158 research outputs found

    A Coq-based Library for Interactive and Automated Theorem Proving in Plane Geometry

    Get PDF
    International audienceIn this article, we present the development of a library of formal proofs for theorem proving in plane geometry in a pedagogical context. We use the Coq proof assistant. This library includes the basic geometric notions to state theorems and provides a database of theorems to construct interactive proofs more easily. It is an extension of the library of F. Guilhot for interactive theorem proving at the level of high-school geometry, where we eliminate redundant axioms and give formalizations for the geometric concepts using a vector approach. We also enrich this library by offering an automated deduction method which can be used as a complement to interactive proof. For that purpose, we integrate the formalization of the area method which was developed by J. Narboux in Coq

    Formal study of plane Delaunay triangulation

    Get PDF
    This article presents the formal proof of correctness for a plane Delaunay triangulation algorithm. It consists in repeating a sequence of edge flippings from an initial triangulation until the Delaunay property is achieved. To describe triangulations, we rely on a combinatorial hypermap specification framework we have been developing for years. We embed hypermaps in the plane by attaching coordinates to elements in a consistent way. We then describe what are legal and illegal Delaunay edges and a flipping operation which we show preserves hypermap, triangulation, and embedding invariants. To prove the termination of the algorithm, we use a generic approach expressing that any non-cyclic relation is well-founded when working on a finite set

    Proof-checking Euclid

    Get PDF
    We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski's formal geometry. We used proofs as close as possible to those given by Euclid, but filling Euclid's gaps and correcting errors. Euclid Book I has 48 propositions, we proved 235 theorems. The extras were partly "Book Zero", preliminaries of a very fundamental nature, partly propositions that Euclid omitted but were used implicitly, partly advanced theorems that we found necessary to fill Euclid's gaps, and partly just variants of Euclid's propositions. We wrote these proofs in a simple fragment of first-order logic corresponding to Euclid's logic, debugged them using a custom software tool, and then checked them in the well-known and trusted proof checkers HOL Light and Coq.Comment: 53 page

    Discrete Jordan Curve Theorem: A proof formalized in Coq with hypermaps

    Get PDF
    This paper presents a formalized proof of a discrete form of the Jordan Curve Theorem. It is based on a hypermap model of planar subdivisions, formal specifications and proofs assisted by the Coq system. Fundamental properties are proven by structural or noetherian induction: Genus Theorem, Euler's Formula, constructive planarity criteria. A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and proven for any planar hypermap

    Automated generation of machine verifiable and readable proofs: A case study of Tarski’s geometry

    Get PDF
    The power of state-of-the-art automated and interactive theorem provers has reached the level at which a significant portion of non-trivial mathematical contents can be formalized almost fully automatically. In this paper we present our framework for the formalization of mathematical knowledge that can produce machine verifiable proofs (for different proof assistants) but also human-readable (nearly textbook-like) proofs. As a case study, we focus on one of the twentieth century classics – a book on Tarski’s geometry. We tried to automatically generate such proofs for the theorems from this book using resolution theorem provers and a coherent logic theorem prover. In the first experiment, we used only theorems from the book, in the second we used additional lemmas from the existing Coq formalization of the book, and in the third we used specific dependency lists from the Coq formalization for each theorem. The results show that 37 % of the theorems from the book can be automatically proven (with readable and machine verifiable proofs generated) without any guidance, and with additional lemmas this percentage rises to 42 %. These results give hope that the described framework and other forms of automation can significantly aid mathematicians in developing formal and informal mathematical knowledge

    Automated Generation of Geometric Theorems from Images of Diagrams

    Full text link
    We propose an approach to generate geometric theorems from electronic images of diagrams automatically. The approach makes use of techniques of Hough transform to recognize geometric objects and their labels and of numeric verification to mine basic geometric relations. Candidate propositions are generated from the retrieved information by using six strategies and geometric theorems are obtained from the candidates via algebraic computation. Experiments with a preliminary implementation illustrate the effectiveness and efficiency of the proposed approach for generating nontrivial theorems from images of diagrams. This work demonstrates the feasibility of automated discovery of profound geometric knowledge from simple image data and has potential applications in geometric knowledge management and education.Comment: 31 pages. Submitted to Annals of Mathematics and Artificial Intelligence (special issue on Geometric Reasoning

    A combination of a dynamic geometry software with a proof assistant for interactive formal proofs

    Get PDF
    International audienceThis paper presents an interface for geometry proving. It is a combination of a dynamic geometry software - Geogebra[11] with a proof assistant - Coq[8]. Thanks to the features of Geogebra, users can create and manipulate geometric constructions, they discover conjectures and interactively build formal proofs with the support of Coq. Our system allows users to construct fully traditional proofs in the same style as the ones in high school. For each step of proving, we provide a set of applicable rules veri ed in Coq for users, we also provide tactics in Coq by which minor steps of reasoning are solved automatically
    • 

    corecore