.

IEEE, 2006.

[18] Paolo Bonzini, Dilek Harmanci, and Laura Pozzi. A study of energy saving in cus-

tomizable processors. In Embedded Computer Systems: Architectures, Modeling,

and Simulation, pages 304–312. Springer, 2007.

[19] M. Breughe, S. Eyerman, and L. Eeckhout. A mechanistic performance model for

superscalar in-order processors. In ISPASS, pages 14–24, 2012.

163

Bibliography

[20] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. ACM SIGARCH Computer

Architecture News, 28(2):83–94, 2000.

[21] Alper Buyuktosunoglu, David Albonesi, Stanley Schuster, David Brooks, Pradip

Bose, and Peter Cook. A circuit level implementation of an adaptive issue queue for

power-aware microprocessors. In Proceedings of the 11th Great Lakes symposium

on VLSI, pages 73–78. ACM, 2001.

[22] Jeffrey S Chase, Darrell C Anderson, Prachi N Thakar, Amin M Vahdat, and

Ronald P Doyle. Managing energy and server resources in hosting centers. In

ACM SIGOPS Operating Systems Review, volume 35, pages 103–116. ACM, 2001.

[23] Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. Energy optimiza-

tion with worst-case deadline guarantee for pipelined multiprocessor systems. In

Proceedings of the Conference on Design, Automation and Test in Europe, pages

45–50. EDA Consortium, 2013.

[24] Jian Chen and Lizy K John. Efficient program scheduling for heterogeneous multi-

core processors. In Proceedings of the 46th Annual Design Automation Conference,

pages 927–930. ACM, 2009.

[25] Liang Chen, Nicolas Boichat, and Tulika Mitra. Customized MPSoC synthesis

for task sequence. In Application Specific Processors (SASP), 2011 IEEE 9th

Symposium on, pages 16–21. IEEE, 2011.

[26] Ryan Cochran, Can Hankendi, Ayse K Coskun, and Sherief Reda. Pack & Cap:

adaptive DVFS and thread packing under power caps. In Proceedings of the 44th

annual IEEE/ACM international symposium on microarchitecture, pages 175–185.

ACM, 2011.

[27] Jason Cong and Bo Yuan. Energy-efficient scheduling on heterogeneous multi-core

architectures. In Low Power Electronics and Design, pages 345–350. ACM, 2012.

[28] NVidia Corporation. Bring high-end graphics to handheld devices.,

2011. http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_

High-End_Graphics_to_Handheld_Devices.pdf.

164

http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf

Bibliography

[29] Samsung Corporation. Samsung Exynos., 2011. http://www.samsung.com/

exynos/.

[30] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and An-

dre R LeBlanc. Design of ion-implanted MOSFET’s with very small physical

dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268, 1974.

[31] Ashutosh S Dhodapkar and James E Smith. Managing multi-configuration hard-

ware via dynamic working set analysis. In Computer Architecture, 2002. Proceed-

ings. 29th Annual International Symposium on, pages 233–244. IEEE, 2002.

[32] Robert P Dick, David L Rhodes, and Wayne Wolf. TGFF: task graphs for free.

In Proceedings of the 6th international workshop on Hardware/software codesign,

pages 97–101. IEEE Computer Society, 1998.

[33] James Donald and Margaret Martonosi. Techniques for multicore thermal man-

agement: Classification and new exploration. volume 34, pages 78–88. ACM, 2006.

[34] Thomas Ebi, M Faruque, and Jörg Henkel. Tape: Thermal-aware agent-based

power econom multi/many-core architectures. In Computer-Aided Design-Digest

of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference

on, pages 302–309. IEEE, 2009.

[35] Thomas Ebi, Janmartin Jahn, and Jörg Henkel. Agent-based thermal manage-

ment for multi-core architectures. In Organic Computing—A Paradigm Shift for

Complex Systems, pages 587–588. Springer, 2011.

[36] Thomas Ebi, David Kramer, Wolfgang Karl, and Jörg Henkel. Economic learning

for thermal-aware power budgeting in many-core architectures. In Hardware/Soft-

ware Codesign and System Synthesis (CODES+ ISSS), 2011 Proceedings of the

9th International Conference on, pages 189–196. IEEE, 2011.

[37] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Computer

Architecture (ISCA), 2011 38th Annual International Symposium on, pages 365–

376. IEEE, 2011.

[38] Alimonda et al. A feedback-based approach to DVFS in data-flow applications.

IEEE Trans. on CAD of Integrated Circuits and Systems, 2009.

165

 http://www.samsung.com/exynos/
 http://www.samsung.com/exynos/

Bibliography

[39] Carta et al. A control theoretic approach to energy-efficient pipelined computation

in MPSoCs. ACM Trans. Embedded Comput. Syst., 2007.

[40] Tarjan et al. CACTI 4.0. HP laboratories, Technical report, 2006.

[41] Wolf et al. Multiprocessor system-on-chip (MPSoC) technology. IEEE TCAD,

2008.

[42] Stijn Eyerman and Lieven Eeckhout. A counter architecture for online dvfs prof-

itability estimation. Computers, IEEE Transactions on, 59(11):1576–1583, 2010.

[43] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. A mecha-

nistic performance model for superscalar out-of-order processors. TOCS, 27(2):3,

2009.

[44] Stijn Eyerman, Kenneth Hoste, and Lieven Eeckhout. Mechanistic-empirical pro-

cessor performance modeling for constructing CPI stacks on real hardware. IS-

PASS, pages 216–226, 2011.

[45] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Maestro:

Orchestrating lifetime reliability in chip multiprocessors. In High Performance

Embedded Architectures and Compilers, pages 186–200. Springer, 2010.

[46] Milton Friedman. Quantity theory of money. J. Eatwell et al, pages 1–40, 1989.

[47] Yang Ge, Qinru Qiu, and Qing Wu. A multi-agent framework for thermal aware

task migration in many-core systems. Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, 20(10):1758–1771, 2012.

[48] Ann Gordon-Ross, Frank Vahid, and Nikil Dutt. Automatic tuning of two-level

caches to embedded applications. In Proceedings of the conference on Design,

automation and test in Europe-Volume 1, page 10208. IEEE Computer Society,

2004.

[49] Peter Greenhalgh. Big. LITTLE processing with ARM Cortex-a15 & Cortex-a7:

Improving energy efficiency in high-performance mobile platforms. white paper,

ARM September, 2011.

[50] Marisabel Guevara, Benjamin Lubin, and Benjamin C Lee. Navigating heteroge-

neous processors with market mechanisms. In HPCA, pages 95–106, 2013.

166

Bibliography

[51] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor

Mudge, and Richard B Brown. Mibench: A free, commercially representative

embedded benchmark suite. In Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop on, pages 3–14. IEEE, 2001.

[52] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,

Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.

Understanding sources of inefficiency in general-purpose chips. In ACM SIGARCH

Computer Architecture News, volume 38, pages 37–47. ACM, 2010.

[53] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster

and more flexible program phase analysis. Journal of Instruction Level Parallelism,

7(4):1–28, 2005.

[54] H. Hoffmann, J. Eastep, M.D. Santambrogio, J.E. Miller, and A. Agarwal. Ap-

plication heartbeats: a generic interface for specifying program performance and

goals in autonomous computing environments. In Proceedings of the 7th interna-

tional conference on Autonomic computing, pages 79–88. ACM, 2010.

[55] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and

Anant Agarwal. Application heartbeats for software performance and health. In

ACM Sigplan Notices, volume 45, pages 347–348. ACM, 2010.

[56] Qualcomm Inc. Qualcomm Snapdragon Processor., 2011. http://www.qualcomm.

com/chipsets/snapdragon.

[57] Tensilica Inc. Diamond Standard 108Mini Controller: A Small, Low-Power, Cache-

less RISC CPU, 2010. http://www.tensilica.com/uploads/pdf/108Mini.pdf.

[58] C. Isci, A. Buyuktosunoglu, C.Y. Cher, P. Bose, and M. Martonosi. An analysis of

efficient multi-core global power management policies: Maximizing performance

for a given power budget. In Microarchitecture, 2006. MICRO-39. 39th Annual

IEEE/ACM International Symposium on, pages 347–358. IEEE, 2006.

[59] Haris Javaid, Xin He, Aleksandar Ignjatovic, and Sri Parameswaran. Optimal syn-

thesis of latency and throughput constrained pipelined MPSoCs targeting stream-

ing applications. In Hardware/Software Codesign and System Synthesis (CODES+

167

http://www.qualcomm.com/chipsets/snapdragon
http://www.qualcomm.com/chipsets/snapdragon
http://www.tensilica.com/uploads/pdf/108Mini.pdf

Bibliography

ISSS), 2010 IEEE/ACM/IFIP International Conference on, pages 75–84. IEEE,

2010.

[60] Haris Javaid, Aleksander Ignjatovic, and Sri Parameswaran. Rapid design space

exploration of application specific heterogeneous pipelined multiprocessor systems.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 29(11):1777–1789, 2010.

[61] Haris Javaid, Muhammad Shafique, Sri Parameswaran, and Jörg Henkel. Low-

power adaptive pipelined MPSoCs for multimedia: an H.264 video encoder case

study. In Proceedings of the 48th Design Automation Conference, pages 1032–1037.

ACM, 2011.

[62] PJ Joseph, Kapil Vaswani, and Matthew J Thazhuthaveetil. A predictive perfor-

mance model for superscalar processors. In International Symposium on Microar-

chitecture, pages 161–170, 2006.

[63] Seungrok Jung, Jungsoo Kim, Sangkwon Na, and Chong-Min Kyung. Energy-

aware instruction-set customization for real-time embedded multiprocessor sys-

tems. In Proceedings of the 14th ACM/IEEE international symposium on Low

power electronics and design, pages 335–338. ACM, 2009.

[64] Tejas S Karkhanis and James E Smith. A first-order superscalar processor model.

In Computer Architecture, pages 338–349, 2004.

[65] Tejas S Karkhanis and James E Smith. A first-order superscalar processor model.

In ACM SIGARCH Computer Architecture News, volume 32, page 338. IEEE

Computer Society, 2004.

[66] Tejas S Karkhanis and James E Smith. Automated design of application specific

superscalar processors: an analytical approach. In SIGARCH, volume 35, pages

402–411, 2007.

[67] Eric Karl, David Blaauw, Dennis Sylvester, and Trevor Mudge. Reliability mod-

eling and management in dynamic microprocessor-based systems. In Proceedings

of the 43rd annual Design Automation Conference, pages 1057–1060. ACM, 2006.

168

Bibliography

[68] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous multi-core

architectures. In Proceedings of the 5th European conference on Computer systems,

pages 125–138. ACM, 2010.

[69] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in heterogeneous

multi-core architectures. In Computer systems, pages 125–138. ACM, 2010.

[70] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan,

and Dean M Tullsen. Single-ISA heterogeneous multi-core architectures: The

potential for processor power reduction. In MICRO, pages 81–92, 2003.

[71] Steven Landsburg. Price theory and applications. South-Western Pub, 2010.

[72] Benjamin C Lee and David M Brooks. Accurate and efficient regression modeling

for microarchitectural performance and power prediction. In SIGOPS Operating

Systems Review, volume 40, pages 185–194, 2006.

[73] Benjamin C Lee and David M Brooks. Illustrative design space studies with mi-

croarchitectural regression models. In High Performance Computer Architecture,

2007. HPCA 2007. IEEE 13th International Symposium on, pages 340–351. IEEE,

2007.

[74] T. Li, D. Baumberger, D.A. Koufaty, and S. Hahn. Efficient operating system

scheduling for performance-asymmetric multi-core architectures. In Proceedings

of the 2007 ACM/IEEE conference on Supercomputing, page 53. ACM, 2007.

[75] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy, and Scott

Hahn. Operating system support for overlapping-ISA heterogeneous multi-core

architectures. In High Performance Computer Architecture (HPCA), 2010 IEEE

16th International Symposium on, pages 1–12. IEEE, 2010.

[76] Hai Lin and Yunsi Fei. Exploring custom instruction synthesis for application-

specific instruction set processors with multiple design objectives. In Low-Power

Electronics and Design (ISLPED), 2010 ACM/IEEE International Symposium on,

pages 141–146, 2010.

[77] Yongpan Liu, Robert P Dick, Li Shang, and Huazhong Yang. Accurate

temperature-dependent integrated circuit leakage power estimation is easy. In

169

Bibliography

Proceedings of the conference on Design, automation and test in Europe, pages

1526–1531. EDA Consortium, 2007.

[78] Jun Lu and Qinru Qiu. Scheduling and mapping of periodic tasks on multi-core

embedded systems with energy harvesting. In Green Computing Conference and

Workshops (IGCC), 2011 International, pages 1–6. IEEE, 2011.

[79] Benjamin Lubin, Jeffrey O Kephart, Rajarshi Das, and David C Parkes. Expressive

power-based resource allocation for data centers. In Proc. of the 21st International

Joint Conference on Artificial Intelligence, pages 1451–1456, 2009.

[80] K. Ma, X. Li, M. Chen, and X. Wang. Scalable power control for many-core

architectures running multi-threaded applications. ACM SIGARCH Computer

Architecture News, 39(3):449–460, 2011.

[81] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis.

In USENIX, pages 279–294, 1996.

[82] A.K. Mishra, S. Srikantaiah, M. Kandemir, and C.R. Das. CPM in CMPs: Coordi-

nated power management in chip-multiprocessors. In High Performance Comput-

ing, Networking, Storage and Analysis (SC), 2010 International Conference for,

pages 1–12. IEEE, 2010.

[83] T Mitra and R Jayaseelan. Dynamic thermal management via architectural adap-

tation. In Design Automation Conference, 2009. DAC’09. 46th ACM/IEEE, pages

484–489. IEEE, 2009.

[84] Matlab Nonlinear Models. http://www.mathworks.com/help/stats/nonlinear-

regression.html.

[85] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[86] Trevor Mudge. Power: A first-class architectural design constraint. Computer,

34(4):52–58, 2001.

[87] Thannirmalai Somu Muthukaruppan, Haris Javaid, Tulika Mitra, and Sri

Parameswaran. Energy-aware synthesis of application specific MPSoCs. In Com-

puter Design (ICCD), 2013 IEEE 30th International Conference on. IEEE, 2013.

170

Bibliography

[88] Thannirmalai Somu Muthukaruppan and Tulika Mitra. Lifetime reliability aware

architectural adaptation. In VLSI Design and 2013 12th International Conference

on Embedded Systems (VLSID), 2013 26th International Conference on, pages

227–232. IEEE, 2013.

[89] Thannirmalai Somu Muthukaruppan, Anuj Pathania, and Tulika Mitra. Price the-

ory based power management for heterogeneous multi-cores. In Proceedings of the

19th international conference on Architectural support for programming languages

and operating systems, pages 161–176. ACM, 2014.

[90] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkatara-

mani, Tulika Mitra, and Sanjay Vishin. Hierarchical power management for asym-

metric multi-core in dark silicon era. In Proceedings of the 50th Annual Design

Automation Conference, page 174. ACM, 2013.

[91] Ali Pınar and Cevdet Aykanat. Fast optimal load balancing algorithms for 1D

partitioning. Journal of Parallel and Distributed Computing, 64(8):974–996, 2004.

[92] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkatara-

mani, Tulika Mitra, and Sanjay Vishin. Power-performance modeling on asymmet-

ric multi-cores. In Proceedings of the 2013 international conference on Compilers,

architectures and synthesis for embedded systems. ACM, 2013.

[93] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No power

struggles: Coordinated multi-level power management for the data center. In ACM

SIGOPS Operating Systems Review, volume 42, pages 48–59. ACM, 2008.

[94] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-grained

power management for multi-core systems. In ACM SIGARCH Computer Archi-

tecture News, volume 37, pages 302–313. ACM, 2009.

[95] Marisha Rawlins and Ann Gordon-Ross. An application classification guided cache

tuning heuristic for multi-core architectures. In Design Automation Conference

(ASP-DAC), 2012 17th Asia and South Pacific, pages 23–28. IEEE, 2012.

[96] Tajana Simunic Rosing, Kresimir Mihic, and Giovanni De Micheli. Power and

reliability management of SoCs. Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 15(4):391–403, 2007.

171

Bibliography

[97] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and

Eliezer Weissmann. Power-management architecture of the Intel microarchitec-

ture code-named Sandy Bridge. Micro, IEEE, 32(2):20–27, 2012.

[98] Arjun Roy, Stephen M Rumble, Ryan Stutsman, Philip Levis, David Mazières,

and Nickolai Zeldovich. Energy management in mobile devices with the cinder

operating system. In Proceedings of the sixth conference on Computer systems,

pages 139–152. ACM, 2011.

[99] Martino Ruggiero, Andrea Acquaviva, Davide Bertozzi, and Luca Benini.

Application-specific power-aware workload allocation for voltage scalable MPSoC

platforms. In Computer Design: VLSI in Computers and Processors, 2005. ICCD

2005. Proceedings. 2005 IEEE International Conference on, pages 87–93. IEEE,

2005.

[100] J.C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A comprehensive scheduler

for asymmetric multicore systems. In Proceedings of the 5th European conference

on Computer systems, pages 139–152. ACM, 2010.

[101] Andreas Schranzhofer, Jian-Jian Chen, and Lothar Thiele. Dynamic power-aware

mapping of applications onto heterogeneous MPSoC platforms. Industrial Infor-

matics, IEEE Transactions on, 6(4):692–707, 2010.

[102] Seng Lin Shee, Andrea Erdos, and Sri Parameswaran. Heterogeneous multipro-

cessor implementations for JPEG:: a case study. In Proceedings of the 4th inter-

national conference on Hardware/software codesign and system synthesis, pages

217–222. ACM, 2006.

[103] Seng Lin Shee and Sri Parameswaran. Design methodology for pipelined heteroge-

neous multiprocessor system. In Proceedings of the 44th annual Design Automation

Conference, pages 811–816. ACM, 2007.

[104] Youngsoo Shin, Kiyoung Choi, and Takayasu Sakurai. Power optimization of real-

time embedded systems on variable speed processors. In Proceedings of the 2000

IEEE/ACM international conference on Computer-aided design, pages 365–368.

IEEE Press, 2000.

172

Bibliography

[105] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.

Managing performance vs. accuracy trade-offs with loop perforation. 2011.

[106] Kevin Skadron. Hybrid architectural dynamic thermal management. In Proceed-

ings of the conference on Design, automation and test in Europe-Volume 1, page

10010. IEEE Computer Society, 2004.

[107] Kevin Skadron, Mircea R Stan, Wei Huang, Sivakumar Velusamy, Karthik

Sankaranarayanan, and David Tarjan. Temperature-aware microarchitecture.

31(2):2–13, 2003.

[108] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The case

for lifetime reliability-aware microprocessors. In ACM SIGARCH Computer Ar-

chitecture News, volume 32, page 276. IEEE Computer Society, 2004.

[109] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The case for

lifetime reliability-aware microprocessors. 32(2):276, 2004.

[110] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The impact

of technology scaling on lifetime reliability. In Dependable Systems and Networks,

2004 International Conference on, pages 177–186. IEEE, 2004.

[111] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. Exploiting

structural duplication for lifetime reliability enhancement. In ACM SIGARCH

Computer Architecture News, volume 33, pages 520–531. IEEE Computer Society,

2005.

[112] Haihua Su, Frank Liu, Anirudh Devgan, Emrah Acar, and Sani Nassif. Full chip

leakage estimation considering power supply and temperature variations. In Pro-

ceedings of the 2003 international symposium on Low power electronics and design,

pages 78–83. ACM, 2003.

[113] Fei Sun, Niraj K Jha, Srivaths Ravi, and Anand Raghunathan. Synthesis of

application-specific heterogeneous multiprocessor architectures using extensible

processors. In VLSI Design, 2005. 18th International Conference on, pages 551–

556. IEEE, 2005.

173

Bibliography

[114] Dennis Sylvester, David Blaauw, and Eric Karl. Elastic: An adaptive self-

healing architecture for unpredictable silicon. Design & Test of Computers, IEEE,

23(6):484–490, 2006.

[115] Radu Teodorescu and Josep Torrellas. Variation-aware application scheduling

and power management for chip multiprocessors. In ACM SIGARCH Computer

Architecture News, volume 36, pages 363–374. IEEE Computer Society, 2008.

[116] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A lan-

guage for streaming applications. In Compiler Construction, pages 179–196.

Springer, 2002.

[117] Paul Turner. Sched: Entity Load-tracking Re-work., 2011. https://lkml.org/

lkml/2012/2/1/763.

[118] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel

Emer. Scheduling heterogeneous multi-cores through performance impact esti-

mation (PIE). In Proceedings of the 39th International Symposium on Computer

Architecture, pages 213–224. IEEE Press, 2012.

[119] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel

Emer. Scheduling heterogeneous multi-cores through performance impact estima-

tion (PIE). ISCA, pages 213–224, 2012.

[120] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christo-

pher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-

VBS: The San Diego vision benchmark suite. In Workload Characterization, 2009.

IISWC 2009. IEEE International Symposium on, pages 55–64. IEEE, 2009.

[121] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christo-

pher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-

VBS: The San Diego vision benchmark suite. In Workload Characterization, 2009.

IISWC 2009. IEEE International Symposium on, pages 55–64. IEEE, 2009.

[122] X. Wang, K. Ma, and Y. Wang. Adaptive power control with online model estima-

tion for chip multiprocessors. Parallel and Distributed Systems, IEEE Transactions

on, 22(10):1681–1696, 2011.

174

 https://lkml.org/lkml/2012/2/1/763
 https://lkml.org/lkml/2012/2/1/763

Bibliography

[123] Jonathan A Winter, David H Albonesi, and Christine A Shoemaker. Scalable

thread scheduling and global power management for heterogeneous many-core ar-

chitectures. In Proceedings of the 19th international conference on Parallel archi-

tectures and compilation techniques, pages 29–40. ACM, 2010.

[124] Tao Yang and Cong Fu. Heuristic algorithms for scheduling iterative task compu-

tations on distributed memory machines. Parallel and Distributed Systems, IEEE

Transactions on, 8(6):608–622, 1997.

[125] Chuanjun Zhang and Frank Vahid. Cache configuration exploration on proto-

typing platforms. In Rapid Systems Prototyping, 2003. Proceedings. 14th IEEE

International Workshop on, pages 164–170. IEEE, 2003.

[126] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosenfeld. Face

recognition: A literature survey. Acm Computing Surveys (CSUR), 35(4):399–458,

2003.

175

	Declaration
	Acknowledgements
	Contents
	Abstract
	List of Tables
	List of Figures
	Related Publications
	1 Introduction
	1.1 Motivation and Objective
	1.2 Contributions
	1.2.1 Run-time technique
	1.2.1.1 Predictive power management
	1.2.1.2 Reactive power management
	1.2.1.3 Lifetime-reliability aware power management

	1.2.2 Design-time technique

	1.3 Organization

	2 Related Work
	2.1 Static technique - Static architecture
	2.1.1 DVFS
	2.1.2 Processor customization
	2.1.3 Cache customization
	2.1.4 DVFS and processor customization
	2.1.5 DVFS and task mapping
	2.1.6 Processor customization and task mapping
	2.1.7 Processor customization and cache customization

	2.2 Dynamic technique - Static architecture
	2.2.1 Homogeneous Multi-cores
	2.2.2 Heterogeneous Multi-cores
	2.2.3 Computational Economics
	2.2.4 Power-Performance Model

	2.3 Dynamic technique - Dynamic architecture

	3 Power-Performance Modeling on Heterogeneous Multi-cores
	3.1 ARM big.LITTLE architecture
	3.2 Performance Modeling
	3.2.1 CPIsteady estimation
	3.2.2 CPI stack model of big core
	3.2.3 CPI stack model of small core
	3.2.4 Latency of miss events and performance counters
	3.2.5 Contribution of CPI stack components

	3.3 Inter-core miss estimation
	3.4 Power Modeling
	3.5 Runtime Scheduler
	3.5.1 Performance Estimation
	3.5.2 Energy Estimation

	3.6 Experimental Evaluation
	3.6.1 Performance estimation accuracy
	3.6.2 Power estimation accuracy
	3.6.3 Phase behavior
	3.6.4 Asymmetric vs Symmetric multi-core

	3.7 Summary

	4 Hierarchical Power Management
	4.1 ARM big.LITTLE architecture
	4.1.1 Impact of DVFS
	4.1.2 Impact of active cores on cluster power
	4.1.3 Migration Cost

	4.2 Power Management Framework
	4.2.1 Per-Task Resource Share Controller
	4.2.2 Per-Cluster DVFS Controller
	4.2.3 Chip-Level Power Allocator
	4.2.4 Per-Task QoS Controller
	4.2.5 Load Balancer and Migrator

	4.3 Experimental Evaluation
	4.3.1 Implementation Details
	4.3.2 Results

	4.4 Summary

	5 Price Theory based Power Management
	5.1 System Overview
	5.2 Power management Framework
	5.2.1 Agents Overview
	5.2.2 Supply-Demand Module
	5.2.2.1 Task Dynamics
	5.2.2.2 Cluster Dynamics
	5.2.2.3 Chip Dynamics
	5.2.2.4 Stability of the Supply-Demand module

	5.2.3 Load Balancing and Task migration (LBT) module
	5.2.3.1 Stability of the LBT module

	5.2.4 Invocation Frequency

	5.3 Experimental Evaluation
	5.3.1 Experimental Setup
	5.3.2 Workload Selection
	5.3.3 Comparative Study
	5.3.4 Impact of priorities and savings
	5.3.5 Scalability

	5.4 Summary
	5.5 Future Work

	6 Dynamic Reliability Management
	6.1 Parameter Selection
	6.2 Dynamic Reliability Management
	6.2.1 Naive Bayesian Classifier
	6.2.2 Performance Prediction Model
	6.2.3 Search Space Pruning

	6.3 Experimental Evaluation
	6.4 Summary

	7 Energy-Aware Synthesis of Application Specific MPSoCs
	7.1 Problem Formulation
	7.2 Proposed Framework
	7.2.1 Profiler
	7.2.2 Latency and Energy Estimation
	7.2.2.1 Accurate (Acure) Estimator
	7.2.2.2 Fast Estimator

	7.2.3 Design Space Exploration
	7.2.3.1 Prune and Search (Push) Algorithm
	7.2.3.2 Map and Customize (MaC) Heuristic

	7.3 Experimental Methodology
	7.4 Results
	7.5 Summary

	8 Conclusions
	9 Future Work
	Bibliography

