
Towards justifying computer algebra
algorithms in Isabelle/HOL

Wenda Li

Computer Laboratory
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Queens’ College July 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/187093604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my parents, Qianning and Liming,
and to my beloved girl, Lei

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 60,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Wenda Li
July 2018

Acknowledgements

First and foremost, I owe a deep debt of gratitude to my supervisor, Prof. Lawrence C.
Paulson, who led me to the field of interactive theorem proving and inspired me with his
enthusiasm for science. I cannot thank him enough for his patience and guidance that helped
me grow as an independent researcher. He is the best supervisor I can hope for.

I am also immensely grateful to Dr. Grant Passmore , who gave me numerous suggestions
about my project. His passion of bringing formal verification techniques to the industry
deeply motivated me.

I also thank Prof. James H. Davenport and Dr. Neelakantan R. Krishnaswami for being
my examiners and giving insightful comments on the thesis.

My parents, Qianning Li and Liming Zhang, gave me their unconditional love and support,
without which I would certainly not have come this far. Last but not least, I would like to
thank my beloved girl Lei, for being in my life and lighting up my world. No matter what
happens, good or bad, she is the one I share my story with.

Abstract

As verification efforts using interactive theorem proving grow, we are in need of certified
algorithms in computer algebra to tackle problems over the real numbers. This is important
because uncertified procedures can drastically increase the size of the trust base and under-
mine the overall confidence established by interactive theorem provers, which usually rely
on a small kernel to ensure the soundness of derived results.

This thesis describes an ongoing effort using the Isabelle theorem prover to certify the
cylindrical algebraic decomposition (CAD) algorithm, which has been widely implemented
to solve non-linear problems in various engineering and mathematical fields. Because of the
sophistication of this algorithm, people are in doubt of the correctness of its implementation
when deploying it to safety-critical verification projects, and such doubts motivate this thesis.

In particular, this thesis proposes a library of real algebraic numbers, whose distinguishing
features include a modular architecture and a sign determination algorithm requiring only
rational arithmetic. With this library, an Isabelle tactic based on univariate CAD has been
built in a certificate-based way: external, untrusted code delivers solutions in the form of
certificates that are checked within Isabelle. To lay the foundation for the multivariate case,
I have formalised various analytical results including Cauchy’s residue theorem and the
bivariate case of the projection theorem of CAD. During this process, I have also built a
tactic to evaluate winding numbers through Cauchy indices and verified procedures to count
complex roots in some domains.

The formalisation effort in this thesis can be considered as the first step towards a certified
computer algebra system inside a theorem prover, so that various engineering projections
and mathematical calculations can be carried out in a high-confidence framework.

Table of contents

List of figures xv

1 Introduction 1
1.1 Interactive theorem proving . 2
1.2 Why we need to justify algorithms in computer algebra 2
1.3 Thesis overview . 3
1.4 Publications . 4
1.5 Contributions . 5

2 Introduction to cylindrical algebraic decomposition 7
2.1 Basic idea . 7
2.2 The classic algorithm . 11
2.3 Remarks . 16

3 The Sturm-Tarski theorem 19
3.1 Formulation . 19
3.2 A formal proof of the Sturm-Tarski theorem 20
3.3 Remarks . 23

4 Real algebraic numbers 25
4.1 Construction on an abstract level . 26
4.2 Implementation . 31

4.2.1 More pseudo-constructors on real numbers 31
4.2.2 Univariate sign determination through the Sturm-Tarski theorem . . 34
4.2.3 Deciding the sign of a bivariate polynomial at a real algebraic point 37
4.2.4 Enable executability on algebraic reals 42
4.2.5 Linking the algebraic reals to the real algebraic numbers 45

4.3 Experiments . 45
4.4 Related work . 46

xii Table of contents

4.5 Remarks . 48
4.5.1 Modularity . 48
4.5.2 A potential problem . 49
4.5.3 Intended applications . 50

5 Deciding univariate polynomial problems using untrusted certificates 51
5.1 A motivating example . 52
5.2 A sketch of the certificate-based design 54
5.3 The formal development of the proof procedure 56

5.3.1 Parsing formulas . 56
5.3.2 Existential case . 59
5.3.3 Universal case . 59

5.4 Linking to an external solver . 61
5.5 Experiments and related work . 61

6 A formal proof of Cauchy’s residue theorem 67
6.1 Background . 68

6.1.1 Contour integrals . 68
6.1.2 Valid paths . 68
6.1.3 Winding number . 69
6.1.4 Holomorphic functions and Cauchy’s integral theorem 69

6.2 Cauchy’s residue theorem . 70
6.2.1 Residue . 70
6.2.2 Generalisation to a finite number of singularities 72
6.2.3 Applications . 74
6.2.4 Remarks on the formalisation . 76

6.3 The argument principle . 76
6.3.1 Zeros and poles . 77
6.3.2 The main proof . 80
6.3.3 Remarks . 81

6.4 Rouché’s theorem . 81
6.5 Related work . 82

7 Cauchy indices on the complex plane 85
7.1 A motivating example . 85
7.2 The intuition . 88
7.3 Evaluate winding numbers . 91

Table of contents xiii

7.3.1 A formal proof of Proposition 7.8 92
7.3.2 A tactic for evaluating winding numbers 99
7.3.3 Subtleties . 102

7.4 Counting the number of complex roots . 105
7.4.1 Roots in a rectangle . 106
7.4.2 Roots in a half-plane . 111

7.5 Limitations and future work . 115
7.6 Remarks and potential applications . 116

8 Towards certifying multivariate CAD 119
8.1 Polynomial roots continuously depend on coefficients 119
8.2 Formal development towards the projection theorem of CAD 121
8.3 Towards certifying multivariate CAD . 124

9 Conclusion 125
9.1 On formalised mathematics . 125
9.2 Computer algebra in proof assistants . 126

References 129

List of figures

2.1 Plot with p1(x1,x2) = x2
2 + x2

1−3 = 0 and p2(x1,x2) = x2− x2
1/2 = 0 8

2.2 Stack with S = {(x1,x2) | x2
1 + x2

2 ≤ 1}, D2 = {(x,x′) ∈ S×R | x′ = f1(x)}
and D5 = {(x,x′) ∈ S×R | f2(x) < x′} where f1 = (x2

1− x2
2)/2 and f2 =

(−x2
1 + x2

2 +3)/2 . 10

3.1 Plot of the rational function (x−4)/((x−3)(x−1)2(x+1)) 21

4.1 Comparison between verified evaluation and unverified evaluation 45
4.2 A large bivariate polynomial . 47
4.3 Dependence tree of my formalisation of real algebraic numbers 49

5.1 The plot of p(x) = 1
2x2−1 and q(x) = x+3 52

5.2 Comparison between my tactic in Isabelle and the tarski strategy in PVS:
univ_rcf includes certificate searching and checking, while univ_rcf_cert
includes only checking . 63

6.1 Circlepath ce and cε around an isolated singularity z 71
6.2 Induction on the number of singularities 73
6.3 A semicircular path centred at 0 with radius R > 1 75
6.4 The path image of λ t.1+ g(γ(t))

f (γ(t)) when | f (w)|> |g(w)| for all w on the image
of γ . 83

7.1 Complex points (0,−i) and (0, i), and a closed path Lr +Cr 86
7.2 Left: a path γ crosses the line {z | Re(z) = Re(z0)} at γ(t0) such that

Re(γ(t0))> Re(z0). Right: the image of f as a point travels through γ . . . 88
7.3 Evaluating n(Lr +Cr, i) and n(Lr +Cr,−i) through the way that the path

Lr +Cr crosses the imaginary axis . 91
7.4 Inductive cases when applying Lemma 7.13 96
7.5 To derive n(γ,z0) =− Indp(γ,z0)

2 when γ is a loop 98
7.6 Different ways a path γ can intersect with the line {z | Re(z) = Re(z0)} . . . 103

xvi List of figures

7.7 Complex roots of a polynomial (red dots) and a rectangular path (L1 +L2 +

L3 +L4) on the complex plane . 106
7.8 A complex point i and a rectangle defined by its lower left corner −1 and

upper right corner 2+2i . 111
7.9 Complex roots of a polynomial (red dots) and a linear path (Lr) concatenated

by a semi-circular path (Cr) on the complex plane 111
7.10 Complex roots of a polynomial (red dots) and a vector (0, i) 115

Chapter 1

Introduction

Modern society is built upon a staggeringly complex tangle of software and hardware systems.
As the size of those systems grows, it becomes increasingly hard for traditional verification
techniques, such as pen-and-paper reasoning and testing, to guarantee the system we build is
actually what we want. System failures due to elusive bugs have already caused catastrophic
accidents that cost money and even human lives: famous examples include

• Intel’s Pentium FDIV bug in 1994 that cost the company $475 million,1

• the failure of the Ariane 5 rocket in 1996 due to a software bug of integer overflow,
which led to a loss of $370 million,2

• the error in the trading software of Knight Capital in 2012, which cost the company
about $460 million,3

• and the very recent WannaCry ransomware attack launched by malicious hackers who
exploited Windows’ vulnerability, which even took down some NHS services in the
UK.4

As a result, people have begun to resort to modern verification techniques such as model
checking [19] and interactive theorem proving.

1https://en.wikipedia.org/wiki/Pentium_FDIV_bug
2https://en.wikipedia.org/wiki/Cluster_(spacecraft)
3https://en.wikipedia.org/wiki/Knight_Capital_Group
4https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Cluster_(spacecraft)
https://en.wikipedia.org/wiki/Knight_Capital_Group
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

2 Introduction

1.1 Interactive theorem proving

Interactive theorem provers, such as Coq [9], Isabelle [75] and HOL Light [44], usually
have an expressive logic implemented on a small trusted kernel. Inferences are carried out
through the kernel to ensure the soundness of derived theorems/properties. Compared to
fully automatic approaches like model checking, the main advantages of interactive theorem
proving include

• extremely high confidence in soundness, due to the minimal trust base (i.e., the kernel)
and the ongoing effort to further verify the kernel down to the machine-code level [54],

• the expressiveness of the logic, which is usually enough to encode all the functional
properties we are interested in,

• the compositionality of the deduction steps, which enable us to derive the target
properties with enough human guidance.

Thanks to these features, interactive theorem provers have been used to build realistic
systems with full functional correctness verified. Major examples include: seL4 [53], a
commercial operating system kernel (verified by Isabelle), and CompCert [56], an optimised
C compiler (verified by Coq). Interactive theorem provers have also been used to verify
gigantic mathematical proofs, such as the proof of the Feit–Thompson theorem [36] and that
of the Kepler conjecture [40].

In this thesis, I will work with the Isabelle theorem prover, within which a (classical)
higher-order logic has been implemented. Isabelle is known for its structured proof style,
which leads to formal proofs that are both human and machine understandable, and its
automation, which incorporates machine learning techniques and various automatic theorem
provers [76]. Other than the projects mentioned earlier, there is also the fast-growing and
well-maintained Archive of Formal Proofs (https://www.isa-afp.org), which, at the time of
writing, contains about 1.7 million lines of code in Isabelle, contributed by 266 authors.

1.2 Why we need to justify algorithms in computer algebra

As the verification effort with interactive theorem proving continues, people realise the
necessity for more formalised mathematics and verified calculations. For example, when
carrying out verification projects in engineering and mathematics, it is common to encounter
non-linear problems over the real numbers such as

∃xy.x2−2 = 1∧ xy = 1, (1.1)

https://www.isa-afp.org

1.3 Thesis overview 3

∀x > 0.
1− e−2x

2x(1− e−x)2 −
1
x2 ≤

1
12

. (1.2)

Some of these problems are within reach of current computer algebra algorithms, and
solvable by modern implementations including Z3 [28], Mathematica and MetiTarski [2].
However, those implementations are generally of gigantic size and with unclear mathematical
semantics, as have been pointed out by Harrison and Théry [46]. For example, in recent
version of Mathematica (i.e., Mathematica 10), we can type the following command:

Simplify
[

x2−1
x−1

,x ∈ R
]

to simplify the expression (x2− 1)/(x− 1) when x ∈ R, and the result is, unsurprisingly,
x+1. This behaviour does not appear mathematically valid when considering the case x = 1,
and we may be baffled by the result due to lack of formal semantics. Therefore, when
facing non-linear problems in an interactive theorem prover, we may be reluctant to deploy
those sophisticated implementations, because they can severely reduce our confidence in
the soundness of the overall verification framework. This dilemma has been noted by many
authors who attempted to make use of sophisticated computer algebra algorithms in their
verification projects [30, 69, 64, 35, 77].

The long-term objective of this thesis is to formalise relevant mathematics and algorithms
using Isabelle, in order to soundly derive formulas like (1.1) and (1.2) within the logic. The
main algorithm I will focus on is cylindrical algebraic decomposition (CAD) [22], which is
known for its capability to tackle non-linear polynomial problems over the real numbers.

1.3 Thesis overview

This thesis demonstrates an ongoing effort to certify the CAD algorithm: during this process,
various formalised theorems and verified procedures have been produced, which should
benefit other verification projects as well.

Below I summarise the remainder of this thesis.
Chapter 2: Introduction to cylindrical algebraic decomposition (CAD). I will present

a minimal introduction to Collins’ CAD algorithm, including essential definitions and exam-
ples of how to calculate a CAD.

Chapter 3: The Sturm-Tarski theorem. I will describe a formal proof of the Sturm-
Tarski theorem, which yields an effective way to reason with real roots of a polynomial: we
can effectively compute the Tarski query and the Cauchy index using a polynomial remainder
sequence.

4 Introduction

Chapter 4: Real algebraic numbers. I will present a formalisation of real algebraic
numbers in Isabelle/HOL. The formalisation is carried out at the abstraction and implemen-
tation level. At the abstraction level, I formalise real algebraic numbers as a subset of the
real numbers and show that they form an ordered field following non-constructive proofs.
At the implementation level, I utilise the Sturm-Tarski theorem to build sign determination
procedures for a polynomial at a real algebraic point. Thus, I establish the executability of
algebraic arithmetic.

Chapter 5: Deciding univariate polynomial problems using untrusted certificates.
Based on previous sign determination procedures, I will present a tactic for univariate poly-
nomial problems over the real numbers. The tactic is essentially a certified univariate CAD
procedure but in a certificate-based manner (i.e., we sceptically invoke external programs
and certify the results).

Chapter 6: A formal proof of Cauchy’s residue theorem. To proceed to the multi-
variate case of CAD, I develop more mathematics in complex analysis. In this chapter, I
will describe a formal proof of Cauchy’s residue theorem along with proofs for two of its
consequences: the argument principle and Rouché’s theorem.

Chapter 7: Cauchy indices on the complex plane. Motivated by the difficulty of
formally evaluating winding numbers, I build a tactic to evaluate winding numbers through
Cauchy indices. By further exploiting the relationship between winding numbers and Cauchy
indices, I build verified procedures to count complex roots of a polynomial inside a rectangle
or a half-plane.

Chapter 8: Towards certifying multivariate CAD. With the objective of certifying
multivariate CAD, I derived results towards the projection theorem of CAD. In this chapter, I
will present the formal development and my rough ideas towards the multivariate case.

Chapter 9: Conclusion. I will present some reflections and conclude the thesis.
All definitions and lemmas in Chapter 3-8 have been mechanised (unless otherwise

stated), and the code is available at the following URL:

https://doi.org/10.5281/zenodo.1306305

except for Chapter 6, where the mechanised proofs described have already been part of the
Isabelle distribution (since Isabelle2016-1).

1.4 Publications

Chapters 3-6 in this thesis are based on publications during my PhD study:

https://doi.org/10.5281/zenodo.1306305

1.5 Contributions 5

• [57] Li, W. (2014). The Sturm-Tarski Theorem. Archive of Formal Proofs. http:
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development

• [62] Li, W. and Paulson, L. C. (2016b). A modular, efficient formalisation of real
algebraic numbers. In Avigad, J. and Chlipala, A., editors, Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP 2016, pages 66–75, St.
Petersburg, FL, USA. ACM

• [60] Li, W., Passmore, G. O., and Paulson, L. C. (2017). Deciding Univariate Polyno-
mial Problems Using Untrusted Certificates in Isabelle/HOL. Journal of Automated
Reasoning, 44(3):175–23

• [61] Li, W. and Paulson, L. C. (2016a). A formal proof of Cauchy’s residue theorem. In
Blanchette, J. C. and Merz, S., editors, Proceedings of the 4th International Conference
on Interactive Theorem Proving, ITP 2013, pages 235–251, Nancy, France. Springer

• [59] Li, W. (2017b). Evaluate Winding Numbers through Cauchy Indices. Archive of
Formal Proofs. http://isa-afp.org/entries/Winding_Number_Eval.html, Formal proof
development

• [58]Li, W. (2017a). Count the Number of Complex Roots. Archive of Formal Proofs.
http://isa-afp.org/entries/Count_Complex_Roots.html, Formal proof development

Some of them are with other authors, but the work presented in this thesis is principally mine,
except when stated otherwise in the relevant chapters.

1.5 Contributions

Chapters 3-8 demonstrate my original formal proofs in Isabelle/HOL. Major contributions
include:

• A novel formalisation of real algebraic numbers (Chapter 4). Compared to previous
work, it is modular and has verified sign determination procedures that only require
rational arithmetic.

• A novel tactic for univariate polynomial problems over the real numbers (Chapter 5).
This tactic is based on univariate CAD and compares favourably to previous work.

• Novel formal proofs for Cauchy’s residue theorem and two of its consequences – the
argument principle and Rouché’s theorem (Chapter 6). These results are fundamental
in complex analysis and should pave the way for future development in this direction.

http://isa-afp.org/entries/Sturm_Tarski.html
http://isa-afp.org/entries/Sturm_Tarski.html
http://isa-afp.org/entries/Winding_Number_Eval.html
http://isa-afp.org/entries/Count_Complex_Roots.html

6 Introduction

• A novel tactic to facilitate formal evaluation of winding numbers and novel verified
procedures to count complex roots of a polynomial (Chapter 7).

• A novel formal proof towards the projection theorem of CAD (Chapter 8), which is
believed crucial for the multivariate case (of CAD).

A minor contribution is the formal proof of the Sturm-Tarski theorem (Chapter 3), as the
formalisation itself is not novel among theorem provers (i.e., there are similar formalisations
in Coq and PVS). Nevertheless, this formalisation – the first in Isabelle – should still be
beneficial to other Isabelle developments.

Chapter 2

Introduction to cylindrical algebraic
decomposition

Ever since its introduction by George E. Collins [22] in the 1970s, CAD has become one of
the most important algorithms to tackle non-linear first-order problems over the real numbers.
CAD procedures have been incorporated into modern computer algebra systems and SMT
solvers including Mathematica, Maple, Z3 [28] and QEPCAD [12].

Chapter outline. In this chapter I will present a minimal introduction to CAD starting
with the basic idea (§2.1), followed by a classic algorithm to compute a CAD (§2.2). Finally,
I will briefly discuss some related work (§2.3).

2.1 Basic idea

Given a set of polynomials P⊆ R[x1,x2, . . . ,xn], a CAD procedure can decompose Rn into
disjoint connected cells, over each of which every p∈ P has constant sign (i.e., either positive,
negative or zero).

For example, given P = {x2
2 + x2

1−3,x2− x2
1/2} ⊆ R[x1,x2] (see Fig. 2.1), a CAD proce-

dure can decompose R2 into disjoint connected cells D:

D= {D1,1,D1,2,D1,3,D2,1,D2,2,D2,3,D2,4,D2,5,D3,1, . . . ,D9,2,D9,3}

8 Introduction to cylindrical algebraic decomposition

x1

x2

(
√

2,1)(−
√

2,1)

√
3−

√
3

(−
√

3, 3
2)

p1 p2

Fig. 2.1 Plot with p1(x1,x2) = x2
2 + x2

1−3 = 0 and p2(x1,x2) = x2− x2
1/2 = 0

where
D1,1 = {(x1,x2) | x1 <−

√
3∧ x2 < x2

1/2}
D1,2 = {(x1,x2) | x1 <−

√
3∧ x2 = x2

1/2}
D1,3 = {(x1,x2) | x1 <−

√
3∧ x2 > x2

1/2}
D2,1 = {(x1,x2) | x1 =−

√
3∧ x2 < 0}

D2,2 = {(x1,x2) | x1 =−
√

3∧ x2 = 0}
D2,3 = {(x1,x2) | x1 =−

√
3∧0 < x2 < 3/2}

D2,4 = {(x1,x2) | x1 =−
√

3∧ x2 = 3/2}
D2,5 = {(x1,x2) | x1 =−

√
3∧ x2 > 3/2}

D3,1 = {(x1,x2) | −
√

3 < x1 <−
√

2∧ x2 <−
√

3− x2
1}

...
D9,2 = {(x1,x2) | x1 >

√
3∧ x2 = x2

1/2}
D9,3 = {(x1,x2) | x1 >

√
3∧ x2 > x2

1/2}

such that ⋃
D= R2

2.1 Basic idea 9

∀X ∈D.∀Y ∈D.X ̸= Y → X ∩Y = /0

and both p1(x1,x2) = x2
2 + x2

1−3 and p2(x1,x2) = x2− x2
1/2 have constant sign over every

X ∈D.
In practice, a CAD procedure usually produces a set of sample points drawn from every

cell of the decomposition. In the case of P = {x2
2 + x2

1−3,x2− x2
1/2}, we can have

(−2,0) ∈ D1,1

(−2,2) ∈ D1,2

(−2,4) ∈ D1,3

(−
√

3,−1) ∈ D2,1

(−
√

3,0) ∈ D2,2

(−
√

3,1) ∈ D2,3

(−
√

3,3/2) ∈ D2,4
...

(2,4) ∈ D9,3

which lead to the set of sample points S⊆ R2 that represents D:

S = {(−2,0),(−2,2),(−2,4),(−
√

3,−1),(−
√

3,0),(−
√

3,1),(−
√

3,3/2), . . . ,(2,4)}.

Since both p1 and p2 have constant sign over each X ∈D, a first-order sentence over p1

and p2 can be then decided by evaluating the sign of p1 and p2 at those sample points. For
instance, to decide ∀x1x2. p1(x1,x2) = 0∧ p2(x1,x2)> 0 we have

∀x1x2. p1(x1,x2) = 0∧ p2(x1,x2)> 0

= ∀(x1,x2) ∈ S. p1(x1,x2) = 0∧ p2(x1,x2)> 0

= (p1(−2,0) = 0∧ p2(−2,0)> 0)∧ (p1(−2,2) = 0∧ p2(−2,2)> 0)∧·· ·
∧ (p1(2,4) = 0∧ p2(2,4)> 0)

= False.

10 Introduction to cylindrical algebraic decomposition

Fig. 2.2 Stack with S = {(x1,x2) | x2
1 + x2

2 ≤ 1}, D2 = {(x,x′) ∈ S×R | x′ = f1(x)} and
D5 = {(x,x′) ∈ S×R | f2(x)< x′} where f1 = (x2

1− x2
2)/2 and f2 = (−x2

1 + x2
2 +3)/2

Similarly, ∃x1x2. p1(x1,x2) = 0∧ p2(x1,x2) = 0 can be decided as follows:

∃x1x2. p1(x1,x2) = 0∧ p2(x1,x2) = 0

= ∃(x1,x2) ∈ S. p1(x1,x2) = 0∧ p2(x1,x2) = 0

= (p1(−2,0) = 0∧ p2(−2,0)> 0)∨ (p1(−2,2) = 0∧ p2(−2,2)> 0)∨·· ·
∨ (p1(2,4) = 0∧ p2(2,4)> 0)

= True.

Even when quantifiers alternate (e.g., ∀x1.∃x2. · · ·), with some modifications the approaches
above still work.

To be more precise with CAD, we may need a few definitions.

Definition 2.1 (Stack). A stack D= {D1,D2, . . . ,D2k+1} over S⊆Rn is a decomposition of
the cylinder S×R such that

• there is a sequence of continuous functions f0, f1, . . . , fk+1 : S−→R, such that f0(x)<
f1(x)< · · ·< fk+1(x) for all x ∈ S, f0(x) =−∞, fk+1(x) = +∞,

• D2i+1 = {(x,x′) ∈ S×R | fi(x)< x′ < fi+1(x)}, for i = 0,1, . . . ,k,

• D2i = {(x,x′) ∈ S×R | x′ = fi(x)}, for i = 1,2, . . . ,k.

2.2 The classic algorithm 11

Fig. 2.2 shows an example of a stack with f1 = (x2
1− x2

2)/2 and f2 = (−x2
1 + x2

2 +3)/2.

Definition 2.2 (Cylindrical). A decomposition D of Rn is cylindrical if

• n = 1, D decomposes R: there exist a finite number of points ai ∈ R for 1 ≤ i ≤ k,
such that ai < ai+1 (1≤ i≤ k−1) and

D= {(−∞,a1),{a1},(a1,a2),{a2}, . . . ,(ak−1,ak),{ak},(ak,∞)}.

• n > 1, there exists a cylindrical decomposition D′ of Rn−1 such that over each X ∈D′

there is a stack t(X) and
D=

⋃
X∈D′

t(X).

Here, a decomposition D is said to be a CAD if it is cylindrical and each cell X ⊆
Rn ∈ D is semi-algebraic (i.e., can be constructed by sets of the form {x | p(x) ≥ 0, p ∈
R[x1,x2, . . . ,xn]}with finitely many applications of union, intersection and complementation).
Moreover, the sign-invariant property is more commonly referred to ’adapted’ in CAD
terminology:

Definition 2.3 (Decomposition adapted to P). A decomposition D is adapted to a set of
polynomials P, if every polynomial p ∈ P has constant sign over every cell D ∈D.

2.2 The classic algorithm

In the previous section, the basic ideas of CAD were covered as well as how it can be used to
solve non-linear first-order sentences over the real numbers. In this section, I will briefly talk
about the classic algorithm to compute (sample points of) a CAD given a set of polynomials.

Before understanding the algorithm for CAD calculation, we may need to know the
subresultant operation.

Definition 2.4 (Subresultants). Let p(x) = anxn + an−1xn−1 + · · ·+ a0 and q(x) = bmxm +

bm−1xm−1 + · · ·+ b0 be univariate polynomials of degree n and m respectively. The k-th

12 Introduction to cylindrical algebraic decomposition

(principal) subresultant sResk(p,q) is defined as the determinant

sResk(p,q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an bm

an−1 an bm−1 bm
...

an−m+k+1 an bk+1 bm
...

...
... . . .

ak+1 am bm−n+k+1 bm
...

...
...

...
...

...
...

...

︸ ︷︷ ︸
m-k

a2k−m+1 ak ︸ ︷︷ ︸
n-k

b2k−n+1 bk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where k ≤min(deg(p),deg(q)) and a j,b j = 0 if j < 0.

Note, sRes0 is also referred as the resultant. Moreover, we have the following interesting
property about subresultants:

Theorem 2.5. Polynomials p and q have a common factor of degree k (0< k≤min(deg(p),deg(q)))
if and only if sRes j(p,q) = 0 for 0≤ j ≤ k−1 and sResk(p,q) ̸= 0.

Here is an example of Theorem 2.5: let p(x) = (x−1)(x−2)(x−3) = x3−6x2+11x−6
and q(x) = (x−2)(2x−1) = 2x2−5x+2. We have

sRes0(p,q) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 2
−6 1 −5 2
11 −6 2 −5 2
−6 11 2 −5

−6 2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

sRes1(p,q) =

∣∣∣∣∣∣∣
1 2
−6 −5 2
11 2 −5

∣∣∣∣∣∣∣ = 5

sRes2(p,q) =
∣∣∣ 2

∣∣∣ = 2

and the degree of the common factor of p and q is deg(gcd(p,q)) = deg(x− 2) = 1, as
claimed by Theorem 2.5.

To have a cylindrical decomposition, we need the following theorem.

Theorem 2.6. Let P ⊆ R[x1, . . . ,xn−1][xn] be a set of polynomials and C be a connected
subset of Rn−1. If

2.2 The classic algorithm 13

(i) for every p ∈ P, the total number of complex roots (counting multiplicities) of p(β ,x)
is constant as β varies over C, where p(β ,x) is a univariate polynomial in which the
variables x1, . . . ,xn−1 are instantiated by β ∈ Rn−1,

(ii) for every p ∈ P, the number of distinct complex roots of p(β ,x) is constant as β varies
over C,

(iii) for every p,q ∈ P, the total number of common complex roots (counting multiplicities)
of p(β ,x) and q(β ,x) is constant as β varies over C,

then the total number of distinct real roots of (∏P)(β ,x) is constant as β varies over C.

Theorem 2.6 is important as we can have a stack over C that is adapted to P only when
(∏P)(β ,x) has a constant number of distinct real roots (as β varies over C), in which we
can let f j(β) be the j-th root of (∏P)(β ,x) such that f j(β)< f j+1(β) for all β ∈C.

In the classic CAD algorithm, we will also need the following truncation operation on a
set of polynomials:

Definition 2.7 (Truncation of polynomials). For a set of polynomials P⊆R[x1, . . . ,xn−1][xn],
the truncation of it with respect to xn, Truxn(P), is defined as

Tru({}) = /0

Tru({a0, p1, . . . , pm}) = Tru({p1, . . . , pm})
Tru({akxk +ak−1xk−1 + · · ·+a0, p1, . . . , pm})

={akxk +ak−1xk−1 + · · ·+a0}∪Tru({ak−1xk−1 + · · ·+a0, p1, . . . , pm}).

For example, the truncation of {(x1 +1)x3
2 +2x2

2 +3x2 +4,5x2 +6} with respect to x2 is
given by:

Trux2({(x1 +1)x3
2 +2x2

2 +3x2 +4,5x2 +6})
={(x1 +1)x3

2 +2x2
2 +3x2 +4,2x2

2 +3x2 +4,3x2 +4,5x2 +6}.

We can now come to the classic CAD procedure as illustrated in Algorithm 1, which
takes a set of polynomials P⊆ R[x1, . . . ,xn] and returns a set of sample points Sn ⊆ Rn from
each cell of a CAD adapted to P. In particular, lines 3-10 are commonly referred as the
projection phase, where for any Q⊆ R[x1, . . . ,xk−1,xk] we have proj(Q)⊆ R[x1, . . . ,xk−1],
such that

1. if C ⊆ Rk−1 is a region over which each p ∈ proj(Q) has constant sign,

14 Introduction to cylindrical algebraic decomposition

Algorithm 1 The classic CAD procedure

Require: a finite set of polynomials P⊆ R[x1, . . . ,xn]
Ensure: Return a set of sample points Sn ⊆ Rn from each cell of a CAD adapted to P

1: procedure CAD(P)
2: Pn← P
3: for i = n to 2 do ▷ Projection phase, where Pi ⊆ R[x1, . . . ,xi]
4: Pi−1← proj(Pi)
5: where
6: proj1(Q) = {lcofxi(p) | p ∈ Truxi(Q)}
7: proj2(Q) = {sRes j(p, ∂ p

∂xi
) | j = 0, . . . ,degxi

(p)−1, p ∈ Truxi(Q)}
8: proj3(Q) = {sRes j(p,q) | j = 0, . . . ,min(degxi

(p),degxi
(q)), p,q ∈ Truxi(Q)}

9: proj(Q) = proj1(Q)∪proj2(Q)∪proj3(Q)
10: end for
11: S1← base(P1) ▷ Base case
12: where base(Q) returns a set of sample points adapted to Q⊆ R[x]
13: for i = 1 to n−1 do ▷ Lifting phase, where Si ⊆ Ri

14: Si+1←
⋃

β∈Si
({β}×base(Pi+1(β ,x)))

15: end for
16: return Sn
17: end procedure

2. then the total number of distinct real roots of (∏Q)(β ,x) is constant as β varies over
C.

To understand the projection operation, recall that a CAD is a recursive structure, (1) indicates
that C is a cell of a CAD of Rk−1 adapted to proj(Q), and (2) indicates that we can construct
a stack over C adapted to Q. Overall, the projection step corresponds to the n > 1 case in
Definition 2.2. As for the projection operator proj(−), we can employ Theorem 2.6:

• The first assumption of Theorem 2.6 is guaranteed by

proj1(Q) = {lcofxi(p) | p ∈ Truxi(Q)}

where lcofxi(P) is the leading coefficient of P with respect to variable xi. This is
because the number of complex roots of a polynomial is determined by its degree,
which is further determined by whether its leading coefficient with respect to xi (i.e.,
lcofxi) is zero.

• The second assumption is guaranteed by proj1(Q) and

proj2(Q) = {sRes j(p,
∂ p
∂xn

) | j = 0, . . . ,degxi
(p)−1, p ∈ Truxi(Q)}

2.2 The classic algorithm 15

since for a polynomial with a fixed degree, the number of distinct complex roots
is determined by the degree of the greatest common divisor between it and its first
derivative, and that degree is further determined by the subresultants between them
(i.e., Theorem 2.5).

• The third assumption is guaranteed by proj1(Q) and

proj3(Q) = {sRes j(p,q) | j = 0, . . . ,min(degxi
(p),degxi

(q)), p,q ∈ Truxi(Q)}

since the total number of common complex roots of p and q is determined by the degree
of their greatest common divisor, which, again, is determined by the subresultants.

Therefore, combining proj1, proj2 and proj3 we can have the projection operator as desired
(i.e., line 9).

After the projection phase, we will reach the base case (i.e., lines 11-12 of Algorithm 1)
where we need to extract sample points from a CAD that is adapted to a set of univariate
polynomials P1 ⊆ R[x]. In this case, the sample points are real roots of ∏P1 plus samples
from intervals delimited by those roots.

Finally, it is the lifting phase (i.e., lines 13-15 of Algorithm 1): for each 1≤ i≤ n−1,
given a set of sample points Si ⊆ Ri and a set of polynomials Pi+1 ⊆ R[x1, . . . ,xi+1], the
lifting step will construct another set of points Si+1 ⊆ Ri+1 that represents a decomposition
adapted to Pi+1. The idea is to use β ∈ Si to instantiate variables x1, . . . ,xk in each polynomial
of Pi+1, and this leads to a set of univariate polynomials Pi+1(β ,x) over which we can apply
the base operation. Here, {β}×base(Pi+1(β ,x))⊆Ri+1 are ,essentially, sample points from
the stack over a set represented by β .

Consider the example in Fig. 2.1, where we have P = {x2
2 + x2

1−3,x2− x2
1/2} and

Trux2(P) = {x2
2 + x2

1−3,x2− x2
1/2}

proj1(P) = {lcofx2(p) | p ∈ Trux2(P)}
= {1}

proj2(P) = {sRes j(p, ∂ p
∂x2

) | j = 0, . . . ,degx2
(p)−1, p ∈ Trux2(P)}

= {4x2
1−12,2,1}

proj3(P) = {sRes j(p,q)| j = 0, . . . ,min(degx2
(p),degx2

(q)), p,q ∈ Trux2(P)}
= {x4

1/4+ x2
1−3,1}.

Hence,
proj(P) = {x4

1/4+ x2
1−3,4x2

1−12,2,1}

16 Introduction to cylindrical algebraic decomposition

With the base step, we can have sample points from a decomposition adapted to proj(P):

S1 = base(proj(P)) = {−2,−
√

3,−3
2
,−
√

2,0,
√

2,
3
2
,
√

3,2}

where ±
√

2 and ±
√

3 are real roots of polynomials from proj(P). Subsequently, we enter
the lifting phase of Algorithm 1:

P(−2,x2) = = {x2
2 +1,x2−2}

base(P(−2,x2)) = {0,2,4}
{−2}×base(P(−2,x2)) = {(−2,0),(−2,2),(−2,4)}

P(−
√

3,x2) = {x2
2,x2−3/2}

base(P(−
√

3,x2)) = {−1,0,1,3/2,2}
−
√

3×base(P(−
√

3,x2)) = {(−
√

3,−1),(−
√

3,0),(−
√

3,1),(−
√

3,3/2),(−
√

3,2)}
...

2×base(P(2,x2)) = {(2,0),(2,2),(2,4)}

combining which yields

S2 =
⋃

β∈S1

({β}×base(P(β ,x)))

= {(−2,0),(−2,2),(−2,4),(−
√

3,−1),(−
√

3,0),(−
√

3,1),(−
√

2,3/2), . . . ,(2,4)},

which are sample points from each cell of a CAD adapted to P.

2.3 Remarks

Algorithm 1 in the previous section is a very basic CAD-computing procedure adapted from
textbooks [8, Chapter 5;70, Chapter 8;52]. Modern CAD implementations have incorporated
numerous improvements including but not limited to:

• Better projection operations [68, 49, 11], which lead to fewer polynomials after each
projection iteration.

• Partial CAD [23], which aborts in the lifting phase early if the produced sample points
are sufficient to decide the truth value of the target sentence.

• Validated numerics [82] or field extensions [29], which reduce costly exact algebraic
arithmetic in the lifting phase of CAD.

2.3 Remarks 17

• Better ordering on the variables in the projection phase [50], as it has been shown that
variable ordering can have a significant impact on the computational complexity of a
CAD procedure [13].

• CAD through regular chains [17], which is a vastly different way to compute a CAD
(i.e., other than the traditional projection-lifting style).

Since the purpose of this thesis is mainly about verification rather efficient computation, in
the following chapters I will mostly focus on simple formulations like Algorithm 1 and leave
sophisticated optimisations to future work.

Chapter 3

The Sturm-Tarski theorem

The Sturm-Tarski theorem (also referred as Tarski’s theorem [8, Theorem 2.61]) was first
formulated by Alfred Tarski [15, p. 24] to show that the elementary theory of real closed
fields admits quantifier elimination. A formal proof of this theorem is of great importance
to us as it leads to an effective way to manipulate real roots of a polynomial, which are
ubiquitous in a CAD procedure.

This formalisation mainly follows Basu et al.’s book [8, Theorem 2.61] and Cohen’s PhD
thesis [21, p. 119].

Chapter outline. This chapter starts with a formulation of the Sturm-Tarski theorem
(§3.1), followed by a formal proof (§3.2) and some remarks (§3.3).

3.1 Formulation

We abbreviate R∪{−∞,∞} as R, the extended real numbers.

Definition 3.1 (Tarski Query). The Tarski query TaQ(q, p,a,b) is

TaQ(q, p,a,b) = ∑
x∈(a,b),p(x)=0

sgn(q(x))

where a,b ∈ R, p,q ∈ R[X], p ̸= 0 and sgn : R→{−1,0,1} is the sign function.

The Sturm-Tarski theorem is essentially an effective way to compute Tarski queries
through some remainder sequences:

Theorem 3.2 (Sturm-Tarski). The Sturm-Tarski theorem states

TaQ(q, p,a,b) = Var(SRemS(p, p′q);a,b)

20 The Sturm-Tarski theorem

where p ̸= 0, p,q ∈ R[X], p′ is the first derivative of p, a,b ∈ R, a < b and are not roots of
p, SRemS(p, p′q) is the signed remainder sequence of p and p′q, and

Var([p0, p1, ..., pn];a,b)

= Var([p0(a), p1(a), ..., pn(a)])−Var([p0(b), p1(b), ..., pn(b)])

is the difference in the number of sign variations (after removing zeroes) in the polynomial
sequence [p0, p1, ..., pn] evaluated at a and b.

Note that the more famous Sturm’s theorem, which counts the number of distinct real
roots (of a univariate polynomial) within an interval, is a special case of the Sturm-Tarski
theorem when q = 1.

3.2 A formal proof of the Sturm-Tarski theorem

The core idea of the formal proof is built around a concept called the Cauchy index, which I
will discuss more in Chapter 7. The Cauchy index is usually defined using the jump function:

Definition 3.3. Given p,q ∈ R[x] and x ∈ R, jump_poly(p,q,x) is defined as

jump_poly(p,q,x) =

−1 if limu→x−

q(u)
p(u) = ∞ and limu→x+

q(u)
p(u) =−∞,

1 if limu→x−
q(u)
p(u) =−∞ and limu→x+

q(u)
p(u) = ∞,

0 otherwise.

For example, let q(x) = x− 4 and p(x) = (x− 3)(x− 1)2(x+ 1). The graph of q/p is
shown in Fig. 3.1. We have

jump_poly(p,q,x) =

1 when x =−1,

−1 when x = 3,

0 otherwise.

The Cauchy index cindex_poly a b q p is the sum of jump_polys over the interval
(a,b):

definition cindex_poly:: "real ⇒ real ⇒ real poly ⇒ real poly ⇒ int"

where
"cindex_poly a b q p≡ (∑x∈{x. poly p x=0 ∧ a < x ∧ x < b}. jump_poly q p x)"

3.2 A formal proof of the Sturm-Tarski theorem 21

x
−1 1 3

Fig. 3.1 Plot of the rational function (x−4)/((x−3)(x−1)2(x+1))

where {x. poly p x = 0 ∧ a < x ∧ x < b} is a subset of reals such that for each x in
this set, we have p(x) = 0, a < x and x < b. The reason we sum over this set is that
jump_poly(p,q,x) = 0 if p(x) ̸= 0, and the set can be shown to be finite (provided p ̸= 0),
which makes the sum well-defined.

The overall structure of the formal proof can be divided into two parts:

(a) The Tarski query is equal to some Cauchy index.

(b) The Cauchy index can be effectively calculated through some remainder sequences.

For (a), we can establish the following equality relation between the Tarski query and the
Cauchy index:

Lemma 3.4 (cindex_poly_taq).
fixes p q::"real poly" and a b::real

shows "taq {x. poly p x = 0 ∧ a < x ∧ x < b} q

= cindex_poly a b (pderiv p * q) p"

where taq is the definition of the Tarski query in Isabelle (following Definition 3.1):

definition taq :: "’a::linordered_idom set ⇒ ’a poly ⇒ int" where
"taq s q = (∑x∈s. sign (poly q x))"

and pderiv p is the first derivative of p.
To derive (b), we first relate the Cauchy index to Euclidean division (mod) on a recurrence

relation:

22 The Sturm-Tarski theorem

Lemma 3.5 (cindex_poly_rec).
fixes p q::"real poly" and a b::real

assumes "a < b" and "poly (p * q) a ̸=0" and "poly (p * q) b ̸=0"

shows "cindex_poly a b q p = cross (p * q) a b

+ cindex_poly a b (- (p mod q)) q"

where

cross p a b =

0 if p(a)p(b)≥ 0,

1 if p(a)p(b)< 0 and p(a)< p(b),

−1 if p(a)p(b)< 0 and p(a)≥ p(b).

We can find out a similar recurrence relation holding for sign variations of the signed
remainder sequences (changes_itv_smods):

Lemma 3.6 (changes_itv_smods_rec).
fixes p q::"real poly" and a b::real

assumes "a < b" and "poly (p * q) a ̸= 0" and "poly (p * q) b ̸= 0"

shows "changes_itv_smods a b p q = cross (p * q) a b

+ changes_itv_smods a b q (- (p mod q))"

where changes_itv_smods is defined as

definition changes_itv_smods::

"real ⇒ real ⇒ real poly ⇒ real poly ⇒ int" where
"changes_itv_smods a b p q = (

let

ps = smods p q

in

changes_poly_at ps a - changes_poly_at ps b)"

and the signed remainder sequence (smods) is defined as

function smods:: "real poly ⇒ real poly ⇒ (real poly) list" where
"smods p q= (if p = 0 then

[]

else

p # (smods q (-(p mod q))))"

and changes_poly_at ps a returns the number of sign changes when evaluating a list of
polynomials (ps) at a.

Combining Lemma 3.5 with Lemma 3.6 yields an effective method to compute the
Cauchy index cindex_poly :

3.3 Remarks 23

Lemma 3.7 (cindex_poly_changes_itv_mods).
fixes p q::"real poly" and a b::real

assumes "a < b" and "poly p a ̸= 0" and "poly p b ̸= 0"

shows "cindex_poly a b q p = changes_itv_smods a b p q"

Finally, putting Lemma 3.4 and 3.7 together leads to an effective way to compute the
Tarski query (i.e., the Sturm-Tarski theorem):

Theorem 3.8 (sturm_tarski_interval).
fixes p q::"real poly" and a b::real

assumes "a < b" and "poly p a ̸= 0" and "poly p b ̸= 0"

shows "taq {x. poly p x = 0 ∧ a < x ∧ x < b} q

= changes_itv_smods a b p (pderiv p * q)"

Note, this is just the bounded case of the Sturm-Tarski theorem. Proofs for the unbounded
and half-bounded cases are similar.

3.3 Remarks

The Sturm-Tarski theorem is of great theoretical importance, as Alfred Tarski [15, p. 24]
used it to build the first complete decision procedure for first-order sentences over the real
numbers. Prior to CAD, Tarski’s method (along with some of its variations) was the only
approach for such a task. However, people later realised that Tarski’s method is impractical
due to its non-elementary complexity (i.e., the complexity is a tower of exponents whose
height is linear to the number of variables in the sentence), while Collins’ CAD procedure is
only of double exponential complexity [8, Chapter 11].

Despite being the first in Isabelle/HOL, my formalisation of the Sturm-Tarski theorem is
not novel in the theorem prover community: prior work includes a formalisation by Mahboubi
and Cohen in Coq [65] and another one by Narkawicz et al. in PVS [71]. The main difference
between my work and theirs is about the purpose: they formalise the Sturm-Tarski theorem
to build a verified quantifier elimination procedure similar to Tarski’s, while I use it for sign
determination at real algebraic points (in Chapter 4) and complex root counting (in Chapter
7).

Chapter 4

Real algebraic numbers

As has been demonstrated in the examples in Chapter 2, sample points from a CAD may
contain real algebraic numbers such as

√
2 and

√
3. Those numbers are defined as particular

roots of non-zero polynomials with rational (or integer) coefficients. They are important
in computer algebra as each one can be encoded precisely (unlike most real numbers), and
their arithmetic and comparison operations are decidable. In this chapter, I will cover how to
represent, reason and compute with those real algebraic numbers in Isabelle/HOL.

The overall formalisation follows Isabelle’s tradition of separation of abstraction and
implementation. That is,

• abstraction: I first formalise real algebraic numbers on an abstract level without
considering executability (see §4.1). More specifically, I formalise real algebraic
numbers as a subset of real numbers, and show them to form an ordered field using
classic proofs in abstract algebra.

• implementation (restoring executability): I then establish executability on real alge-
braic numbers (see §4.2). More specifically, I define a pseudo constructor for algebraic
real numbers and prove code equations for algebraic arithmetic on this constructor.
Some of the code equations for algebraic arithmetic are based on a verified decision
procedure to decide the sign of a bivariate polynomial with rational coefficients at real
algebraic points.

Chapter outline. The chapter continues as follows. The first component of the modular
design is the abstract specification of real algebraic numbers (§4.1), which is then followed
by an implementation (§4.2) in the form of Isabelle/HOL code equations. In particular, the

The content of this chapter is adapted from a previous publication [62].

26 Real algebraic numbers

implementation is concerned with deciding the signs of polynomials at a given real algebraic
point. Experiments (§4.3) is then described along with related work (§4.4). Finally, some
remarks (§4.5) are given about limitations and applications of this work.

4.1 Construction on an abstract level

This section presents my formalisation of real algebraic numbers as an abstract data type.
Definitions on this level will be as abstract as possible without considering executability.

Mathematically, a real algebraic number α is a real number for which there exists a
non-zero univariate polynomial p(x) with integer (or rational) coefficients, such that p(x) = 0
when x = α .

It is then straightforward to define the real algebraic numbers as a subset of the real
numbers. We can formalise this construction by defining type alg on the top of type real
using the typedef command1:

typedef alg = "{x::real. ∃p::int poly. p ̸= 0 ∧ poly (of_int_poly p) x = 0}"

where of_int_poly converts coefficients of a polynomial from int to real, and poly p x

means evaluating polynomial p at x.
To prove non-trivial properties about real algebraic numbers, we need at least to prove

that they are closed under the basic arithmetic operations and hence form a field. For example,
to show that real algebraic numbers are closed under addition, suppose we have two real
algebraic numbers α and β , given by polynomials p and q:

α ∈ R, p ∈ Z[x] p ̸= 0∧ p(α) = 0

β ∈ R,q ∈ Z[x] q ̸= 0∧q(β) = 0

Then we have to show that

∃r ∈ Z[x]. r ̸= 0∧ r(α +β) = 0. (4.1)

One way to show this is to compute r constructively using resultants as in Cyril Cohen’s
proof in Coq [20]. However, as we are working on an abstract level and not concerned with
executability, a non-constructive but usually simpler proof (to show the mere existence of
such a polynomial) seems more appealing. Therefore, I decided to follow a classic proof in
abstract algebra.

1A description of this command can be found in the Tutorial [73, §8.5.2]

4.1 Construction on an abstract level 27

Definition 4.1 (vector space). A vector space V over a field F is an abelian group associated
with scalar multiplication αv for all α ∈ F and v ∈V , satisfying the standard additivity and
identity axioms.

In Isabelle/HOL, the notion of a vector space is formalised using a locale :

locale vector_space =

fixes scale :: "’a::field ⇒ ’b::ab_group_add ⇒ ’b"

assumes "scale a (x + y) = scale a x + scale a y"

and "scale (a + b) x = scale a x + scale b x"

and "scale a (scale b x) = scale (a * b) x"

and "scale 1 x = x"

where scale::’a ⇒’b ⇒’b denotes scalar multiplication for ’a a field and ’b an abelian
group.

The standard library development of vector spaces has been extended by Jose Divasón
and Jesús Aransay in their formalisation of the Rank-Nullity Theorem in linear algebra,
including definitions of span and of linearly dependent [31].

Definition 4.2 (Span). Let S = {v1,v2, ...,vn} be a set of vectors in a vector space, then
span(S) is defined as

{w | w = a1v1 +a2v2 + · · ·+anvn,and a1, . . . ,an are scalars}

Divasón and Aransay [31] formalise span slightly differently, but the following lemma
can be considered as an alternative definition that matches standard mathematical definitions:

Lemma 4.3 (span_explicit).
"span P = {y. ∃S u. finite S ∧ S ⊆ P ∧ sum (λv. scale (u v) v) S = y}"

where u of type ’b ⇒’a maps each vector in S to the corresponding scalar. And sum (λv.

scale (u v) v) S maps each element in S using (λv. scale (u v) v) and sums the
results.

Definition 4.4 (linearly dependent). Let S = {v1,v2, . . . ,vn} be a set of vectors in a vector
space, we say S is linearly dependent if there exist scalars a1,a2, ...,an, at least one of which
is non-zero, such that

a1v1 +a2v2 + · · ·+anvn = 0

Divasón and Aransay formalise dependent as

definition "dependent S ←→ (∃a ∈ S. a ∈ span (S - {a}))"

28 Real algebraic numbers

since

a1v1 +a2v2 + · · ·+anvn = 0←→ vn =
a1

−an
v1 +

a2

−an
v2 + · · ·+

an−1

−an
vn−1

assuming an is the non-zero scalar.

Now, back to the problem of showing (4.1), we can consider the vector space of reals
with rational scalars:

interpretation rat: vector_space

"(λx y. (of_rat x * y))::rat ⇒ real ⇒ real"

where of_rat :: rat ⇒ real embeds rat into real and the scale function in vector_space

is instantiated as

(λx y. (of_rat x * y))::rat ⇒ real ⇒ real

After the interpretation, we have new constants, such as

rat.span :: real set ⇒ real set and
rat.dependent :: real set ⇒ bool

that instantiate constants such as vector_space.span and vector_space.dependent, and
inherit all associated lemmas from vector_space.

If we can show that {1,x,x2, . . . ,xn} is linearly dependent, then (by the definition of
linear dependence) it is not hard to see that there exists a non-zero polynomial with rational
coefficients and degree at most n that vanishes at x:

Lemma 4.5 (dependent_imp_poly).
fixes x::real and n::nat

assumes "rat.dependent {x ^ k | k. k ≤ n}"

shows "∃p::rat poly. p ̸= 0 ∧ degree p ≤ n ∧ poly (of_rat_poly p) x = 0"

where of_rat_poly converts coefficients of p from rational to real.
Now the problem becomes, how can we deduce the linear dependence of a set of vectors?

The solution is based on a lemma: if m vectors live in the span of n vectors with m > n, then
these m vectors are linearly dependent.

Lemma 4.6 ((in vector_space) span_card_imp_dependent).
fixes S B::"’b set"

assumes "S ⊆ span B" and "finite B" and "card S > card B"

shows "dependent S"

4.1 Construction on an abstract level 29

Moreover, we show that for all n ∈ N

(α +β)n ∈ span{α i
β

j | i j ∈ N.i≤ deg(p)∧ j ≤ deg(q)},

which is formally encoded by the following lemma in Isabelle:

Lemma 4.7 (bpoly_in_rat_span).
fixes p q::"rat poly" and x y::real

and bp::"rat bpoly"

assumes "poly (of_rat_poly p) x = 0" and "p ̸= 0"

assumes "poly (of_rat_poly q) y = 0" and "q ̸= 0"

shows "bpoly (of_rat_bpoly bp) x y ∈ rat.span {x ^ k1 * y ^ k2

|k1 k2. k1 ≤ degree p ∧ k2 ≤ degree q}"

Above, bp::"rat bpoly" means a bivariate polynomial with rational coefficients, and those
coefficients are embedded into reals by the function of_rat_bpoly. In addition, bpoly bp x

y evaluates bp at (x,y). It follows that

1,(α +β), . . . ,(α +β)(deg(p)+1)(deg(q)+1)

are linearly dependent by applying Lemma 4.6,2 since

(deg(p)+1)(deg(q)+1)+1 > card{α i
β

j | i j ∈ N. i≤ deg(p)∧ j ≤ deg(q)}
= (deg(p)+1)(deg(q)+1).

Hence, there exists a non-zero polynomial with integer coefficients3 vanishing at α +β .
Similarly, there exist such polynomials for the difference α−β and the product αβ :

Lemma 4.8 (root_exist).
fixes x y::real and p q::"rat poly"

assumes "poly (of_rat_poly p) x = 0" and "p ̸=0"

assumes "poly (of_rat_poly q) y = 0" and "q ̸=0"

defines "rt≡(λz::real. ∃r::int poly. r ̸=0 ∧ poly (of_int_poly r) z = 0)"

shows "rt (x+y)" and "rt (x-y)" and "rt (x*y)"

Every rational number r is real algebraic, given by the root of the first degree polynomial
x− r. Therefore 0−α is real algebraic, covering the case of −α .

2In fact, there are corner cases when α +β =−1, 0, 1, but all of them can be satisfied, so the conclusion
holds.

3We have a lemma to convert a polynomial with rational coefficients into one with integer coefficients,
multiplying out the denominators.

30 Real algebraic numbers

As for the multiplicative inverse, let

p(x) = anxn +an−1xn−1 + · · ·+a0.

Then clearly

p(α) = 0∧α ̸= 0 =⇒ a0

(
1
α

)n

+an−1

(
1
α

)n−1

+ · · ·+an = 0,

and hence we get vanishing polynomials for 1/α:

Lemma 4.9 (inverse_root_exist).
fixes x::real and p::"rat poly"

assumes "poly (of_rat_poly p) x = 0" and "p ̸=0"

shows "∃q::int poly. q ̸=0 ∧ poly q (inverse x) = 0"

as well as α/β (treated as α× (1/β)).
Finally, to define arithmetic operations on alg, we can lift the corresponding operations

from its underlying type, real. For example, addition on alg is defined as

lift_definition plus_alg :: "alg ⇒ alg ⇒ alg"

is "plus::real ⇒ real ⇒ real"

which leaves us a goal to show that the invariant condition on alg is maintained (that alg is
closed under addition):∧
r1 r2 ::real.

∃p. p ̸= 0 ∧ poly (of_int_poly p) r1 = 0 =⇒
∃p. p ̸= 0 ∧ poly (of_int_poly p) r2 = 0 =⇒
∃p. p ̸= 0 ∧ poly (of_int_poly p) (r1 + r2) = 0

and this goal can be discharged by our previous Lemma 4.8. Similarly, we obtain 0::alg

and 1::alg, and the ordering operations are lifted from real as well:

lift_definition zero_alg::alg is "0::real"

lift_definition one_alg::alg is "1::real"

lift_definition less_alg::"alg ⇒ alg ⇒ bool"

is "less::real ⇒ real ⇒ bool"

The command lift_definition is part of Isabelle’s Lifting and Transfer package [51].
With zero, one, arithmetic and ordering operations defined, it follows that alg forms an

ordered field:

4.2 Implementation 31

instantiation alg :: linordered_field

Because alg is a subset of real, all the instance proofs of the instantiation above are one-
liners, again thanks to the Lifting and Transfer package [51]. For example, the associativity
of alg multiplication is proved by the following tactic:

show "(a * b) * c = a * (b * c)"

by transfer auto

And so, we have constructed the real algebraic numbers on an abstract level and proved
that they form an ordered field. But now it is time to consider the question of executability.

4.2 Implementation

Executability is a key property of real algebraic numbers. They are a countable subset of the
real numbers and can be represented exactly in computers. This section will demonstrate how
I have implemented algebraic real numbers and achieved executability on their arithmetic
operations through verified bivariate sign tests.

4.2.1 More pseudo-constructors on real numbers

Recall that my alg is actually a subset of real, hence executability on real operations can
be reflected in alg. Therefore, my following focus is to extend executability on type real.

The set of real numbers, as we know, is uncountable, hence not every real number can be
encoded finitely. That is, arithmetic operations can only be executable on a strict subset of
the real numbers. Prior to our work, arithmetic operations on type real in Isabelle were only
executable on rational numbers embedded into the reals (rational reals). For example, the
following expression could be evaluated to be true:

value "Ratreal (3/4) * Ratreal 2 > (0::real)"

where Ratreal of type rat ⇒ real is a pseudo-constructor [37] that constructs a real

from a rat. Executability of rational real numbers is established by code equations (i.e.,
equational theorems from the logic that can serve as a rewrite system) such as

Lemma 4.10 (real_plus_code [code]). "Ratreal x + Ratreal y = Ratreal (x + y)"

so that sub-expressions match the left-hand side (of a code equation) will be replaced with
the right-hand side when evaluating expressions. In the case of Lemma 4.10, the addition on
the left is on real numbers, which is merely defined within the logic (as the addition of two

32 Real algebraic numbers

Cauchy sequences) and cannot be executed at all, while the one on the right is the executable
rational addition. When both operands of the real addition happen to constructed by rational
numbers (through Ratreal), the evaluator will rewrite with Lemma 4.10 and eliminate the
(not-executable) real additions. More about the idea of code equations can be found in the
tutorial [37].

Similar to the constructor of rational reals (Ratreal), we may first want to have a
constructor Alg of type _ ⇒ real to construct algebraic reals from some encodings of real
algebraic numbers.

An encoding (of a real algebraic number) is essentially a polynomial (with integer or
rational coefficients) and a root selection strategy to distinguish a particular real root of the
polynomial from any others. There are several such strategies, such as using a rational (or
dyadic rational4 for efficiency reasons) interval that only includes the target root, a natural
number to indicate the index of the root and Thom encoding [8, Proposition 2.28]. I have
decided to use the interval strategy, which is straightforward to implement. Therefore, Alg is
of type int poly ⇒ float ⇒ float ⇒ real, where the two float arguments represent
a dyadic rational interval.

As each real number in Isabelle is presented as a Cauchy sequence of type nat ⇒ rat,
we explicitly construct such a sequence using a suitable encoding:

fun to_cauchy:: "rat poly × rat × rat ⇒ nat ⇒ rat"

where
"to_cauchy (_, lb, ub) 0 = (lb+ub)/2"

| "to_cauchy (p, lb, ub) (Suc n) = (

let c = (lb+ub)/2

in if poly p lb * poly p c ≤ 0

then to_cauchy (p, lb, c) n

else to_cauchy (p, c, ub) n)"

where poly p x evaluates the polynomial p at the point x. Note, rat poly × rat × rat

encodes a real algebraic number here (rather than int poly × float × float), as we can
embed int and float into rat.

It can be then shown that the sequence constructed by to_cauchy (p, lb, ub) is indeed
a Cauchy sequence and the real number represented by this sequence resides within the
interval [lb,ub], provided lb < ub:

Lemma 4.11 (to_cauchy_cauchy).
fixes p::"rat poly" and lb ub ::rat

4A dyadic rational number is a rational number of the form a2e for a,e ∈ Z.

4.2 Implementation 33

assumes "lb < ub"

defines "X ≡ to_cauchy (p,lb,ub)"

shows "cauchy X"

Lemma 4.12 (to_cauchy_bound).
fixes p::"rat poly" and lb ub ::rat

defines "X ≡ to_cauchy (p,lb,ub)"

assumes "lb < ub"

shows "lb ≤ Real X" "Real X ≤ ub"

Note, the function Real of type (nat ⇒ rat) ⇒ real constructs a real number from
its underlying representation (i.e., a Cauchy sequence).

Finally, we can finish the definition of Alg :

definition valid_alg::"int poly ⇒ float ⇒ float ⇒ bool" where
"valid_alg p lb ub = (lb < ub ∧ poly p lb * poly p ub < 0

∧ card ({x::real. poly p x = 0 ∧ lb < x ∧ x < ub}) = 1)"

definition Alg:: "int poly ⇒ float ⇒ float ⇒ real" where
"Alg p lb ub = (if valid_alg p lb ub

then Real (to_cauchy (p, lb, ub))

else undefined)"

where valid_alg p lb ub ensures

• lb < ub,

• the polynomial p is of different signs (and non-zero) at lb and ub,

• the polynomial p has exactly one real root within the interval (lb,ub).

With the help of Alg, we can now encode the real algebraic number
√

2 as

Alg [:-2,0,1:] 1 2

where [:-2,0,1:] corresponds to the polynomial −2x0 +0x1 +1x2 = x2−2, and 1 and 2
are the lower bound and upper bound respectively, such that

√
2 is the only root of x2−2

within the interval (1,2).
Furthermore, we can formally derive that Alg p lb ub is indeed a root of p within the

interval (lb,ub) :

34 Real algebraic numbers

Lemma 4.13 (alg_bound_and_root).
fixes p::"int poly" and lb ub::float

assumes "valid_alg p lb ub"

shows "lb < Alg p lb ub" and "Alg p lb ub < ub"

and "poly (of_int_poly p) (Alg p lb ub) = 0"

where of_int_poly p embeds the integer polynomial p into a real one.

4.2.2 Univariate sign determination through the Sturm-Tarski theo-
rem

Given a polynomial q with rational coefficients and my encoding of a real algebraic number
α

α = (p, lb,ub)

where p is an integer polynomial, and lb and ub are dyadic rationals, we can effectively
decide the sign of q(α) using the Sturm-Tarski theorem in Chapter 3, provided valid_alg p

lb ub holds. The rationale behind is that valid_alg p lb ub ensures α is the only root of
p within the interval (lb,ub), hence

sgn(q(α)) = ∑
x∈(lb,ub),p(x)=0

sgn(q(x))

= TaQ(q, p, lb,ub)

= Var(SRemS(p, p′q); lb,ub).

Importantly, it can be observed that evaluating Var(SRemS(p, p′q); lb,ub) requires only
rational arithmetic rather than costly algebraic arithmetic.

To be even more efficient, we can refine the procedure further to make use of dyadic
rational arithmetic. The main advantage of dyadic rational arithmetic over rational arithmetic
is reduced normalisation steps and possible bit-level operations. For example, consider two
rational numbers a1

b1
and a1

b2
where a1,b1,a2,b2 ∈ Z, their sum is

a1

b1
+

a2

b2
=

a1b2 +a2b1

b1b2
=

(a1b2 +a2b1)/c
(b1b2)/c

where c = gcd(a1b2 +a2b1,b1b2).

To counter the growth in the size of representations, we usually need to normalise the result
by factoring out the gcd. Such gcd operations can be the source of major computational
expense. Thankfully, they are unnecessary in the context of dyadic rationals. The sum of two

4.2 Implementation 35

dyadic rationals (a1,e1) and (a2,e2) where a1,e1,a2,b2 ∈ Z is

a12e1 +a22e2 =

(a12e1−e2 +a2)2e2 if e1 > e2

(a1 +a22e2−e1)2e1 otherwise.

Moreover, multiplications by powers of two, such as a12e1−e2 , can be optimised by shift
operations.

However, the problem with dyadic rational numbers is that they do not have the division
operation (e.g. 1×20 divided by 3×20 is no longer a dyadic rational), hence they do not
form a field, while Euclidean division only works for polynomials over a field. This problem
can be solved if we switch from Euclidean division (mod and div):

p = (p div q)q+(p mod q) and (q = 0∨deg(p mod q)< deg(q))

to pseudo-division (pmod and pdiv) [29]:

lcoef(q)1+deg(p)−deg(q)p = (p pdiv q)q+(p pmod q)

and (q = 0∨deg(p pmod q)< deg(q))

where lcoef(q) is the leading coefficient of q,

since pseudo-division can be carried out by polynomials over an integral domain (rather than
a field).

Based on pseudo-division, the signed pseudo-remainder sequence (SPRemS) can be
defined:

function spmods :: "’a::idom poly ⇒ ’a poly ⇒ (’a poly) list" where
"spmods p q = (if p = 0 then [] else

let

m = (if even(degree p+1-degree q) then -1 else -lead_coeff q)

in

Cons p (spmods q (smult m (p pmod q))))"

where smult is the scalar product on polynomials and lead_coeff q is the leading coefficient
of q. Accordingly, the function to count the difference in sign variations can be refined:

definition changes_itv_spmods::

"’a ::linordered_idom ⇒ ’a ⇒ ’a poly ⇒ ’a poly ⇒ int" where
"changes_itv_spmods a b p q = (let ps = spmods p q in

changes_poly_at ps a - changes_poly_at ps b)"

36 Real algebraic numbers

and linked to the previous one based on signed remainder sequences (SRemS):

Lemma 4.14 (changes_spmods_smods).
fixes p q::"float poly" and a b::"float"

shows "changes_itv_spmods a b p q

= changes_itv_smods (real_of_float a) (real_of_float b)

(of_float_poly p) (of_float_poly q)"

where real_of_float embeds a float into real and of_float_poly coverts a float poly

(i.e., polynomial with dyadic rational coefficients) to a real poly by embedding each of the
coefficients into real.

Finally, I define a function sgn_at that returns the sign of a univariate polynomial at
some point:

definition "(sgn_at::real poly⇒real⇒real) = (λq x. sgn (poly q x))"

Note, for now, if either x or any coefficient of q is an irrational real number (e.g. an irrational
real algebraic number), evaluating sgn_at q x will raise an exception, as Isabelle/HOL, by
default, only supports rational arithmetic. By proving some code equations, we can establish
the executability of sgn_at q x when x is constructed by Alg p lb ub and coefficients of q
are rational reals:

Lemma 4.15 (sgn_at_code_alg[code]).
fixes q::"real poly" and p::"int poly" and lb ub::float

shows "sgn_at q (Alg p lb ub) = (

if valid_alg p lb ub ∧ (∀x∈set (coeffs q). is_rat x) then

(let

p’::float poly = of_int_poly p;

q’::float poly = of_int_poly (int_poly q)

in

of_int (changes_itv_spmods lb ub p’ (pderiv p’ * q’)))

else Code.abort (STR ’’Invalid sgn_at’’)

(λ_. sgn_at q (Alg p lb ub)))"

where

• ∀x∈set (coeffs q). is_rat x checks if each coefficient of q is rational,

• of_int_poly converts an integer polynomial into a dyadic rational one,

• int_poly clears denominators in the coefficients by multiplying each coefficient by
the least common multiple (of the denominators),

4.2 Implementation 37

• Code.abort throws an exception, if either (p, lb,ub) is an invalid representation of a
real algebraic number or the polynomial q has any non-rational coefficient.

And note that evaluating changes_itv_spmods lb ub p’ (pderiv p’ * q’) requires only
dyadic arithmetic, which is much more efficient than exact algebraic arithmetic.

Moreover, the executability of valid_alg is established similarly as well:

Lemma 4.16 ([code]).
fixes p::"int poly" and lb ub::float

shows "valid_alg p lb ub = (lb < ub

∧ (sgn (poly (of_int_poly p) lb) * sgn (poly (of_int_poly p) ub) < 0)

∧ changes_itv_spmods lb ub (of_int_poly p) (pderiv (of_int_poly p)) = 1)"

where

changes_itv_spmods lb ub (of_int_poly p) (pderiv (of_int_poly p)) = 1

checks if the polynomial p has exactly one real root within the interval (lb,ub) by exploiting
Sturm’s theorem (a special case of the formalised Sturm-Tarski theorem).

After establishing the executability of sgn_at on real algebraic numbers, we can now
check the sign of p(x) = 1

2x2−1 at
√

2 by typing the following command:

value "sgn_at [:-1,0,1/2:] (Alg [:-2,0,1:] 1 2)"

which returns 0 (i.e. p(
√

2) = 0).

4.2.3 Deciding the sign of a bivariate polynomial at a real algebraic
point

In the previous section, I have demonstrated how to algorithmically decide the sign of a
univariate polynomial (with rational coefficients) at real algebraic points with only (dyadic)
rational arithmetic. In this section, I will generalise this idea to bivariate cases.

To illustrate the idea for a bivariate sign determination procedure, suppose we want to
decide the sign of q(y,x) ∈ Q[y,x] at (α,β) with α = (p1,a1,b1) and β = (p2,a2,b2). By
substituting y by β , we have q(β ,x) as a univariate polynomial in Q(β)[x], where Q(β) is
the field Q extended by β . Pretending to have arithmetic of real algebraic numbers, we can
still use the univariate sign determination procedure:

TaQ(q(β ,x), p1(x),a1,b1)

=Var(SPRemS(p1(x), p1(x)′q(β ,x));a1,b1)
(4.2)

38 Real algebraic numbers

To proceed from (4.2), we need to somehow eliminate algebraic arithmetic in the operation
pmod inside SPRemS. A key lemma is

Lemma 4.17 (poly_y_dist_pmod).
fixes p::"’a::idom bpoly" and y::’a

assumes "poly (lead_coeff p) y ̸= 0" and "poly (lead_coeff q) y ̸= 0"

shows "(poly_y p y) pmod (poly_y q y) = poly_y (p pmod q) y"

where ’a bpoly is, in fact, a synonym of ’a poly poly, which is the type we use to represent
bivariate polynomials in Isabelle/HOL. This is the so-called recursive representation, where
for example, the bivariate polynomial

4xy+3x+2y+1 = 1+2y+(3+4y)x ∈ (Z[y])[x]

is encoded as [:[:1,2:],[:3,4:]:]. Moreover, the function poly_y p a substitutes the
value a for variable y in p. For example,

value "poly_y [:[:1,2:],[:3,4:]:] (2::int)"

evaluates to [:5, 11:], which can be mathematically interpreted as (4xy+3x+2y+1)[y→
2] = 5+11x.

An important property about Lemma 4.17 is that the left-hand occurrence pmod operates
over Q(β)[x] (as poly_y p y can be considered to be of type Q(β)[x], provided p ∈Q[y,x]
and y is instantiated to β), which demands algebraic arithmetic, while the right-hand occur-
rence of pmod operates over Q[y,x], which only requires arithmetic over rational numbers.
Therefore, provided the leading coefficients of p and q do not vanish when evaluating at y
(i.e., poly (lead_coeff p) y ̸= 0 and poly (lead_coeff q) y ̸= 0), we can eliminate
algebraic arithmetic in pmod.

In order to rewrite with Lemma 4.17 inside a remainder sequence, we need to satisfy
its assumptions. Therefore, I have defined a function degen (for ‘degenerates’) of type ’a

bpoly ⇒’a ⇒’a bpoly, such that degen p y iteratively removes the leading coefficient of
p until it does not vanish at y or p becomes 0 :

lift_definition degen::"’a bpoly ⇒ ’a ⇒’a bpoly" is
"λp y n. (if poly_y p y ̸= 0 ∧ n ≤degree (poly_y p y)

then coeff p n else 0)"

Note that the term (λp y n. ...) above is of type ’a bpoly ⇒ ’a ⇒ nat ⇒ ’a poly,
so degen is defined in a way where degen p y (of type ’a bpoly) is lifted from its underlying
representation,5 which is of type nat ⇒’a poly.

5’a poly is constructed as a subset of nat ⇒’a (i.e., a mapping from exponents to coefficients).
Haftmann et al. [38] discuss how polynomials are formalised in Isabelle/HOL.

4.2 Implementation 39

For example, a bivariate polynomial 1+y+(y2−2)x2 degenerates to 1+y when y =
√

2,
hence the command

value "degen[:[:1,1:],0,[:-2,0,1:]:] (Alg [:-2,0,1:] 1 2)"

evaluates to [:[:1,1:]:].

Properties of degen include that degenerating the bivariate polynomial p with respect to
y does not affect the result of evaluating it at y :

Lemma 4.18 (poly_y_degen). "poly_y (degen p y) y = poly_y p y"

This holds because only leading coefficients that vanish at y are removed. Moreover, the
leading coefficient of degen p y will not vanish at y unless p vanishes at y :

Lemma 4.19 (degen_lc_not_vanish).
assumes "degen p y ̸= 0"

shows "poly (lead_coeff (degen p y)) y ̸=0"

With the help of degen, we can define another remainder sequence spmods_y that is
similar to the previous signed pseudo remainder sequence spmods except for that spmods_y
p q y keeps degenerating each remainder with respect to y :

function spmods_y :: "’a::idom bpoly ⇒ ’a poly poly

⇒’a ⇒ (’a poly poly) list" where
"spmods_y p q y = (if p = 0 then [] else

let

mul = (if even(degree p+1-degree q)

then -1

else -lead_coeff q);

r = degen (smult mul (p pmod q)) y

in

Cons p (spmods_y q r y))"

By exploiting Lemma 4.17, we have established the relationship between spmods and
spmods_y :

Lemma 4.20 (spmods_poly_y_dist).
fixes p q :: "’a::idom bpoly" and y::"’a::idom"

assumes "poly (lead_coeff p) y ̸= 0" and "poly (lead_coeff q) y ̸= 0"

shows "spmods (poly_y p y) (poly_y q y)

= map (λp. poly_y p y) (spmods_y p q y)"

40 Real algebraic numbers

Note, similar to what I have stated for Lemma 4.17, the importance of Lemma 4.20 is
that the left-hand remainder sequence (spmods) requires arithmetic over Q(β)[x] (provided
p q ∈Q[y,x] and y= β) while the right-hand sequence (spmods_y) only requires arithmetic
over Q[y,x].

Let spmods_y p q y be represented as SPRemS′(p,q,y), we can rewrite SPRemS with
Lemma 4.20:

lcoefx(q)(β) ̸= 0 =⇒
SPRemS(p1(x), p1(x)′q(β ,x)) = SPRemS′(p1(x), p1(x)′q(y,x),β)[y→ β] (4.3)

where lcoefx(q) ∈Q[y] is the leading coefficient of the bivariate polynomial q ∈Q[y,x] with
respect to x. [y→ β] performs substitution on a list of polynomials. For example, let [x,x+y]
be a list of polynomials, then [x,x+ y][y→ 3] = [x,x+3].

By Equations (4.2) and (4.3), we have

lcoefx(q)(β) ̸= 0 =⇒
TaQ(q(β ,x), p1(x),a1,b1) = Var(SPRemS′(p1(x), p1(x)′q(y,x),β)[y→ β];a1,b1) (4.4)

Note, SPRemS′ operates over Q[y,x] and Var requires deciding the sign of some univariate
polynomial r ∈ Q(β)[x] when x = a1∨ x = b1. Fortunately, as both a1 and b1 are rational
numbers, the sign of r(a1) and r(b1) can be decided again using our univariate sign deter-
mination procedure. Hence, evaluating the right-hand side of Equation (4.4) requires only
arithmetic on rational numbers, and we can now decide the sign of q(β ,α) with only rational
arithmetic (provided lcoefx(q)(β) ̸= 0).

To give an example, suppose we want to decide the sign of α − β when α =
√

2 =

(x2−2,1,2) and β =
√

3 = (x2−3,1,2), the calculation is as follows:

TaQ(x−β ,x2−2,1,2) = Var(SPRemS′(x2−2,(2x)(x− y),β)[y→ β];1,2)

= Var([x2−2,2x2−2xy,−4xy+8,64y2−128][y→ β];1,2)

= Var([x2−2,2x2−2xy,−4xy+8,64y2−128][x→ 1,y→ β])

−Var([x2−2,2x2−2xy,−4xy+8,64y2−128][x→ 2,y→ β])

= Var([−1,−2y+2,−4y+8,64y2−128][y→
√

3])

−Var([2,−4y+8,−8y+8,64y2−128][y→
√

3])

= 1−2 =−1,

4.2 Implementation 41

provided lcoefx(x− y)(β) = 1 ̸= 0. Therefore, we know that (x− y)[x→
√

2,y→
√

3] is
negative.

In Isabelle/HOL, I have defined the bivariate sign determination procedure as bsgn :

definition bsgn_at::"real bpoly ⇒ real ⇒ real ⇒ real" where
"bsgn_at q x y=sgn (bpoly q x y)"

and the executability of bsgn_at on the algebraic reals is established by the following code
equation:

Lemma 4.21 (bsgn_at_code2[code]).
"bsgn_at q (Alg p1 lb1 ub1) y =

(if valid_alg p1 lb1 ub1

then

(let

q’ = degen q y

in (if q’ = 0 then 0 else

let ps = spmods_y (lift_x p1) (lift_x (pderiv p1) * q’) y

in changes_bpoly_at ps lb1 y - changes_bpoly_at ps ub1 y))

else

Code.abort (STR ”invalid Alg”) (λ_. bsgn_at q (Alg p1 lb1 ub1) y))"

where letting q’ = degen q y enables q’ to satisfy the assumption of Equation (4.4), pderiv
means derivation and lift_x :: ’a::zero ⇒ ’a poly poly lifts a univariate polynomial
to bivariate. Moreover,

changes_bpoly_at ps lb1 y - changes_bpoly_at ps ub1 y

implements the Var operation. And also, Code.abort throws an exception when Alg p1

lb1 ub1 fails to be a valid real algebraic number. Essentially, Lemma 4.21 implements
Equation (4.4).

Thanks to bsgn_at, we can now formally evaluate the sign of (x− y)[x→
√

2,y→
√

3]
by the following command:

value "bsgn_at [:[:0,-1:],[:1:]:] (Alg [:-2,0,1:] 1 2) (Alg [:-3,0,1:] 1 2)"

which returns -1.

To restate: I have implemented a decision procedure (called bsgn_at) to decide the sign
of a bivariate polynomial with rational coefficients at real algebraic points. This procedure
uses no real algebraic arithmetic, just arithmetic on (dyadic) rational numbers.

42 Real algebraic numbers

4.2.4 Enable executability on algebraic reals

Although it is possible to do verified algebraic arithmetic as in Coq [20], with the help of
bsgn_at, we can do better. We can actually use untrusted external code to do such arithmetic,
validate the result and bring it back the framework of higher order logic. The rationale
behind this methodology is that untrusted but sophisticated code usually offers by far the best
performance. Using untrusted code when building decision procedures improves performance
in most cases; on the other hand, to provide our own trustworthy code would require costly
formal verification. Another benefit of using external untrusted code is modularity: we can
easily substitute one piece of code by another without modifying any proofs.

The following lemma illustrates the idea of using untrusted code in algebraic arithmetic:

Lemma 4.22 (alg_add_bsgn).
fixes p1 p2 p3::"int poly" and lb1 lb2 lb3 ub1 ub2 ub3::"float"

defines "x ≡ Alg p1 lb1 ub1" and "y ≡ Alg p2 lb2 ub2"

and "pxy ≡ [:[:0::real,1:],[:1:]:]"

assumes valid:"valid_alg p3 lb3 ub3"

and bsgn1:"bsgn_at ((lift_x (of_int_poly p3)) ◦p pxy) x y = 0"

and bsgn2:"bsgn_at ([:[:- real_of_float lb3,1:],[:1:]:]) x y > 0"

and bsgn3:"bsgn_at ([:[:- real_of_float ub3,1:],[:1:]:]) x y < 0"

shows "Alg p3 lb3 ub3 = x + y"

Here, let x = Alg p1 lb1 ub1 and y = Alg p2 lb2 ub2,

• the assumption valid checks if Alg p3 lb3 ub3 is a valid real algebraic number,
which guarantees that p3 has exactly one real root within interval (lb1,ub1),

• bsgn1 checks if p3 vanishes at x+y, within which ◦p is polynomial composition and
pxy stands for the bivariate polynomial x+ y,

• bsgn2 and bsgn3 checks if lb3 < x+y and x+y < ub3 respectively.

With these three assumptions, all of which can be computationally checked, we can show Alg

p3 lb3 ub3 = x + y. Therefore, to calculate real algebraic addition, we can use untrusted
code to compute p3, lb3 and ub3, and obtain the result as a sound Isabelle theorem with the
help of Lemma 4.22.

In order to interact with untrusted code, I have followed the idea of foreign function
interface [63]. First, I declare a constant alg_add without attaching any definitions:

consts alg_add::"integer list × (integer × integer) × (integer × integer)

⇒ integer list × (integer × integer) × (integer × integer)

4.2 Implementation 43

⇒ integer list × (integer× integer) × (integer × integer)

× ((integer × integer) option)"

where integer × integer encodes float and integer list encodes int poly. As Is-
abelle does not directly link float to the target language, I decide to use the quotient of two
integers (which appears more primitive and closer to the native level) to represent float,
and similar reasons apply to int poly. Also note, in Isabelle, integer is an equivalent
type to int but directly maps to arbitrary precision integers (e.g. IntInf.int in SML) in
the target language when doing evaluations. Essentially, I let alg_add be an unspecified
constant that takes representations of two algebraic numbers and returns the representation of
their addition and (integer × integer) option, where (integer × integer) option is
a possible optimisation in case the result is a rational number.

To enable alg_add to do calculations, I use the adaptation technique to link a constant in
Isabelle/HOL to a target language constant, so that when the logical constant gets called in
evaluation, the target language constant gets invoked instead:

code_printing constant alg_add ⇀ (SML) "untrustedAdd"

where untrustedAdd is currently backed up by Grant Passmore’s code for algebraic opera-
tions in MetiTarski [74]. After such linking, alg_add becomes executable:

value "alg_add([-2,0,1],(1,1),(2,1))([-3,0,1],(1,1),(2,1))"

evaluates the sum of
√

2= (x2−2,1,2) and
√

3= (x3−3,1,2), and returns the result ([1, 0,

- 10, 0, 1], (2, 1), (4, 1), None), which encodes
√

2+
√

3 as (x4−10x2 +1,2,4).
The code equation for real algebraic addition is the following:

Lemma 4.23 ([code]).
"Alg p1 lb1 ub1 + Alg p2 lb2 ub2 =

(let

(ns,(lb3_1,lb3_2),(ub3_1,ub3_2),_) = alg_add (to_alg_code p1 lb1 ub1)

(to_alg_code p2 lb2 ub2);

(p3,lb3,ub3) = of_alg_code ns lb3_1 lb3_2 ub3_1 ub3_2

in

(if (*assumptions in Lemma 4.22*) then

Alg p3 lb3 ub3

else

Code.abort (STR ”alg_add fails to compute a valid answer”)

(λ_. Alg p1 lb1 ub1 + Alg p2 lb2 ub2)))"

44 Real algebraic numbers

where to_alg_code encodes int poly and float to integer list and integer ×integer
respectively, while of_alg_code does the reverse. The command Code.abort inserts an
exception with an error message, that is, when the untrusted computation alg_add fails to
give a correct result, an exception will be thrown. This code equation can be shown to be
correct using Lemma 4.22.

In a very similar way of exploiting untrusted code, I have defined subtraction, mul-
tiplication and inversion. As for negation, the code equation does not require untrusted
code:

Lemma 4.24 ([code]).
"- Alg p lb ub =

(if valid_alg p lb ub then

Alg (p ◦p [:0,-1:]) (-ub) (-lb)

else

Code.abort (STR ’’invalid Alg’’) (%_. - Alg p lb ub))"

where p ◦p [:0,-1:] substitutes variable x in a univariate polynomial p by−x. The rationale
behind this code equation is

p(α) = 0∧q(x) = p(−x) =⇒ q(−α) = 0.

Also, p(-x) can be shown to have exactly one real root within the interval (−lb,−ub),
provided that p(x) has exactly one within the interval (lb,ub).

By composing multiplicative inverse and multiplication, we obtain division:

Lemma 4.25 ([code]). "Alg p1 lb1 ub1 / Alg p2 lb2 ub2

= Alg p1 lb1 ub1 * (inverse (Alg p2 lb2 ub2))"

Finally, the executability of the arithmetic of our algebraic reals can be illustrated by the
following example:

value "Alg [:-2,0,1:] 1 2 / Alg [:-3,0,1:] 1 2

+ Alg [:-5,0,1:] 2 3 > Alg [:-7,0,2:] 1 2"

which stands for
√

2/
√

3+
√

5 >
√

7/2 and returns true.

To repeat, I have enabled executable arithmetic and comparison operations on algebraic
reals by deriving new code equations for the pseudo constructor Alg. Some of these code
equations, such as the one for algebraic addition, depend on untrusted code, whose results
are verified using the bivariate sign determination algorithm bsgn_at, and thus brought back
into higher-order logic.

4.3 Experiments 45

Expression Verified evaluation Unverified evaluation (MetiTarki)

(−
√

2)+(−
√

3)− (−
√

5) 0.24s 0.02s
(∏10

n=2
√

n)(
√

17−
√

19) 0.84s 0.15s
∑

5
n=2
√

n 1.9s 1.4s
(
√

2+
√

6)3 1.18s 0.26s

Fig. 4.1 Comparison between verified evaluation and unverified evaluation

4.2.5 Linking the algebraic reals to the real algebraic numbers

We have just seen executable arithmetic and ordering operations on algebraic reals constructed
by the constructor Alg, of type int poly ⇒ float ⇒ float ⇒ real. To enable the same
executability on type alg, we only need to build a constructor for alg lifted from Alg :

lift_definition RAlg:: "int poly ⇒ float ⇒ float ⇒ alg" is
"λp lb ub. if valid_alg p lb ub then Alg p lb ub else 0"

and we can then have executable arithmetic and ordering operations on alg as well:

value "RAlg [:-2,0,1:] 1 2 * RAlg [:-3,0,1:] 1 2

> RAlg [:-5,0,1:] 2 3"

where op * and op > in the command above operate over alg instead of real.

4.3 Experiments

This section presents a few examples to demonstrate the efficiency of my implementation.
All the experiments are run on an Intel Core 2 Quad Q9400 (quad core, 2.66 GHz) and 8
gigabytes RAM. When benchmarking verified operations, the expression to evaluate is first
defined in Isabelle/HOL, and then extracted and evaluated in Poly/ML. The reason for this
is that when invoking value in Isabelle/HOL to evaluate an expression, a significant and
unpredictable amount of time is spent generating code, so I evaluate an extracted expression
to obtain more precise results.

Firstly, I compare evaluations of the same expression using verified arithmetic from
my implementation and unverified ones from MetiTarski (see Fig. 4.1). The data in Fig.
4.1 indicate that my verified arithmetic is 2 to 15 times slower than unverified ones due
to overhead in various validity checks and inefficient data structures. I expect to narrow
this gap by further refining code equations in the implementation. The experiments have

46 Real algebraic numbers

also demonstrated inefficiencies in algebraic arithmetic in the current version of MetiTarski,
which evaluates (

√
2+
√

6)3 to

(x8−3584x6 +860160x4−14680064x2 +16777216,
2601
128

,
6125

8
)

while Mathematica6 can evaluate the same expression to

(x4−3328x2 +4096,2,59)

instantly. By basing our untrusted code on more sophisticated algebraic arithmetic imple-
mentations such as Z3 and Mathematica, which effectively control coefficient and degree
growth, we should obtain further improvements in my algebraic arithmetic.

I have also experimented with the bivariate sign determination procedure alone, which
appears to be quite efficient. For example, given the large bivariate polynomial p(x,y) shown
in Fig. 4.2, bsgn_at can decide p(

√
6,
√

7) = 0 or p(
√

13,
√

29)> 0 in less than 0.05s. Note,
the current bsgn_at always calculates a remainder sequence no matter whether the result is
−1, 0 or 1, so bsgn_at should take similar amount of time if the input argument is of similar
complexity. In the future, I may optimise bsgn_at by letting it attempt to decide the sign
using interval arithmetic before calculating a remainder sequence; in this case bsgn_at may
run much faster if the polynomial does not vanish at the algebraic point.

4.4 Related work

Prior to this work, Cyril Cohen constructed real algebraic numbers in Coq [20], from which I
have gained much inspiration. There are some major differences between my work and his:

• Cohen’s work is part of the gigantic formalisation of the odd order theorem [36] and is
mainly of theoretical interest. My work, on the contrary, is for practical purposes, as I
intend to build effective decision procedures on the top of the current formalisation.
This difference in intent is fundamental and leads to different design choices, such as
whether to use efficient untrusted code.

• My formalisation follows Isabelle’s tradition of separating abstraction and implemen-
tation, that is, formalising theories first and restoring executability afterwards. It
is possible to switch to another encoding of real algebraic numbers (such as Thom

6We use the RootReduce and IsolatingInterval command in Mathematica 9 to find the defining polynomial
and root isolation interval.

4.4 Related work 47

P(x,y) = y14x24 − 49y12x24 + 1029y10x24 − 12005y8x24 + 84035y6x24 − 352947y4x24 + 823543y2x24 −
823543x24 + 4y15x23 − 196y13x23 + 4116y11x23 − 48020y9x23 + 336140y7x23 − 1411788y5x23 +
3294172y3x23 − 3294172yx23 + 6y16x22 − 380y14x22 + 10388y12x22 − 160524y10x22 + 1536640y8x22 −
9344692y6x22 + 35294700y4x22 − 75765956y2x22 + 70824698x22 + 4y17x21 − 488y15x21 +
18424y13x21 − 348488y11x21 + 3841600y9x21 − 25950008y7x21 + 106354696y5x21 − 243768728y3x21 +
240474556yx21 + y18x20 − 435y16x20 + 23124y14x20 − 565068y12x20 + 7991214y10x20 − 70978362y8x20 +
404376420y6x20 − 1441435548y4x20 + 2937577881y2x20 − 2619690283x20 − 240y17x19 + 21360y15x19 −
717360y13x19 + 12759600y11x19 − 135416400y9x19 + 891443280y7x19 − 3585941520y5x19 +
8103663120y3x19 − 7906012800yx19 − 60y18x18 + 14220y16x18 − 682560y14x18 + 15664320y12x18 −
210533400y10x18 + 1786632120y8x18 − 9753438240y6x18 + 33374668320y4x18 − 65372843340y2x18 +
56083278300x18 + 6480y17x17− 505440y15x17 + 15876000y13x17− 271162080y11x17 + 2800526400y9x17−
18078953760y7x17 + 71662358880y5x17 − 160096759200y3x17 + 154760200560yx17 + 1620y18x16 −
277020y16x16 + 12299040y14x16 − 269256960y12x16 + 3483988200y10x16 − 28557590040y8x16 +
150730554240y6x16 − 498587050080y4x16 + 943236739620y2x16 − 780471701100x16 −
103680y17x15 + 7516800y15x15 − 226074240y13x15 + 3751816320y11x15 − 37962691200y9x15 +
241343141760y7x15 − 945333244800y5x15 + 2091930986880y3x15 − 2006546048640yx15 −
25920y18x14 + 3576960y16x14 − 148770432y14x14 + 3128969088y12x14 − 39196700928y10x14 +
311791939200y8x14 − 1597046855040y6x14 + 5119436939904y4x14 − 9362458478016y2x14 +
7462643602176x14 + 1088640y17x13 − 75333888y15x13 + 2197746432y13x13 − 35697376512y11x13 +
355480151040y9x13 − 2232206242560y7x13 + 8658032737536y5x13 − 19006687252224y3x13 +
18110145400704yx13 + 272160y18x12 − 32169312y16x12 + 1263911040y14x12 − 25636818816y12x12 +
311754598848y10x12 − 2411253230400y8x12 + 11999023392384y6x12 − 37270525541760y4x12 +
65761344808992y2x12 − 50251170777696x12 − 7838208y17x11 + 525159936y15x11 − 14978815488y13x11 +
239276975616y11x11 − 2352442176000y9x11 + 14622780566016y7x11 − 56251597312512y5x11 +
122646925287936y3x11 − 116191823956992yx11 − 1959552y18x10 + 205752960y16x10 −
7683683328y14x10 + 150666034176y12x10 − 1780750718208y10x10 + 13398166381824y8x10 −
64739208683520y6x10 + 194443460499456y4x10 − 329440707211392y2x10 + 239069288578176x10 +
39191040y17x9 − 2564213760y15x9 + 71876367360y13x9 − 1133012966400y11x9 + 11022871910400y9x9 −
67938530042880y7x9 + 259521420856320y5x9 − 562515973125120y3x9 + 530240466470400yx9 +
9797760y18x8 − 936385920y16x8 + 33399164160y14x8 − 634130622720y12x8 + 7287769843200y10x8 −
53313060971520y8x8 + 249688212560640y6x8 − 722246796875520y4x8 + 1165376329568640y2x8 −
789597216374400x8−134369280y17x7 +8633226240y15x7−238673433600y13x7 +3721659540480y11x7−
35891546342400y9x7 + 219624001551360y7x7 − 833893702548480y5x7 + 1798206799334400y3x7 −
1687547919375360yx7 − 33592320y18x6 + 2972920320y16x6 − 101683952640y14x6 +
1871528924160y12x6 − 20912730854400y10x6 + 148566805309440y8x6 − 672422071587840y6x6 +
1861440445025280y4x6 − 2821801438955520y2x6 + 1729044999360000x6 + 302330880y17x5 −
19147622400y15x5 + 523435530240y13x5 − 8088560363520y11x5 + 77428953907200y9x5 −
470864825948160y7x5 + 1778446285056000y5x5 − 3817731358586880y3x5 + 3568748878679040yx5 +
75582720y18x4 − 6273365760y16x4 + 206451680256y14x4 − 3686763838464y12x4 +
40038373799424y10x4 − 275719665553920y8x4 + 1200874682004480y6x4 − 3151406817119232y4x4 +
4386241354376448y2x4 − 2269890275159808x4 − 403107840y17x3 + 25234550784y15x3 −
683429031936y13x3 + 10480561975296y11x3 − 99689778155520y9x3 + 602977978552320y7x3 −
2266926198018048y5x3 + 4846858942205952y3x3 − 4514882302328832yx3 − 100776960y18x2 +
7921069056y16x2 − 251539292160y14x2 + 4361304342528y12x2 − 46001094580224y10x2 +
306328298895360y8x2 − 1276416305160192y6x2 + 3130065461698560y4x2 − 3834330190580736y2x2 +
1377703055490048x2 + 241864704y17x− 14995611648y15x + 402946596864y13x− 6139009916928y11x +
58071715430400y9x − 349591726891008y7x + 1308936465801216y5x − 2788603774967808y3x +
2589417791041536yx + 60466176y18 − 4534963200y16 + 139314069504y14 − 2346571358208y12 +
24016802310144y10 − 154180404467712y8 + 609753012019200y6 − 1365846746923008y4 +
1344505391502336y2 − 49796495981568

Fig. 4.2 A large bivariate polynomial

48 Real algebraic numbers

encoding) without modifying any definition or lemma on the abstract level. It is also
possible to have multiple implementations of one abstraction [38], so that when doing
proof by reflection the code generator can choose the most efficient one depending on
the situation. On the other hand, Cohen’s formalisation is constructive and therefore
should be executable, though it may not be very efficient.

• In Cohen’s formalisation, arithmetic on real algebraic numbers is defined via verified
bivariate resultants, while mine is mainly based on a bivariate sign determination
procedure and some untrusted code.

After the publication of this chapter in 2016 [62], Thiemann and Yamada gave an
independent formalisation of algebraic numbers in Isabelle/HOL [83]. They have formalised
a theory of resultants and carried out algebraic arithmetic in a verified way (while I was
using untrusted external programs to compute resultants). Their formalisation is extensively
optimised and heavyweight: the formalisation contains more than 80000 LOC including
prerequisite entries in the Archive of Formal Proofs7, while my formalisation is merely about
6000 LOC. As a result, they do provide a faster exact algebraic arithmetic than my current
set-up, due to the inefficiency of MetiTarski as discussed in §4.3. On the other hand, my
formalisation still has the advantages of being modular and providing univariate/bivariate
sign determination procedures that require only (dyadic) rational arithmetic.

4.5 Remarks

4.5.1 Modularity

A distinguishing feature of this work is modularity, where the dependencies between different
parts are shown in Fig. 4.3. In particular, the modularity is reflected in two ways:

• Separation between the abstract type, alg, and the finite encoding, Alg. Switching
to another encoding does not affect anything on the abstract level or further theories
based on the abstraction.

• Use of untrusted code. Untrusted code is outside the logic of Isabelle/HOL (which is
why I have used a dashed arrow in Fig. 4.3 to indicate the detached relation), hence we
do not need to modify our formalisation as we revise the untrusted code, or substitute
new code.

This modularity should make the formalisation easy to maintain.
7www.isa-afp.org

www.isa-afp.org

4.5 Remarks 49

Abstract type alg
Pseudo constructor Alg

and bivariate sign
determination bsgn

Untrusted code

Algebraic arithmetic on Alg

Executable real algebraic number alg

Fig. 4.3 Dependence tree of my formalisation of real algebraic numbers

4.5.2 A potential problem

There is one potential drawback with my formalisation, and it is related to the use of untrusted
code. Recall that when interfacing with untrusted code, I declared a constant in the logic
without specifying it and linked it to a constant in the target language. In this case the logic
constant can be executed but no lemmas are associated with it. However, this method may
undermine proofs through reflection unless referential transparency8 is guaranteed in the
target language constant. For example, consider the ML function serial, which maintains a
counter and returns the number of times it is called. Linking an Isabelle constant, say time,
to the target language constant serial breaks referential transparency:

consts time :: "unit ⇒ integer"

code_printing constant time ⇀ (SML) "serial"

we have

value "time () = time ()"

which returns false and breaks reflexivity. This example is due to Lochbihler and Züst [63].
In general, I believe this is an inevitable risk whenever we want to reason with results brought
back by code_printing.

Fortunately, exact algebraic arithmetic is the only part in my thesis that inevitably depends
on code_printing. All other verified procedures (e.g., bsgn_at) and proof tactics, which I
will present later in this thesis, do not require this code-printing technique hence can be
free of this risk – their execution can be boosted through compilation into native code, but
such compilation can be switched off and the evaluation will then be treated as a process of

8Programs always return the same value and have the same effect if they are given the same input.

50 Real algebraic numbers

rewritings, which provides the highest trustability. Interested readers can consult the code
generation tutorial [37, §5] for various evaluation techniques.

4.5.3 Intended applications

Although I have managed to build exact algebraic arithmetic in this chapter, the main objective
is, actually, the univariate/bivariate sign determination procedure at real algebraic points
that uses only (dyadic) rational arithmetic. This is due to my long-term goal of building
practical decision procedures, and exact real algebraic arithmetic is rarely used in modern
computer algebra systems due to its extreme inefficiency. For example, in the lifting phase of
a CAD procedure, we may need to isolate the real roots of a polynomial with real algebraic
coefficients. Modern approaches usually use sophisticated techniques to soundly approximate
those coefficients to a certain precision rather than carrying out exact algebraic arithmetic
[79, 18, 82], relying on exact symbolic procedures as a fall-back in degenerate cases.

Following these efficient modern approaches, my sign determination procedures can be
improved in at least the following ways:

• Sophisticated interval arithmetic can be used to decide the sign before resorting to a
remainder sequence, as has been done in Z3 [29]. This approach should help when the
sign is non-zero.

• Pseudo-division, which I am currently using for building remainder sequences, is
not good for controlling coefficients growth. More sophisticated approaches, such as
subresultant sequences and modular methods, can be used to optimise the calculation
of remainder sequences.

Chapter 5

Deciding univariate polynomial
problems using untrusted certificates

In this chapter, I present a formally verified procedure based on CAD for univariate
polynomial problems with rational coefficients. Goals such as

∀x.(x2 > 2∧ x10−2x5 +1≥ 0)∨ x < 2

∃x.(x2 = 2∧ (x > 1∨ x < 0))

can be discharged by my tactic automatically.
A key feature of the procedure is its certificate-based design in which an external untrusted

(but ideally highly efficient) program is used to find certificates, and those certificates are then
checked by verified internal procedures. Overall, the soundness of the procedure depends
solely on the soundness of Isabelle’s logic (and code generation1) rather than trusted external
oracles. This is much like Isabelle’s sledgehammer tactic, which sceptically incorporates
various external tools.

Chapter outline. This chapter continues at follows: A motivating example (§5.1) and a
description of the overall design (§5.2) sketch the general idea of our procedure. The main
proof is described in (§5.3), which is followed by a discussion of interaction with external
solvers (§5.4). Finally, experiments and related work (§5.5) are described.

The material in this chapter is adapted from my joint publication [60] with Paulson and Passmore, where
they contributed to the design of the procedure and I carried out all the implementations.

1As my tactic is computationally intense, the procedure makes use of the proof by reflection technique [39].

52 Deciding univariate polynomial problems using untrusted certificates

5.1 A motivating example

x
−3 −

√
2
√

2

p(x) = 1
2x2−1

q(x) = x+3

Fig. 5.1 The plot of p(x) = 1
2x2−1 and q(x) = x+3

Unlike the general case of Rn, the restriction of CAD to univariate problems (i.e., to R1)
is relatively straight-forward. Suppose we wish to prove

∀x. p(x)> 0∨q(x)≥ 0

where
p(x) =

1
2

x2−1

q(x) = x+3.

To do so, we can decompose R into disjoint connected components induced by the roots
of p and q. This is illustrated in Fig. 5.1:

D= {(−∞,−3),{ −3 },(−3,−
√

2),{ −
√

2 },(−
√

2,
√

2),{
√

2 },(
√

2,+∞)}

root of q roots of p

and it can be observed that both p and q have invariant signs over each of these components.
For example, as can be seen from Fig. 5.1, p(x)< 0 and q(x)> 0 hold for all x ∈ (−

√
2,
√

2).
To decide the conjecture, we can pick sample points from each of these components and
evaluate λx. p(x)> 0∨q(x)≥ 0 at these points. That is,

5.1 A motivating example 53

∀x. p(x)> 0∨q(x)≥ 0

= ∀D ∈D.∀x ∈ D. p(x)> 0∨q(x)≥ 0

= ∀x ∈ {−4,−3,−2,−
√

2,0,
√

2,2}. p(x)> 0∨q(x)≥ 0

= (p(−4)> 0∨q(−4)≥ 0)∧ (p(−3)> 0∨q(−3)≥ 0)∧·· ·
∧ (p(2)> 0∨q(2)≥ 0)

= True

(5.1)

since

−4 ∈ (−∞,−3)

−3 ∈ {−3}
−2 ∈ (−3,−

√
2)

−
√

2 ∈ {−
√

2}
0 ∈ (−

√
2,
√

2)
√

2 ∈ {
√

2}
2 ∈ (
√

2,+∞).

Analogously, to decide an existential formula

∃x. p(x) = 0∧q(x)> 0,

we have

∃x. p(x) = 0∧q(x)> 0

= ∃D ∈D.∃x ∈ D. p(x) = 0∧q(x)> 0

= ∃x ∈ {−4,−3,−2,−
√

2,0,
√

2,2}.P(x) = 0∧q(x)> 0

= (p(−4) = 0∧q(−4)> 0)∨ (p(−3) = 0∧q(−3)> 0)∨·· ·
∨ (p(2) = 0∧q(2)> 0)

= True.

(5.2)

In performing these arguments, there were a few “obvious” subtleties:

54 Deciding univariate polynomial problems using untrusted certificates

• The decomposition of R into the seven regions given covered the entire real line. That
is,

(−∞,−3) ∪ {−3} ∪ (−3,−
√

2) ∪ {−
√

2} ∪ (−
√

2,
√

2) ∪ {
√

2} ∪ (
√

2,+∞) = R.

• The “sign-invariance” of p and q over each region was exploited to allow only a
single sample point to be selected from each region. This property holds as by the
intermediate value theorem, p and q can only change sign by passing through a root.

• The signs of univariate polynomials were evaluated at irrational real algebraic points
like
√

2 to determine the truth values of atomic formulas.

In creating our automatic proof procedure, all of this routine reasoning must, of course, be
formalised. Moreover, the isolation of polynomial roots (and thus sign-invariant regions) and
the sign determination for polynomials at real algebraic points are computationally expensive
operations. Computer algebra systems like Mathematica have decades of tuning in their
implementations of these core algebraic algorithms. To have a practical proof procedure, we
wish to take advantage of these highly tuned external tools as much as possible. Let me next
describe how this can be done.

5.2 A sketch of the certificate-based design

There is a rich history of certificate-based, sceptical integrations between proof assistants
and external solvers. Examples include John Harrison’s sums-of-squares method [42] and
the Sledgehammer [76] command in Isabelle.

Certificate-based approaches are motivated by many observations, including:

• External solvers are often highly tuned and run much faster than verified ones.

• Verification of certificates from external solvers is usually much easier than finding
them. Such verification ensures the soundness of the overall tactic.

• Switching between different external solvers does not require changes in formal proofs.

Algorithm 2 sketches my idea for univariate universal formulas. In particular, in line 3, I
use external programs to return real roots of polynomials (i.e., P) from the quantifier-free
part of the formula (i.e., F(x)). Those roots (i.e., roots) correspond to a decomposition
such that each polynomial from P has a constant sign over each component of this decom-
position. Since the roots are returned by untrusted programs, in line 5, I not only check

5.2 A sketch of the certificate-based design 55

Algorithm 2 Prove univariate universal formulas over reals

Require: F(x) is a quantifier-free formula over reals
Ensure: Return true if ∀x.F(x) holds

1: procedure UNIVERSAL(∀x.F(x))
2: P← extract polynomials from F(x) ▷ P⊆ Z[X]
3: roots← real roots of P ▷ Roots returned by external programs
4: samples← construct sample points from roots
5: if (∀x ∈ samples.F(x))∧ (roots are indeed all real roots of P) then
6: return true
7: end if
8: end procedure

∀x ∈ samples.F(x) as in Equation (5.1) but also certify that these roots are indeed all real
roots of P.

The step in line 3 in Algorithm 2 is more commonly referred as (real) root isolation,
which is a classic and well-studied topic in symbolic computing. Although I can in principle
formalise a root isolation procedure (e.g., using the Sturm-Tarski theorem), it is utterly
unlikely that my implementation will be competitive with state-of-the-art ones, especially
for polynomials of high degree, large bit-width, or whose roots are very close together.
Therefore, I delegate this computationally expensive step to external tools.

Algorithm 3 Prove univariate existential formulas over reals

Require: F(x) is a quantifier-free formula over reals
Ensure: Return true if ∃x.F(x) holds

1: procedure EXISTENTIAL(∃x.F(x))
2: r← solution to F(x) ▷ Solution returned by external programs
3: if F(r) then
4: return true
5: end if
6: end procedure

With existential formulas, the situation is even simpler as illustrated in Algorithm 3,
since we do not need to deal with the decomposition internally. Rather, all we need is a real
algebraic witness that satisfies λx.F(x) to certify ∃x.F(x). What is more interesting is that
the satisfaction problem for λx.F(x) can be not only solved by a CAD procedure, which is
complete but not very fast due to its symbolic nature, but also be complemented by highly
efficient incomplete numerical methods. Thus it is natural to externalise the step in line 2 in
Algorithm 3.

56 Deciding univariate polynomial problems using untrusted certificates

It is worth noting that both Algorithm 2 and 3 serve as proof tactics rather than decision
procedures – if our target goal is actually false, the tactic will simply fail (instead of returning
false). On the other hand, if the tactic fails, there could be a false goal, a bug in the tactic or a
bug in the external program, but none of these will affect the soundness of the tactic (provided
we trust Isabelle’s kernel). This is a common practice in interactive theorem proving, where
soundness is valued over completeness. Finally, to check that Algorithm 2 or 3 fails due to
false goals, we can always try to invoke the tactics on the negation of the previous goals.

5.3 The formal development of the proof procedure

In this section, I describe the formal development of the tactics sketched by Algorithms 2
and 3.

5.3.1 Parsing formulas

The first step of the tactic is to parse the target formula into a structured form. This process is
usually referred as reification [16] in Isabelle/HOL. More specifically, given an Isabelle/HOL
term e of type τ , we can define a (more structured) datatype δ and an interpretation function
interp of type δ ⇒ τ list⇒ τ , such that for some e‘ of type δ

e = interp e‘ xs

where xs is a list of free variables in e. Subsequently, instead of directly dealing with e, we
now convert it into a more pleasant form interp e‘ xs where e‘ is in fact a formal language
that captures the structure of e.

The datatypes I defined to capture the structure of target univariate formulas are as
follows:

datatype num = C real — Constant
| Var nat — Variable index
| Add num num | Minus num | Mul num num | Power num nat

datatype norm_num2 =

Pol "int poly" nat — an integer polynomial and its variable index
| Const real — constant
| Abnorm num — in case of anomalies (e.g., bivariate)

datatype qf_form2 =

5.3 The formal development of the proof procedure 57

Pos norm_num2 — is positive | Zero norm_num2 — is zero
| Neg qf_form2 — negation
| Conj qf_form2 qf_form2 — conjunction
| Disj qf_form2 qf_form2 — disjunction
| T — true | F — false

datatype norm_form2 =

QF qf_form2 — quantifier free
| ExQ norm_form2 — existential
| AllQ norm_form2 — universal

and the interpretation functions:

fun num_interp:: "num ⇒ real list ⇒ real" where
"num_interp (C i) vs = i"|

"num_interp (Var v) vs = vs!v"|

"num_interp (Add num1 num2) vs = num_interp num1 vs + num_interp num2 vs "|

"num_interp (Minus num) vs = - num_interp num vs "|

"num_interp (Mul num1 num2) vs = num_interp num1 vs * num_interp num2 vs "|

"num_interp (Power num n) vs = (num_interp num vs)^n"

fun norm_num2_interp :: "norm_num2 ⇒ real list ⇒ real" where
"norm_num2_interp (Pol p v) vs = poly (of_int_poly p) (vs!v)"|

"norm_num2_interp (Const c) vs = c"|

"norm_num2_interp (Abnorm num) vs = num_interp num vs" — anomaly

fun qf_form2_interp:: "qf_form2 ⇒ real list ⇒ bool" where
"qf_form2_interp (Pos norm_num) vs = (norm_num2_interp norm_num vs > 0)"|

"qf_form2_interp (Zero norm_num) vs = (norm_num2_interp norm_num vs = 0)"|

"qf_form2_interp (Neg qf_form) vs = (¬ qf_form2_interp qf_form vs)" |

"qf_form2_interp (Conj qf_form1 norm_form2) vs

= (qf_form2_interp qf_form1 vs ∧ qf_form2_interp norm_form2 vs)"|

"qf_form2_interp (Disj qf_form1 qf_form2) vs

= (qf_form2_interp qf_form1 vs ∨ qf_form2_interp qf_form2 vs)"|

"qf_form2_interp T vs = True"|

"qf_form2_interp F vs = False"

fun norm_form2_interp:: "norm_form2 ⇒real list ⇒ bool" where
"norm_form2_interp (QF qf) vs = qf_form2_interp qf vs"|

"norm_form2_interp (ExQ norm_form) vs

= (∃x. norm_form2_interp norm_form (x#vs))"|

58 Deciding univariate polynomial problems using untrusted certificates

"norm_form2_interp (AllQ norm_form) vs

= (∀x. norm_form2_interp norm_form (x#vs))"

Given the definition of a (structured) datatype norm_form2 and the corresponding inter-
pretation function norm_form2_interp, target formulas can now be parsed. For example, we
can convert a univariate formula

"∀x::real. x > 1/2 ∨ x < 1"

into an equivalent form

"norm_form2_interp

(AllQ (QF (Disj (Pos (Pol [:- 1, 2:] 0))

(Pos (Pol [:1, - 1:] 0))

)))

[]"

In particular, note

qf_form2_interp (Pos (Pol [:- 1, 2:] 0)) [x]

= (poly [:- 1, 2:] x > 0)

= (x > 1/2)

in which inequalities have been parsed into a polynomial sign determination problem.
On the contrary, a bivariate non-closed formula such as

"∃x::real. x + y >0"

will be converted into

"norm_form2_interp

(ExQ (QF (Pos

(Abnorm

(Add (Add (Add (C 0) (Mul (Var 0) (Add (C 1) (Mul (Var 0) (C 0)))))

(Add (C 0) (Mul (Var 1) (Add (C 1) (Mul (Var 1) (C 0))))))

(C 0))))))

[y]"

where the Abnorm constructor indicates that such formula is not supported by the current
tactic.

5.3 The formal development of the proof procedure 59

5.3.2 Existential case

To discharge a univariate existential formula is easy: we can computationally check if a
certificate (i.e., a real algebraic number) returned by an external solver satisfies the quantifier-
free part of the formula:

Lemma 5.1 (ExQ_intro).
fixes x::"alg_float" and qf_form::qf_form2

assumes "qf_form2_interp qf_form [of_alg_float x]"

shows "norm_form2_interp (ExQ (QF qf_form)) []"

where x of type alg_float

datatype alg_float =

Arep "int poly" float float — representation of a real algebraic number
| Flt float — a small optimization in case the number is dyadic rational

is a certificate that is supposed to be instantiated by an external solver. The function
of_alg_float converts x from alg_float to real. In other words, to prove an existential
formula:

"norm_form2_interp (ExQ (QF qf_form)) []"

we can computationally check the truth value of the quantifier-free part of the formula at x :

"qf_form2_interp qf_form [of_alg_float x]"

which is possible due to the univariate sign determination procedure described in §4.2.2 of
Chapter 4.

5.3.3 Universal case

For the universal case, the core lemma is as follows:

Lemma 5.2 (utilize_samples).
fixes P::"real ⇒ bool" and decomps::"real set set"

and samples::"real set" and f::"real set ⇒ real"

assumes "
⋃
decomps = IR"

and "∀d∈decomps. ∀x1∈d.∀x2∈d. P x1 = P x2"

and "∀d∈decomps. f d∈d" and "bij_betw f decomps samples"

shows "(∀x. P x) = (∀pt∈samples. P pt)"

60 Deciding univariate polynomial problems using untrusted certificates

where bij_betw f decomps samples states that f::real set ⇒ real is a bijective func-
tion between the decomposition decomps::real set set and the sample points samples::real
set. Essentially, what Lemma 5.2 shows is that given a predicate P::real ⇒ bool, an un-
bounded universal formula ∀x. P x is equivalent to a bounded one ∀pt∈samples. P pt, if
the truth value of P is constant over each component of the decomposition: ∀d∈decomps.
∀x1∈d.∀x2∈d. P x1 = P x2.

On top of Lemma 5.2, I similarly convert an unbounded univariate real formula into a
bounded one:

Lemma 5.3 (allQ_subst).
fixes root_reps::"alg_float list" and pols::"float poly set"

and qf_form::qf_form2

defines "samples ≡ map of_alg_float (mk_samples root_reps)"

assumes "Some pols = extractPols qf_form"

and "ordered_reps root_reps"

and "contain_all_roots root_reps pols"

and "valid_list root_reps"

shows "norm_form2_interp (AllQ (QF qf_form)) vs

= (∀x ∈ (set samples). norm_form2_interp (QF qf_form) (x#vs))"

where

• root_reps::alg_float list is a certificate that should be instantiated by an external
solver. More specifically, root_reps should be the representation of a list of real roots
(in ascending order) of polynomials from the quantifier-free part of the target formula,

• map of_alg_float (mk_samples root_reps) constructs sample points from the rep-
resentation of a list of roots,

• extractPols qf_form extracts polynomials from the quantifier-free part qf_form,

• ordered_reps root_reps and valid_list root_reps together ensure that the repre-
sentation of roots are valid and those roots are in ascending order,

• contain_all_roots roots_reps pols checks if root_reps is a representation of all
real roots of the polynomials pols. Specifically, by Sturm’s theorem, the number
of total distinct real roots of each p ∈ pols can be computed, which can be then
compared with the number of r ∈ root_reps that p(r)=0.

Most importantly, all assumptions of Lemma 5.3 and its right-hand side

5.4 Linking to an external solver 61

(∀x ∈ (set samples). norm_form2_interp (QF qf_form) (x#vs))

can be computationally checked, through which we can prove an unbounded univariate
universal formula: norm_form2_interp (AllQ (QF qf_form)) vs.

5.4 Linking to an external solver

Certificates for both existential and universal cases can be produced by any program per-
forming univariate CAD. For now, I implement the program on top of Mathematica. More
specifically, the universal certificates are constructed by the Mathematica command Semial-
gebraicComponentInstances, which gives sample points in each connected component of a
semialgebraic set. The existential certificates are constructed by the command FindInstance,
which incorporates powerful numerical methods to accelerate the search for real algebraic
sample points.

Also, it may be worth mentioning that after a certificate has been found, the tactic will
record it (as a string) so that repeating the proof no longer requires the external solver. This
is much like the sums-of-squares tactic [42].

In general, the certificate-based design grants us much flexibility: We can easily switch
to a more efficient external solver without modifying existing formal proofs. In fact, I was
first using an implementation of univariate CAD built within MetiTarski, which turned out to
be not very efficient, and I painlessly switched to the current one based on Mathematica. In
the future, I plan to experiment with other open-source CAD implementations such as Z3
and QEPCAD to provide more options with external solvers.

5.5 Experiments and related work

The most relevant work is the recent tarski strategy by Narkawicz et al. [71] in PVS. Both
their work and mine rely on a formal proof of the Sturm-Tarski theorem (which they call
Tarski’s theorem) and handle roughly the same class of problems2 (i.e., first-order univariate
formulas over reals). There are two main differences between their work and mine:

• Their procedure resembles Tarski’s original quantifier elimination [8, Chapter 2] and
Mahboubi and Cohen’s quantifier elimination procedure in Coq [65] by making use of
both the Sturm-Tarski theorem and matrices. In contrast, my tactic is based on CAD
and real algebraic numbers (instead of matrices).

2In fact, their tactic does not handle arbitrary boolean expressions like ours, but I believe this should not be
too hard to overcome.

62 Deciding univariate polynomial problems using untrusted certificates

ex1 : ∀x.¬(x≥−9∧ x < 10∧ x4 > 0)∨ x12 > 0

ex2 : ∀x.¬((x−2)2(−x+4)> 0∧ x2(x−3)2 ≥ 0

∧ x−1≥ 0∧−(x−2)2 +1 > 0)∨ (−(x− 11
12

))3(x− 41
10

)3 ≥ 0

ex3 : ∃x.x5− x−1 = 0∧ x12 +
425
23

x11− 228
23

x10−2x8− 896
23

x7− 394
23

x6+

456
23

x5 + x4 +
471
23

x3 +
645
23

x2− 31
23

x− 228
23

= 0∧ x3 +22x2−31≥ 0

∧ x22− 234
567

x20−419x10 +1948 > 0

ex4 : ∀x.x > 0∨ 20
9

x3 +
5
9

x2− 61
9

x >−4∨1≤ x∨ x≤ 0∨ 10
9

x2− 19
9

x≤−1

∨ 1
18

x3 +
31
45

x2− 13
9

x≤− 7
10
∨ 20

9
x3 +

5
9

x2− 61
9

x≤−4

ex5 : ∀x. − x3

3
− 10

3
x2− 5

6
x > 0∨ 1

3
x3 +

10
3

x2 +
5
6

x > 0∨1≤ x∨ x≤ 0

∨ 10
9

x2− 19
9

x≤−1∨ 1
18

x3 +
31
45

x2− 13
9

x≤− 7
10

∨ 14
15

x3− 64
15

x2− 101
30

x≤−11
5
∨ 20

9
x3 +

5
9

x2− 61
9

x≤−4

ex6 : ∃x. −70x6− 2052
5

x5− 4329
5

x4− 5409
10

x3− 267
2

x2− 51
10

x >− 7
10
∧ 49

162
x9 +

49
3

x8

+
175
18

x7 +
115774

405
x6 +

77743
135

x5− 57328
135

x4− 135853
810

x3− 71681
270

x2− 10327
270

x >−721
90

∧ 7
27

x8 +
280
27

x7− 595
54

x6 +
18964
135

x5 +
2698
135

x4− 24217
270

x3− 251
6

x2− 2981
90

x >−206
45

∧ 7
54

x7 +
112
27

x6 +
329
90

x5 +
2672
135

x4− 7933
270

x3 +
169
18

x2− 799
90

x >−103
90
∧ 7

27
x8 +

280
27

x7

+
935
54

x6 +
7264
135

x5 +
11323

135
x4− 12217

270
x3− 701

6
x2− 781

90
x >−77

15
∧ 2

9
x7 +

52
9

x6− 17
6

x5

+
2353
90

x4 +
307
45

x3− 811
30

x2− 361
30

x >−44
15
∧ 1

9
x6 +2x5 +

2
15

x4 +
41
90

x3− 2
15

x2

− 33
10

x >−11
15
∧ 49

162
x8 +

1540
81

x7 +
1109
27

x6 +
23483
810

x5 +
65378
405

x4− 11549
270

x3− 70225
324

x2

− 1339
405

x >−721
60
∧ 7

27
x7 +

203
18

x6− 52
9

x5 +
7753
270

x4 +
5191
180

x3− 2263
45

x2− 10741
540

x >−103
15

∧ 2
9

x6 +
59
9

x5− 493
36

x4 +
2113
90

x3− 811
180

x2− 1481
90

x >−22
5
∧ 1

9
x5 +

17
9

x4− 257
60

x3 +
563
90

x2

− 913
180

x >−11
10
∧ 20

9
x4− 5

2
x3 +

10
3

x2− 91
18

x >−2∧ 10
9

x3− 25
18

x2− 2
9

x >−1
2
∧ 20

9
x3

+
5
9

x2− 61
9

x >−4∧1 > x∧ x > 0∧ 10
9

x2− 19
9

x >−1∧ 1
18

x3 +
31
45

x2− 13
9

x >− 7
10
∧ 1

9
x4

+
34
15

x3− 53
30

x2− 253
90

x >−11
5
∧ 2

9
x5 +

82
9

x4 +
86
15

x3− 2051
90

x2− 97
90

x >−44
5
∧ 8

81
x8

+
931
81

x7 +
3113
27

x6− 289811
1620

x5 +
264373

810
x4 +

30583
270

x3− 298609
810

x2− 93307
1620

x >−193
5

∧ 7
27

x7 +
38
3

x6 +
28
9

x5− 2686
135

x4 +
6397
60

x3− 9151
90

x2− 4741
540

x >−77
10

5.5 Experiments and related work 63

ex7 : ∀x.x <−1∨0 > x∨ 1
8

x7 +
1207
35

x6 +
7083

10
x5 +4983x4 +

64405
4

x3 +26169x2

+
41613

2
x >−6435∨35x12 +22461058620x2 +11821609800x≤ 46204x11

+5263834x10 +144537452x9 +1758662439x8 +10317027768x7 +31842714428x6

+54212099480x5 +45938678170x4 +4171407240x3∨ x≤ 0∨753x10 +58568x9

+938908x8 +6857016x7 +27930066x6 +68338600x5 +102560612x4 +92372280x3

+45805760x2 +9609600x≤ 0∨10x11 +1101329460x2 +788107320x≤ 9179x10

+1061504x9 +24397102x8 +240283734x7 +1063536663x6 +2362290448x5

+2625491260x4 +782617220x3∨5x10 +81290790x2 +90935460x≤ 2828x9

+356071x8 +6846880x7 +51834563x6 +161529144x5 +237512625x4

+125595120x3∨207x9 +11237x8 +138652x7 +794964x6 +2505504x5 +4581220x4

+4837448x3 +2735040x2 +640640x≤ 0∨5x8 ≤ 608x7 +10261x6 +63520x5

+192458x4 +303324x3 +238560x2 +73920x∨98x8 +3514x7 +32711x6 +142928x5

+332962x4 +424284x3 +278880x2 +73920x≤ 0∨ x≤−1

Time (s)

Formula univ_rcf (Isabelle) univ_rcf_cert (Isabelle) tarski (PVS)

ex1 0.9 0.3 2.0
ex2 1.4 0.6 6.8
ex3 1.6 0.7 13.0
ex4 1.3 0.5 20.1
ex5 1.6 0.6 315.7
ex6 5.6 3.9 timeout
ex7 38.4 34.9 timeout

Note: timeout indicates failure to terminate within 24 hours

Fig. 5.2 Comparison between my tactic in Isabelle and the tarski strategy in PVS: univ_rcf
includes certificate searching and checking, while univ_rcf_cert includes only checking

64 Deciding univariate polynomial problems using untrusted certificates

• Their procedure is entirely built within PVS, while mine sceptically makes use of
efficient external programs to generate certificates.

To compare both tactics empirically, I have conducted experiments on several typical
examples from their paper3 and the MetiTarski project4 [74]. The experiments are run on a
desktop with an Intel Core 2 Quad Q9400 (quad core, 2.66 GHz) CPU and 8 gigabytes RAM.
Results of the experiments are illustrated in Fig. 5.2, where my univ_rcf tactic includes
both certificate searching and checking process, while the univ_rcf_cert does the checking
part only (when repeating a proof with certificates already recorded as a string).

In general, the experiments indicate that my tactic outperforms the tarski strategy in
PVS. Particularly, the advantage of my tactic becomes greater as the problems become
more complex, which can be attributed to the fact that my tactic has much better worst-case
computational complexity (polynomial vs. exponential in the number of polynomials).

In the case of general multivariate problems, the CAD procedure is doubly exponential
while Tarski’s quantifier elimination procedure is non-elementary in the number of variables
[8, Chapter 11]. When limited to univariate problems, the CAD procedure degenerates
to root isolation and sign determination on a set of univariate polynomials, which is of
polynomial complexity in the number of polynomials and their degree bound [8, Chapter 10].
In comparison, Tarski’s quantifier elimination procedure, even when limited to univariate
problems, is still exponential in the number of polynomials [65].

In addition, it is worth noting that as the problems become more complex (e.g., ex6 and
ex7 in Fig. 5.2), certificate checking becomes the bottleneck factor of my tactic (especially
for universal problems). This indicates that, despite the fact that certificate searching is
much harder than certificate checking, the Mathematica implementation is still much more
efficient than my verified certificate-checking procedure. This leaves much room for future
optimisations.

My work has also been greatly inspired by Mahboubi and Cohen’s quantifier elimination
procedure in Coq [65], which is also similar to Tarski’s procedure based on the Strum-Tarski
theorem. The fundamental difference between their work and mine is that they aim for
theoretical results (i.e., the decidability of real closed fields), while I intend to build practical
proof procedures.

Decision procedures based on Sturm’s theorem have been implemented in Isabelle and
PVS before [33, 72]. Their core idea is to count the number of real roots within a certain
(bounded or unbounded) interval. Generally, they can only handle formulas involving a

3http://shemesh.larc.nasa.gov/people/cam/Tarski/
4http://www.cl.cam.ac.uk/~gp351/cicm2012/

http://shemesh.larc.nasa.gov/people/cam/Tarski/
http://www.cl.cam.ac.uk/~gp351/cicm2012/

5.5 Experiments and related work 65

single polynomial, so they are not complete for first-order formulas (unlike my tactic and the
tarski strategy in PVS).

Assia Mahboubi [64] has implemented the executable part of a general CAD procedure
in Coq, but as far as I know, the correctness proof for her implementation is still ongoing.
This is also one of the reasons for me to choose the certificate-based approach rather than
directly verifying an implementation.

There are other methods to handle non-linear polynomial problems in theorem provers,
such as sums of squares [42], which is good for multivariate universal problems but is not
applicable when the existential quantifier arises, and interval arithmetic [47, 80], which is
very efficient for some cases but is not complete. These methods and mine should be used in
a complementary way.

Chapter 6

A formal proof of Cauchy’s residue
theorem

With the previous Chapter, we are able to certify univariate CAD through a certificate-
based approach. To proceed to the multivariate case, we need formalised results in complex
analysis (e.g. to justify Theorem 2.6 as later discussed in Chapter 8). Therefore, this chapter
is devoted to relevant analytical results.

In particular, I will formalise Cauchy’s residue theorem along with its immediate conse-
quences: the argument principle and Rouché’s theorem. All of them are important results
for reasoning about isolated singularities and zeros of holomorphic functions in complex
analysis. For example, other than justifying CAD, Cauchy’s residue theorem can also be
used to evaluate improper integrals like

∫ +∞

−∞

eitz

z2 +1
dz = πe−|t|.

Proofs in this chapter mainly follow standard textbooks [7, 55, 81], with minor improve-
ments as discussed in the chapter later.

Chapter outline. The chapter begins with some background on complex analysis (§6.1),
followed by a proof of the residue theorem, then the argument principle and Rouché’s
theorem (§6.2–6.4). Then there is a brief discussion of related work (§6.5).

The content of this chapter is adapted from the joint publication with Paulson [61], where he ported the
material described in the background section (§6.1) from HOL Light to Isabelle while I finished the remaining
proofs.

68 A formal proof of Cauchy’s residue theorem

6.1 Background

I briefly introduce some basic complex analysis from Isabelle/HOL’s Analysis library. Most
of the material in this section was first formalised in HOL Light by John Harrison [41] and
later ported to Isabelle by Larry Paulson.

6.1.1 Contour integrals

Given a path γ , a map from the real interval [0,1] to C, the contour integral of a complex-
valued function f on γ can be defined as

∮
γ

f =
∫ 1

0
f (γ(t))γ ′(t)dt.

Because integrals do not always exist, this notion is formalised as a relation:

definition has_contour_integral ::

"(complex ⇒ complex) ⇒ complex ⇒ (real ⇒ complex) ⇒ bool"

(infixr "has’_contour’_integral" 50)

where "(f has_contour_integral i) g ≡
((λx. f(g x) * vector_derivative g (at x within {0..1}))

has_integral i) {0..1}"

We can introduce an operator for the integral to use in situations when we know that the
integral exists. This is analogous to the treatment of ordinary integrals, derivatives, etc., in
HOL Light [41] as well as Isabelle/HOL.

6.1.2 Valid paths

In order to guarantee the existence of the contour integral, we need to place some restrictions
on paths. A valid path is a piecewise continuously differentiable function on [0..1]. In
plain English, the function must have a derivative on all but finitely many points, and this
derivative must also be continuous.

definition piecewise_C1_differentiable_on

:: "(real ⇒ ’a :: real_normed_vector) ⇒real set ⇒ bool"

(infixr "piecewise’_C1’_differentiable’_on" 50)

where "f piecewise_C1_differentiable_on i ≡
continuous_on i f ∧
(∃s. finite s ∧ (f C1_differentiable_on (i - s)))"

6.1 Background 69

definition valid_path :: "(real ⇒ ’a :: real_normed_vector) ⇒ bool"

where "valid_path f ≡ f piecewise_C1_differentiable_on {0..1::real}"

6.1.3 Winding number

The winding number of the path γ at the point w is defined (following textbook definitions)
as

n(γ,z) =
1

2πi

∮
γ

dw
w− z

.

A lemma to illustrate this definition is as follows:

Lemma 6.1 (winding_number_valid_path).
fixes γ::"real ⇒ complex" and z::complex

assumes "valid_path γ" and "z /∈ path_image γ"

shows "winding_number γ z

= 1/(2*pi* i) * contour_integral γ (λw. 1/(w - z))"

6.1.4 Holomorphic functions and Cauchy’s integral theorem

A function is holomorphic if it is complex differentiable in a neighbourhood of every point
in its domain. The Isabelle/HOL version follows that of HOL Light:

definition holomorphic_on::"(complex ⇒ complex) ⇒ complex set ⇒ bool"

(infixl "(holomorphic’_on)" 50)

where "f holomorphic_on s ≡ ∀x∈s. f field_differentiable (at x within s)"

As a starting point to reason about holomorphic functions, it is fortunate that John
Harrison has made the effort to prove Cauchy’s integral theorem in a rather general form:

Theorem 6.2 (Cauchy_theorem_global).
fixes s::"complex set" and f::"complex ⇒ complex"

assumes "open s" and "f holomorphic_on s"

and "valid_path γ" and "pathfinish γ = pathstart γ"

and "path_image γ ⊆ s"

and "
∧
w. w /∈ s =⇒ winding_number γ w = 0"

shows "(f has_contour_integral 0) γ"

Note, a more common statement of Cauchy’s integral theorem requires the open set s
to be simply connected (connected and without holes). Here, the simply connectedness is
encoded by a homologous assumption

"
∧
w. w /∈ s =⇒ winding_number γ w = 0".

70 A formal proof of Cauchy’s residue theorem

The reason behind this homologous assumption is that a non-simply-connected set s should
contain a cycle γ and a point a within one of its holes, such that winding_number γ a is
non-zero. Statements of such homologous version of Cauchy’s integral theorem can be found
in standard texts[1, 55].

6.2 Cauchy’s residue theorem

As a result of Cauchy’s integral theorem, if f is a holomorphic function on a simply connected
open set s which contains a closed path γ , then∮

γ

f (w) = 0.

However, if the set s does have a hole, then Cauchy’s integral theorem will not apply.
For example, consider f (w) = 1

w so that f has a pole at w = 0, and γ is the circular path
γ(t) = e2πit : ∮

γ

dw
w

=
∫ 1

0

1
e2πit

(
d
dt

e2πit
)

dt =
∫ 1

0
2πidt = 2πi ̸= 0.

Cauchy’s residue theorem applies when a function is holomorphic on an open set except
for a finite number of points (i.e., isolated singularities):

Theorem 6.3 (Residue_theorem).
fixes s pts::"complex set" and f::"complex ⇒ complex"

and γ::"real ⇒ complex"

assumes "open s" and "connected s" and "finite pts" and
"f holomorphic_on s - pts" and
"valid_path γ" and
"γ 0 = γ 1" and
"path_image γ ⊆ s - pts" and
"∀z. (z /∈ s) −→ winding_number γ z = 0"

shows "contour_integral γ f

= 2 * pi * i *(∑p∈pts. winding_number γ p * residue f p)"

where residue f p denotes the residue of f at p, which I will describe in details in the next
subsection.

6.2.1 Residue

A complex function f is defined to have an isolated singularity at point z, if f is holomorphic
on an open disc centered at z but not at z.

6.2 Cauchy’s residue theorem 71

z
s

−cε

ce

Fig. 6.1 Circlepath ce and cε around an isolated singularity z

We can now define residue f z to be the path integral of f (divided by a constant 2πi)
along a small circular path around z:

definition residue::"(complex ⇒ complex) ⇒ complex ⇒ complex" where
"residue f z = (SOME int. ∃e>0. ∀ε>0. ε<e

−→ (f has_contour_integral 2 * pi * i * int) (circlepath z ε))"

To actually utilise our definition, we need not only to show the existence of such integral
but also its invariance when the radius of the circular path becomes sufficiently small.

Lemma 6.4 (base_residue).
fixes s::"complex set" and f::"complex ⇒ complex"

and e::real and z::complex

assumes "open s" and "z ∈ s" and "e > 0"

and "f holomorphic_on (s - {z})" and "cball z e ⊆ s"

shows "(f has_contour_integral 2 * pi * i * residue f z) (circlepath z e)"

Here cball denotes the familiar concept of a closed ball:

definition cball :: "’a::metric_space ⇒ real ⇒ ’a set"

where "cball x e = {y. dist x y ≤ e}"

Proof. Given two small circular path cε and ce around z with radius ε and e respectively, we
want to show that ∮

cε

f =
∮

ce

f .

Let γ is a line path from the end of ce to the start of −cε . As illustrated in Fig. 6.1, consider
the path

Γ = ce + γ +(−cε)+(−γ),

72 A formal proof of Cauchy’s residue theorem

where + is path concatenation, and −cε and −γ are reverse paths of cε and γ respectively.
As Γ is a valid closed path and f is holomorphic on the interior of Γ, we have∮

Γ

f =
∮

ce

f +
∮

γ

f +(−
∮

cε

f)+(−
∮

γ

f) =
∮

ce

f −
∮

cε

f = 0,

hence ∮
cε

f =
∮

ce

f ,

and the proof is completed.

6.2.2 Generalisation to a finite number of singularities

Lemma 6.4 can be viewed as a special case of Lemma 6.3 where there is only one singularity
point and γ is a circular path. In this section, I will describe the proofs of generalising Lemma
6.4 to a plane with finite number of singularities.

It is fortunate that Isabelle has already had results about open connected sets being valid
path connected (recall that valid paths are piecewise continuous differentiable functions on
the closed interval [0,1]):

Lemma 6.5 (connected_open_polynomial_connected).
fixes s::"’a::euclidean_space set" and x y::’a

assumes "open s" and "connected s" and "x ∈ s" and "y ∈ s"

shows "∃g. polynomial_function g ∧ path_image g ⊆ s ∧
g 0 = x ∧ g 1 = y"

Lemma 6.6 (valid_path_polynomial_function).
fixes p::"real ⇒ ’a::euclidean_space"

shows "polynomial_function p =⇒ valid_path p"

Following this, I manage to derive a valid path γ on some connected punctured set such
that a holomorphic function has an integral along γ:

Lemma 6.7 (get_integrable_path).
fixes s pts::"complex set" and a b::complex and f::"complex ⇒ complex"

assumes "open s" and "connected (s - pts)" and "finite pts"

and "f holomorphic_on (s - pts) "

and "a ∈ s - pts" and "b ∈ s - pts"

obtains γ where
"valid_path γ" and "pathstart γ = a" and "pathfinish γ = b"

and "path_image γ ⊆ s - pts" and "f contour_integrable_on γ"

6.2 Cauchy’s residue theorem 73

q γ ′cq

γ

s

Fig. 6.2 Induction on the number of singularities

Finally, I obtain a lemma that reduces the integral along γ to a sum of integrals over small
circles around singularities:

Lemma 6.8 (Cauchy_theorem_singularities).
fixes s pts::"complex set" and f::"complex ⇒ complex"

and γ::"real ⇒ complex" and h::"complex ⇒ real"

assumes "open s" and "connected (s - pts)" and "finite pts"

and "f holomorphic_on s - pts" and "valid_path γ"

and "γ 1 = γ 0" and "path_image γ ⊆ s - pts"

and "∀z. (z /∈ s) −→ winding_number γ z = 0"

and "∀p∈s. h p>0 ∧ (∀w∈cball p (h p). w∈s ∧ (w ̸=p −→ w /∈ pts))"

shows "contour_integral γ f = (∑p ∈ pts. winding_number γ p

* contour_integral (circlepath p (h p)) f)"

Proof. Since the number of singularities pts is finite, we do induction on them. Assuming
the lemma holds when there are pts singularities, we aim to show the lemma for {q}∪pts.

As illustrated in Fig. 6.2, suppose cq is a (small) circular path around q, by Lemma 6.7,
we can obtain a valid path γ ′ from the end of γ to the start of cq such that f has an integral
along γ ′.

74 A formal proof of Cauchy’s residue theorem

Consider the path

Γ = γ + γ
′+(−cq)+ · · ·+(−cq)︸ ︷︷ ︸

n(γ,q)

+(−γ
′),

where + is path concatenation, n(γ,q) is the winding number of the path γ around q, and
−γ ′ and −cq are the reverse path of γ ′ and cq respectively. We can show that Γ is a valid
cycle path and the induction hypothesis applies to Γ, that is,∮

Γ

f = ∑
p∈pts

n(Γ, p)
∮

cp

f ,

hence ∮
γ

f +
∮

γ ′
f −n(γ,q)

∮
cq

f −
∮

γ ′
f = ∑

p∈pts
n(γ, p)

∮
cp

f ,

and finally ∮
γ

f = ∑
p∈{q}∪pts

n(γ, p)
∮

cp

f

which concludes the proof.

By combining Lemma 6.8 and 6.4, we can finish the proof of Cauchy’s residue theorem
(i.e., Theorem 6.3).

6.2.3 Applications

Besides corollaries like the argument principle and Rouché’s theorem, which I will describe
later, Cauchy’s residue theorem is useful when evaluating improper integrals.

Example 6.9. Evaluating an improper integral:∫ +∞

−∞

dx
x2 +1

= π

corresponds to the following lemma in Isabelle/HOL:

lemma "Lim at_top (λr. integral {- r..r} (λx. 1 / (x 2 + 1))) = pi"

Proof. Let

f (z) =
1

z2 +1.

Now f (z) is holomorphic on C except for two poles when z = i or z = −i. We can then
construct a semicircular path γr +Cr, where γr is a line path from −r to r and Cr is an arc

6.2 Cauchy’s residue theorem 75

i

−i

r−r

Cr

Fig. 6.3 A semicircular path centred at 0 with radius R > 1

from r to −r, as illustrated in Fig. 6.3. From Cauchy’s residue theorem, we obtain∮
γr+Cr

f = Res(f , i) = π

where Res(f , i) is the residue of f at i. Moreover, we have∣∣∣∣∮Cr

f
∣∣∣∣≤ 1

r2−1
πr

as | f (z)| is bounded by 1/(r2−1) when z is on Cr and r is large enough. Hence,∮
Cr

f → 0 when r→+∞

and therefore ∫ +∞

−∞

dx
x2 +1

=
∮

γr

f =
∮

γr+Cr

f = π when r→+∞

which concludes the proof.

Evaluating such improper integrals was difficult for Avigad et al. [6] in their formalisation
of the central limit theorem. I hope this development could facilitate such proofs in the future,
though it may not be immediate as their proof is based on a different integration operator.

76 A formal proof of Cauchy’s residue theorem

6.2.4 Remarks on the formalisation

It is surprising that I encountered difficulties when generalising Lemma 6.4 to the case of
a finite number of poles. Several complex analysis textbooks [25, 81] omit proofs for this
part (giving the impression that the proof is trivial). My statement of Lemma 6.8 follows the
statement of Theorem 2.4, Chapter IV of Lang [55], but I was reluctant to follow his proof of
generalising paths to chains for fear of complicating existing theories. In the end, I devised
proofs for this lemma on my own with inspiration from Stein and Shakarchi’s concept of a
keyhole [81].

Another tricky part I have encountered is in the formal proof of Example 6.9. When
showing ∮

γr+Cr

f = Res(f , i) = π,

it is necessary to show i (−i) is inside (outside) the semicircle path γr +Cr, that is,

n(i,γr +Cr) = 1∧n(−i,γr +Cr) = 0,

where n is the winding number operation. Such proof is straightforward for humans when
looking at Fig. 6.3. However, to formally prove it in Isabelle/HOL, I ended up manually
constructing some ad-hoc counter examples and employed proof by contradiction several
times. I will discuss this problem in detail in Chapter 7.

6.3 The argument principle

In complex analysis, the argument principle is a theorem to describe the difference between
the number of zeros and poles of a meromorphic1 function.

Theorem 6.10 (argument_principle).
fixes f h::"complex ⇒ complex" and poles s:: "complex set"

defines "zeros ≡ {p. f p = 0} - poles"

assumes "open s" and "connected s" and
"f holomorphic_on (s - poles)" and
"h holomorphic_on s" and
"valid_path γ" and
"γ 1= γ 0" and
"path_image γ ⊆ s - (zeros ∪ poles)" and
"∀z. (z /∈ s) −→ winding_number γ z = 0" and

1holomorphic except for isolated poles

6.3 The argument principle 77

"finite (zeros ∪ poles)" and
"∀p ∈ poles. is_pole f p"

shows "contour_integral γ (λx. deriv f x * h x / f x) = 2 * pi * i *

((∑p ∈ zeros. winding_number γ p * h p * zorder f p)

- (∑p ∈ poles. winding_number γ p * h p * porder f p))"

where

definition is_pole :: "(’a::topological_space ⇒ ’b::real_normed_vector)

⇒ ’a ⇒ bool" where
"is_pole f a = (LIM x (at a). f x :> at_infinity)"

encodes the usual definition of poles (i.e., f approaches infinity as x approaches a). zorder
and porder are the order of zeros and poles, which I will define in detail in the next
subsection.

6.3.1 Zeros and poles

A complex number z is referred as a zero of a holomorphic function f if f (z) = 0. And there
is a local factorisation property about f (z):

Lemma 6.11 (holomorphic_factor_zero_Ex1).
fixes s::"complex set" and f::"complex ⇒ complex" and z::complex

assumes "open s" and "connected s" and "z ∈ s" and "f(z) = 0"

and "f holomorphic_on s" and "∃w∈s. f w ̸= 0"

shows "∃!n. ∃g r. 0 < n ∧ 0 < r ∧ ball z r ⊆ s ∧
g holomorphic_on ball z r

∧ (∀w∈ball z r. f w = (w-z)^n * g w ∧ g w ̸=0)"

Here a ball, as usual, is an open neighborhood centred on a given point:

definition ball :: "’a::metric_space ⇒ real ⇒ ’a set"

where "ball x e = {y. dist x y < e}"

Proof. 2 As f is holomorphic, f has a power expansion locally around z:

f (w) =
+∞

∑
k=0

ak(w− z)k

2The existence proof of such n, g and r is ported from HOL Light, while I have shown the uniqueness
of n on my own.

78 A formal proof of Cauchy’s residue theorem

and since f does not vanish identically, there exists a smallest n such that an ̸= 0. Therefore,

f (w) =
+∞

∑
k=n

ak(w− z)k = (w− z)n
+∞

∑
k=0

ak+n(w− z)k = (w− z)ng(w),

and the function g(w) is holomorphic and non-vanishing near z due to an ̸= 0.
Also, we can show that this n is unique, by assuming there exist m and another locally

holomorphic function h(w) such that

f (w) = (w− z)ng(w) = (w− z)mh(w),

and h(w) ̸= 0. If m > n, then

g(w) = (w− z)m−nh(w),

and this yields g(w)→ 0 when w→ z, which contradicts the fact that g(w) ̸= 0. If n > m,
then similarly h(w)→ 0 when w→ z, which contradicts h(w) ̸= 0. Hence, n = m, and the
proof is completed.

The unique n in Lemma 6.11 is usually referred as the order/multiplicity of the zero of f
at z :

definition zorder::"(complex ⇒ complex) ⇒ complex ⇒ nat" where
"zorder f z = (THE n. n > 0 ∧ (∃g r. r > 0 ∧ g holomorphic_on cball z r

∧ (∀w∈cball z r. f w = g w * (w-z) ^ n ∧ g w ̸=0)))"

We can also refer the complex function g in Lemma 6.11 using Hilbert’s epsilon operator
in Isabelle/HOL:

definition zer_poly::"[complex ⇒ complex, complex]⇒ complex ⇒ complex"

where
"zer_poly f z = (SOME g. ∃r. r > 0 ∧ g holomorphic_on cball z r

∧ (∀w ∈ cball z r. f w = g w * (w-z) ^ (zorder f z) ∧ g w ̸=0))"

Given a complex function f has a pole at z while also holomorphic (but not at) z, we
know the function

λx. if x = z then 0 else 1/f(x)

has a zero at z and is holomorphic near (and at) z. On the top of the definition of the order of
zeros, we can define the order/multiplicity of the pole of f at z:

6.3 The argument principle 79

definition porder::"(complex ⇒ complex) ⇒ complex ⇒ nat" where
"porder f z = (let f’ = (λx. if x = z then 0 else inverse (f x))

in zorder f’ z)"

definition pol_poly::"[complex ⇒ complex,complex]⇒complex ⇒ complex" where
"pol_poly f z = (let f’ = (λ x. if x=z then 0 else inverse (f x))

in inverse o zer_poly f’ z)"

and a lemma to describe a similar relationship among f, porder and pol_poly :

Lemma 6.12 (porder_exist).
fixes f::"complex ⇒ complex" and s::"complex set"

and z::complex

defines "n ≡ porder f z" and "h ≡ pol_poly f z"

assumes "open s" and "connected s" and "z ∈ s"

and "(λx. if x = z then 0 else inverse (f x)) holomorphic_on s"

and "∃w∈s. w ̸= z ∧ f w ̸= 0"

shows "∃r. n > 0 ∧ r > 0 ∧ cball z r ⊆ s ∧ h holomorphic_on cball z r

∧ (∀w∈cball z r. (w ̸= z −→ f w = h w / (w-z)^n) ∧ h w ̸= 0)"

Proof. With Lemma 6.11, we can derive that there exist n and g such that

1/ f (w) = (w− z)ng(w),

and g(w) ̸= 0 for w near z. Hence,

f (w) =
1

g(w)

(w− z)n =
h(w)

(w− z)n

and h(w) ̸= 0 due to g(w) ̸= 0. This concludes the proof.

Moreover, porder and pol_poly can be used to construct an alternative definition of
residue when the singularity is a pole.

Lemma 6.13 (residue_porder).
fixes f::"complex ⇒ complex" and s::"complex set"

and z::complex

defines "n≡porder f z" and "h≡pol_poly f z"

assumes "open s" and "connected s" and "z ∈ s"

and "(λx. if x=z then 0 else inverse (f x)) holomorphic_on s"

and "∃w∈s. w ̸=z ∧ f w ̸=0"

shows "residue f z = ((deriv ^^ (n - 1)) h z / fact (n-1))"

80 A formal proof of Cauchy’s residue theorem

Proof. The idea behind Lemma 6.13 is to view f (w) as h(w)/(w− z)n, hence the conclusion
becomes

1
2πi

∮
cε

h(w)
(w− z)n dw =

1
(n−1)!

dn−1

dwn−1 h(z),

which can be then solved by Cauchy’s integral formula.

6.3.2 The main proof

The main idea behind the proof of Theorem 6.10 is to exploit the local factorisation
properties at zeros and poles, and then apply the residue theorem.

Proof of the argument principle. Suppose f has a zero of order m when w = z. Then f (w) =
(w− z)mg(w) and g(w) ̸= 0. Hence,

f ′(w)
f (w)

=
m

w− z
+

g′(w)
g(w),

which leads to ∮
γ

f ′(w)h(w)
f (w)

=
∮

γ

mh(w)
w− z

= mh(z), (6.1)

since

λw.
g′(w)h(w)

g(w)

is holomorphic near z (i.e., g, g′ and h are holomorphic and g(w) ̸= 0).
Similarly, if f has a pole of order m when w = z, then f (w) = g(w)/(w− z)m and

g(w) ̸= 0. Hence,

∮
γ

f ′(w)h(w)
f (w)

=
∮

γ

−mh(w)
w− z

=−mh(z). (6.2)

By combining Equations (6.1), (6.2) and Lemma 6.83, we can show

∮
γ

f ′(w)h(w)
f (w)

= 2πi

(
∑

p∈zeros
n(γ, p)h(p)zo(f,p)− ∑

p∈poles
n(γ,p)h(p)po(f,p)

)
,

where zo(f,p) (or po(f,p)) is the order of zero (or pole) of f at p, and the proof is now
complete.

3Either Lemma 6.8 or Theorem 6.3 suffices in this place.

6.4 Rouché’s theorem 81

6.3.3 Remarks

My definitions and lemmas in §6.3.1 roughly follow Stein and Shakarchi [81], with one
major exception. When f has a pole of order n at z, Stein and Shakarchi define residue as

Res(f ,z) = lim
w→z

1
(n−1)!

dn−1

dwn−1 [(w− z)n f (w)]

while my Lemma 6.13 states

Res(f ,z) =
1

(n−1)!
dn−1

dwn−1 h(z),

where f (w) = h(w)/(w− z)n and h(w) is holomorphic and non-vanishing near z. Note,
h(w) = (w− z)n f (w) only when w ̸= z, since f (w) is a pole (i.e. undefined) when w = z.
Introducing the function h eliminates the limit from the definition, and the associated technical
difficulties of reasoning about limits formally.

6.4 Rouché’s theorem

Given two functions f and g holomorphic on an open set containing a path γ , if

| f (w)|> |g(w)|

for all w ∈ γ , then Rouché’s theorem states that f and f +g have the same number of zeros
counted with multiplicity and weighted with winding number:

Theorem 6.14 (Rouche_theorem).
fixes f g::"complex ⇒ complex" and s::"complex set"

defines "fg ≡ (λp. f p + g p)"

defines "zeros_fg ≡ {p. fg p = 0}" and "zeros_f ≡ {p. f p = 0}"

assumes "open s" and "connected s" and
"finite zeros_fg" and "finite zeros_f" and
"f holomorphic_on s" and "g holomorphic_on s" and
"valid_path γ" and "γ 1 = γ 0" and
"path_image γ ⊆ s " and
"∀z ∈ path_image γ. cmod(f z) > cmod(g z)" and
"∀z. (z /∈ s) −→ winding_number γ z = 0"

shows "(∑p ∈ zeros_fg. winding_number γ p * zorder fg p)

= (∑p ∈ zeros_f. winding_number γ p * zorder f p)"

82 A formal proof of Cauchy’s residue theorem

Proof. Let Z(f + g) and Z(f) be the number of zeros that f + g and f has respectively
(counted with multiplicity and weighted with winding number). By the argument principle,
we have

Z(f +g) =
1

2πi

∮
γ

(f +g)′

f +g
=

1
2πi

∮
γ

f ′

f
+

1
2πi

∮
γ

(1+ g
f)
′

1+ g
f

and

Z(f) =
1

2πi

∮
γ

f ′

f .

Hence, Z(f +g) = Z(f) holds if we manage to show

1
2πi

∮
γ

(1+ g
f)
′

1+ g
f

= 0.

As illustrated in Fig. 6.4, let

h(w) = 1+
g(w)
f (w).

Then the image of h◦γ is located within the disc of radius 1 centred at 1, since | f (w)|> |g(w)|
for all w on the image of γ . In this case, it can be observed that 0 lies outside h◦ γ , which
leads to ∮

h◦γ

dw
w

= n(h◦ γ,0) = 0,

where n(h◦ γ,0) is the winding number of h◦ γ at 0. Hence, we have

∮
γ

(1+ g
f)
′

1+ g
f

=
∫ 1

0

h′(γ(t))
h(γ(t))

γ
′(t)dt =

∫ 1

0

(h◦ γ)′(t)
(h◦ γ)(t)

dt =
∮

h◦γ

dw
w

= 0,

and this concludes the proof.

My proof of Theorem 6.14 follows informal textbook proofs [7, 55], but the formulation
here is slightly more general: we do not require γ to be a regular closed path (i.e. where
n(γ,w) = 0∨n(γ,w) = 1 for every complex number w that does not lie on the image of γ).

6.5 Related work

HOL Light has a comprehensive library of complex analysis, on top of which the prime
number theorem, the Kepler conjecture and other impressive results have been formalised

6.5 Related work 83

10 2

λ t.1+ g(γ(t))
f (γ(t))

Fig. 6.4 The path image of λ t.1+ g(γ(t))
f (γ(t)) when | f (w)|> |g(w)| for all w on the image of γ

[40, 41, 43, 45]. A substantial portion of this library has been ported to Isabelle/HOL. It
should be not hard to port my results to HOL Light.

Brunel [14] has described some non-constructive complex analysis in Coq, including a
formalisation of winding numbers. Also, there are other Coq libraries (mainly about real
analysis), such as Coquelicot [10] and C-Corn [26]. However, as far as I know, Cauchy’s
integral theorem (which is the starting point of proving Cauchy’s residue theorem) is not
available in Coq yet.

Chapter 7

Cauchy indices on the complex plane

As mentioned in §6.2.4 of the previous chapter, I found it was hard to formally evaluate
winding numbers with current theories of Isabelle. This has motivated me to develop a theory
of Cauchy indices on the complex plane, through which we can systematically evaluate
winding numbers. On the top of this, by combining this theory with the argument principle,
we can further have effective procedures to count the number of complex roots in some
domains such as a rectangle and a half-plane.

Formulations in this chapter, such as the definition of the Cauchy index and statements
of some key lemmas, mainly follow Rahman and Schmeisser’s book [78, Chapter 11] and
Eisermann’s paper [34]. Nevertheless, I was still obliged to devise some proofs on my own
as discussed later in the chapter.

Chapter outline. This chapter continues as follows: I start with a motivating example
(§7.1) followed by an intuitive description of the link between winding numbers and Cauchy
indices (§7.2). Formal development of the previous intuition is presented in (§7.3). Next,
verified procedures that count the number of complex roots in a domain are presented in
(§7.4), following which some limitations are discussed (§7.5). Finally, I bring up some
general remarks and potential applications (§7.6).

7.1 A motivating example

When evaluating some improper integrals using the residue theorem in Example 6.9 in the
previous chapter, the most troublesome part of that proof was to evaluate the following
winding numbers:

n(Lr +Cr, i) = 1 (7.1)

n(Lr +Cr,−i) = 0 (7.2)

86 Cauchy indices on the complex plane

i

Lr
−r r

C′r

Cr

(a)

−r r

−i

Lr

L′r

Cr

(b)

Fig. 7.1 Complex points (0,−i) and (0, i), and a closed path Lr +Cr

where Cr

Cr(t) = reiπt for t ∈ [0,1]

is a semicircular path centered at 0 with radius r > 1, and Lr

Lr(t) = (1− t)(−r)+ tr for t ∈ [0,1]

is a linear path from −r to r on the complex plane. The closed path Lr +Cr is formed by
appending Cr to the end of Lr.

Equations (7.1) and (7.2) are straightforward to humans, as it can be seen from Fig. 7.1
that Lr +Cr passes counterclockwise around the point i exactly one time, and about −i zero
time. However, formally deriving these facts was non-trivial.

Example 7.1 (Proof of n(Lr +Cr, i) = 1). I defined an auxiliary semi-circular path C′r where

C′r(t) = reiπ(t+1) for t ∈ [0,1]

as can be seen in Fig. 7.1a. As Cr +C′r forms a (full) circular path with i lying inside the
circle, I had

n(Cr +C′r, i) = 1. (7.3)

In addition, I further proved that Cr +C′r and Lr +Cr are homotopic on the space of the
complex plane except for the point i (i.e., on C−{i}), and hence

n(Lr +Cr, i) = n(Cr +C′r, i) (7.4)

7.1 A motivating example 87

by using the following Isabelle lemma:

Lemma 7.2 (winding_number_homotopic_paths).
fixes z::complex and γ1 γ2::"real ⇒ complex"

assumes "homotopic_paths (-{z}) γ1 γ2"

shows "winding_number γ1 z = winding_number γ2 z"

where winding_number γ1 z encodes the winding number of γ1 around z: n(γ1,z), and
homotopic_paths encodes the homotopic proposition between two paths. Putting (7.3) and
(7.4) together yields n(Lr +Cr, i) = 1, which concludes the whole proof.

Example 7.3 (Proof of n(Lr +Cr,−i) = 0). I started by defining a ray L′r starting from −i
and pointing towards the negative infinity of the imaginary axis:

L′r(t) = (−i)− ti for t ∈ [0,∞)

as illustrated in Fig. 7.1b. Subsequently, I showed that

L′R does not intersect with Lr +Cr, (7.5)

and then applied the following lemma in Isabelle

Lemma 7.4 (winding_number_less_1).
fixes z w::complex and γ::"real ⇒ complex"

assumes "valid_path γ" and "z /∈ path_image γ" and "w ̸= z"

and not_intersection:"
∧
a::real. 0 < a =⇒ z + a*(w - z) /∈ path_image γ"

shows " |Re(winding_number γ z) | < 1"

where

• valid_path γ assumes that γ is piecewise continuously differentiable on [0,1],

• z /∈ path_image γ asserts that z is not on the path γ ,

• the assumption not_intersection asserts that the ray starting at z ∈ C and through
w ∈ C ({z+a(w− z) | a > 0}) does not intersect with γ—for all a > 0, z+a(w− z)
does not lie on γ .

Note that the real part of a winding number Re(n(γ,z)) measures the degree of the winding:
in case of γ winding around z counterclockwise for exactly one turn, we have n(γ,z) =
Re(n(γ,z)) = 1. Essentially, Lemma 7.4 claims that a path γ can only wind around z for

88 Cauchy indices on the complex plane

less than one turn, |Re(n(γ,z))|< 1, if there is a ray starting at z and not intersecting with γ .
Joining Lemma 7.4 with (7.5) leads to

|Re(n(Lr +Cr,−i))|< 1. (7.6)

Moreover, as Lr +Cr is a closed path,

n(Lr +Cr,−i) ∈ Z (7.7)

By combining (7.6) and (7.7) , I managed to derive n(Lr +Cr,−i) = 0.

As can be observed in Examples 7.1 and 7.3, my proofs of n(Lr +Cr, i) = 1 and n(Lr +

Cr,−i) = 0 are ad hoc, and involve manual construction of auxiliary paths/rays (e.g. C′R and
L′R). Similar difficulty has also been mentioned by John Harrison when formalising the prime
number theorem [43]. In the next section, I will introduce an idea to systematically evaluate
winding numbers.

7.2 The intuition

z0

θ

γ
γ(t0)

t

f (t)
f (t) = Im(γ(t)−z0)

Re(γ(t)−z0)

t0

Fig. 7.2 Left: a path γ crosses the line {z | Re(z) = Re(z0)} at γ(t0) such that Re(γ(t0)) >
Re(z0). Right: the image of f as a point travels through γ

The fundamental idea of evaluating a winding number n(γ,z0) in this chapter is to reduce
the evaluation to classifications of how paths cross the line {z | Re(z) = Re(z0)}.

In a simple case, suppose a path γ crosses the line {z | Re(z) = Re(z0)} exactly once at
the point γ(t0) such that Im(γ(t0))> Im(z0) (see Fig. 7.2 (left)), and let θ be the change in

7.2 The intuition 89

the argument of a complex point travelling through γ . It should not be hard to observe that

0 < θ < 2π,

and by considering Re(n(γ,z0)) = θ/(2π) we can have

0 < Re(n(γ,z0))< 1,

which is an approximation of Re(n(γ,z0)). That is, we have approximated Re(n(γ,z0)) by
the way that γ crosses the line {z | Re(z) = Re(z0)}.

To make this idea more precise, let

f (t) =
Im(γ(t)− z0)

Re(γ(t)− z0)
.

The image of f as a point travels through γ is as illustrated in Fig. 7.2 (right), where f jumps
from +∞ to −∞ across t0. We can then formally characterise those jumps.

Definition 7.5 (Jump). For f : R→ R and x ∈ R, we define

jump+(f ,x) =

1
2 if limu→x+ f (u) = +∞,

−1
2 if limu→x+ f (u) =−∞,

0 otherwise,

jump−(f ,x) =

1
2 if limu→x− f (u) = +∞,

−1
2 if limu→x− f (u) =−∞,

0 otherwise.

Specifically, we can conjecture that jump+(f , t0)− jump−(f , t0) captures the way that
γ crosses the line {z | Re(z) = Re(z0)} in Fig. 7.2, hence Re(n(γ,z0)) can be approximated
using jump+ and jump−:∣∣∣∣Re(n(γ,z0))+

jump+(f , t0)− jump−(f , t0)
2

∣∣∣∣< 1
2
.

In more general cases, we can define Cauchy indices by summing up these jumps over an
interval and along a path.

90 Cauchy indices on the complex plane

Definition 7.6 (Cauchy index). For f : R→ R and a,b ∈ R, the Cauchy index of f over a
closed interval [a,b] is defined as

Indb
a(f) = ∑

x∈[a,b)
jump+(f ,x)− ∑

x∈(a,b]
jump−(f ,x).

Definition 7.7 (Cauchy index along a path). Given a path γ : [0,1]→ C and a point z0 ∈ C,
the Cauchy index along γ about z0 is defined as

Indp(γ,z0) = Ind1
0(f)

where
f (t) =

Im(γ(t)− z0)

Re(γ(t)− z0)
.

In particular, it can be checked that the Cauchy index Indp(γ,z0) captures the way that γ

crosses the line {z | Re(z) = Re(z0)}, hence leads to an approximation of Re(n(γ,z0)):∣∣∣∣Re(n(γ,z0))+
Indp(γ,z0)

2

∣∣∣∣< 1
2
.

More interestingly, by further knowing that γ is a loop we can derive Re(n(γ,z0)) = n(γ,z0)∈
Z and Indp(γ,z0)/2 ∈ Z, following which we come to the core proposition of this chapter:

Proposition 7.8. Given a valid path γ : [0,1]→ C and a point z0 ∈ C, such that γ is a loop
and z0 is not on the image of γ , we have

n(γ,z0) =−
Indp(γ,z0)

2
.

That is, under some assumptions, we can evaluate a winding number through Cauchy indices!
A formal proof of Proposition 7.8 will be introduced later in the chapter (§7.3). Here,

given the statement of the proposition we can have alternative proofs for n(Lr +Cr, i) = 1
and n(Lr +Cr,−i) = 0.

Example 7.9 (Alternative proof of n(Lr +Cr, i) = 1). As Lr +Cr is a loop, applying Proposi-
tion 7.8 yields

n(Lr +Cr, i) =−
Indp(Lr +Cr, i)

2
=−1

2
(Indp(Lr, i)+ Indp(Cr, i)),

which reduces n(Lr +Cr, i) to the evaluations of Indp(Lr, i) and Indp(Cr, i). In this case,
by definition we can easily decide Indp(Lr, i) = −1 and Indp(Cr, i) = −1 as illustrated in

7.3 Evaluate winding numbers 91

i

Lr
−r r

Cr

(a)

−i

−r r
Lr

Cr

(b)

Fig. 7.3 Evaluating n(Lr +Cr, i) and n(Lr +Cr,−i) through the way that the path Lr +Cr
crosses the imaginary axis

Fig. 7.3a. Hence, we have

n(Lr +Cr, i) =−
1
2
((−1)+(−1)) = 1

and conclude the proof.

Example 7.10 (Alternative proof of n(Lr +Cr,−i) = 0). As shown in Fig. 7.3b, we can
similarly have

n(LR +CR,−i) =−Indp(Lr +Cr,−i)
2

=−1
2
(Indp(Lr,−i)+ Indp(Cr,−i))

=−1
2
(1+(−1)) = 0

by which the proof is completed.

Compared to the previous proofs presented in Examples 7.1 and 7.3, the alternative
proofs in Examples 7.9 and 7.10 are systematic and less demanding to devise once we have a
formalisation of Proposition 7.8, which is what I will introduce in the next section.

7.3 Evaluate winding numbers

The previous section presented an informal intuition to systematically evaluate winding
numbers; in this section, I will report the formal development of this intuition. We will

92 Cauchy indices on the complex plane

first present a mechanised proof of Proposition 7.8 (§7.3.1), which includes mechanised
definitions of jumps and Cauchy indices (i.e., Definition 7.5, 7.6 and 7.7) and several
related properties of these objects. After that, I build a tactic in Isabelle/HOL that is used
to mechanise proofs presented in Example 7.9 and 7.10 (§7.3.2). Finally, I discuss some
subtleties encountered during the formalisation (§7.3.3).

7.3.1 A formal proof of Proposition 7.8

For jump− and jump+ (see Definition 7.5), I have used the filter mechanism [48] to define a
function jumpF :

definition jumpF::"(real ⇒ real) ⇒ real filter ⇒ real" where
"jumpF f F ≡ (if (LIM x F. f x :> at_top) then 1/2 else

if (LIM x F. f x :> at_bot) then -1/2 else 0)"

and encoded jump−(f ,x) and jump+(f ,x) as

jumpF f (at_left x) and jumpF f (at_right x),

respectively. Here, at_left x jumpF f (at_right x) at_top at_bot are all filters, where
a filter is a predicate on predicates that satisfies certain properties. Filters are extensively used
in the analysis library of Isabelle to encode varieties of logical quantification: for example,
at_left x encodes the statement “for a variable that is sufficiently close to x from the left",
and at_top represents “for a sufficiently large variable". Furthermore, LIM x (at_left x).

f x :> at_top encoded the proposition

lim
u→x−

f (u) = +∞, (7.8)

and this encoding can be justified by the following equality in Isabelle:

(LIM x (at_left x). f x :> at_top) = (∀z. ∃b<x. ∀y>b. y < x −→ z ≤ f y)

where ∀z. ∃b<x. ∀y>b. y < x −→ z ≤ f y matches the usual definition of (7.8) in
textbooks.

We can then encode Indb
a(f) and Indp(γ,z0) (see Definitions 7.6 and 7.7) as cindexE and

cindex_pathE respectively:

definition cindexE::"real ⇒ real ⇒ (real ⇒ real) ⇒ real" where
"cindexE a b f =

(∑x∈{x. jumpF f (at_right x) ̸=0 ∧ a≤x ∧ x<b}. jumpF f (at_right x))

- (∑x∈{x. jumpF f (at_left x) ̸=0 ∧ a<x ∧ x≤b}. jumpF f (at_left x))"

7.3 Evaluate winding numbers 93

definition cindex_pathE::"(real ⇒ complex) ⇒ complex ⇒ real" where
"cindex_pathE γ z 0 = cindexE 0 1 (λt. Im (γ t - z 0) / Re (γ t - z 0))"

Note, in the definition of Indb
a(f) we have a term

∑
x∈[a,b)

jump+(f ,x)

which actually hides an assumption that only a finite number of points within the interval
[a,b) contribute to the sum. This assumption is made explicit when defining cindexE, where
the sum is over the set

{x. jumpF f (at_right x) ̸= 0 ∧ a ≤ x ∧ x < b}.

In the case that the set above is infinite (i.e., the sum ∑x∈[a,b) jump+(f ,x) is not mathemati-
cally well-defined) we have

(∑x∈{x. jumpF f (at_right x) ̸=0 ∧ a≤x ∧ x<b}. jumpF f (at_right x)) = 0.

In other words, a default value (i.e., 0) is used in Isabelle/HOL when summing over an
infinite set.

Due to the issue of well-defined sums, many of our lemmas related cindexE will have an
assumption finite_jumpFs :

definition finite_jumpFs::"(real ⇒ real) ⇒ real ⇒ real ⇒ bool" where
"finite_jumpFs f a b = finite {x. (jumpF f (at_left x) ̸= 0

∨ jumpF f (at_right x) ̸= 0) ∧ a ≤ x ∧ x ≤ b}"

which guarantees the well-definedness of cindexE.
Now, suppose that we know that Indp is well-defined (i.e., there are only finite number

of jumps over the path). What is the strategy we can employ to formally prove Proposition
7.8? Naturally, we may want to divide the path into a finite number of segments (subpaths)
induced by those jumps, and then perform inductions on these segments. To formalise the
finiteness of such segments, we can have:

inductive finite_Psegments::"(real ⇒ bool) ⇒ real ⇒ real ⇒ bool"

for P where
emptyI: "a≥b =⇒ finite_Psegments P a b"|

insertI_1: " [[s∈{a..<b}; s=a ∨ P s; ∀t∈{s<..<b}. P t;

finite_Psegments P a s]] =⇒ finite_Psegments P a b"|

insertI_2: " [[s∈{a..<b}; s=a ∨ P s; ∀t∈{s<..<b}. ¬P t;

finite_Psegments P a s]] =⇒ finite_Psegments P a b"

94 Cauchy indices on the complex plane

definition finite_ReZ_segments::"(real ⇒ complex) ⇒ complex ⇒ bool" where
"finite_ReZ_segments γ z 0 = finite_Psegments (λt. Re (γ t - z 0) = 0) 0 1"

The idea behind finite_ReZ_segments is that a jump of

f (t) =
Im(γ(t)− z0)

Re(γ(t)− z0)

takes place only if λ t. Re(γ(t)− z0) changes from 0 to ̸= 0 (or vice versa). Hence, each
of the segments of the path γ separated by those jumps has either λ t. Re(γ(t)− z0) = 0 or
λ t. Re(γ(t)− z0) ̸= 0.

As can be expected, the finiteness of jumps over a path can be derived by the finiteness
of segments:

Lemma 7.11 (finite_ReZ_segments_imp_jumpFs).
fixes γ::"real ⇒ complex" and z 0::complex

assumes "finite_ReZ_segments γ z 0" and "path γ"

shows "finite_jumpFs (λt. Im (γ t - z 0)/Re (γ t - z 0)) 0 1"

where path γ asserts that γ is a continuous function on [0..1] (so that it is a path). Roughly
speaking, Lemma 7.11 claims that a path will have a finite number of jumps if it can be
divided into a finite number of segments.

By assuming such a finite number of segments we have well-defined cindex_pathE, and
can then derive some useful related properties:

Lemma 7.12 (cindex_pathE_subpath_combine).
fixes γ::"real ⇒ complex" and z 0::complex

assumes "finite_ReZ_segments γ z 0"and "path γ"

and "0≤a" and "a≤b" and "b≤c" and "c≤1"
shows "cindex_pathE (subpath a b γ) z 0 + cindex_pathE (subpath b c γ) z 0

= cindex_pathE (subpath a c γ) z 0"

where subpath a b γ gives a sub-path of γ based on parameters a and b:

definition subpath :: "real ⇒ real ⇒ (real ⇒ ’a) ⇒ real

⇒ ’a::real_normed_vector"

where "subpath a b γ ≡ (λt. γ((b - a) * t + a))"

Essentially, Lemma 7.12 indicates that we can combine Cauchy indices along consecutive
parts of a path: given a path γ and three parameters a,b,c with 0≤ a≤ b≤ c≤ 1, we have

Indp(γ1,z0)+ Indp(γ2,z0) = Indp(γ3,z0).

7.3 Evaluate winding numbers 95

where γ1 = λ t.γ((b−a)t +a), γ2 = λ t.γ((c−b)t +b) and γ3 = λ t.γ((c−a)t +a).
More importantly, we now have an induction rule for a path with a finite number of

segments:

Lemma 7.13 (finite_ReZ_segments_induct).
fixes γ::"real ⇒ complex" and z 0::complex

and P::"(real ⇒ complex) ⇒ complex ⇒ bool"

assumes "finite_ReZ_segments γ z 0"

and sub0:"
∧
g z. (P (subpath 0 0 g) z)"

and subEq:"(
∧
s g z. [[s ∈ {0..<1}; s=0 ∨ Re (g s) = Re z;

∀t ∈ {s<..<1}. Re (g t) = Re z;

finite_ReZ_segments (subpath 0 s g) z;

P (subpath 0 s g) z]] =⇒ P g z)"

and subNEq:"(
∧
s g z. [[s ∈ {0..<1}; s=0 ∨ Re (g s) = Re z;

∀t ∈ {s<..<1}. Re (g t) ̸= Re z;

finite_ReZ_segments (subpath 0 s g) z;

P (subpath 0 s g) z]] =⇒ P g z)"

shows "P γ z 0"

where P is a predicate that takes a path γ and a complex point z 0, and

• sub0 is the base case that P holds for a constant path;

• subEq is the inductive case when the last segment is right on the line {x | Re(x) =
Re(z)}: ∀t ∈ (s,1). Re(g(t)) = Re(z);

• subNEq is the inductive case when the last segment does not cross the line {x | Re(x) =
Re(z)}: ∀t ∈ (s,1). Re(g(t)) ̸= Re(z).

Given a path γ with a finite number of segments, a complex point z0 and a predicate P that
takes a path and a complex number and returns a boolean, Lemma 7.13 provides us with an
inductive rule to derive P(γ,z0) by recursively examining the last segment.

Before attacking Proposition 7.8, we can show an auxiliary lemma about Re(n(γ,z0))

and Indp(γ,z0) when the end points of γ are on the line {z | Re(z) = Re(z0)}:

Lemma 7.14 (winding_number_cindex_pathE_aux).
fixes γ::"real ⇒ complex" and z 0 :: complex

assumes "finite_ReZ_segments γ z 0" and "valid_path γ"

and "z 0 /∈ path_image γ" and "Re (γ 1) = Re z 0"

and "Re (γ 0) = Re z 0"

shows "2 * Re(winding_number γ z 0) = - cindex_pathE γ z 0"

96 Cauchy indices on the complex plane

g(1)

g(0)

g(s)

z

(a)

g(1)

g(0)

g(s)

z

(b)

Fig. 7.4 Inductive cases when applying Lemma 7.13

Here, Lemma 7.14 is almost equivalent to Proposition 7.8 except for that more restrictions
haven been placed on the end points of γ .

Proof of Lemma 7.14. As there is a finite number of segments along γ (i.e., finite_ReZ_segments
γ z 0), by inducting on these segments with Lemma 7.13 we end up with three cases. The
base case is straightforward: given a constant path g : [0,1]→ C and a complex point z ∈ C,
we have Re(n(g,z)) = 0 and Indp(g,z) = 0, hence 2Re(n(g,z)) =− Indp(g,z).

For the inductive case when the last segment is right on the line {x | Re(x) = Re(z)},
there is ∀t ∈ (s,1). Re(g(t)) = Re(z) as illustrated in Fig. 7.4a. Let

g1(t) = g(st)

g2(t) = g((1− s)t).

We have
n(g,z) = n(g1,z)+n(g2,z), (7.9)

and, by the induction hypothesis,

2Re(n(g1,z)) =− Indp(g1,z). (7.10)

Moreover, it is possible to derive

2Re(n(g2,z)) =− Indp(g2,z), (7.11)

7.3 Evaluate winding numbers 97

since n(g2,z) = 0 and Indp(g2,z) = 0. Furthermore, by Lemma 7.12 we can sum up the
Cauchy index along g1 and g2:

Indp(g1,z)+ Indp(g2,z) = Indp(g,z) (7.12)

Combining Equations (7.9), (7.10), (7.11) and (7.12) yields

2Re(n(g,z)) = 2(Re(n(g1,z))+Re(n(g2,z)))

=− Indp(g1,z)− Indp(g2,z)

=− Indp(g,z)

(7.13)

which concludes the case.
For the other inductive case when the last segment does not cross the line {x | Re(x) =

Re(z)}, without loss of generality, we assume

∀t ∈ (s,1). Re(g(t))> Re(z), (7.14)

and the shape of g is as illustrated in Fig. 7.4b. Similar to the previous case, by letting g1(t) =
g(st) and g2(t) = g((1− s)t), we have n(g,z) = n(g1,z)+ n(g2,z) and, by the induction
hypothesis, 2Re(n(g1,z)) =− Indp(g1,z). Moreover, by observing the shape of g2 we have

2Re(n(g2,z)) = jump−(f ,1)− jump+(f ,0) (7.15)

Indp(g2,z) = jump+(f ,0)− jump−(f ,1) (7.16)

where f (t)= Im(g2(t)− z)/Re(g2(t)− z). Combining (7.15) with (7.16) leads to 2Re(n(g2,z))=
− Indp(g2,z), following which we finish the case by deriving 2Re(n(g,z)) =− Indp(g,z) in
a way analogous to (7.13).

Finally, we are ready to formally derive Proposition 7.8 in Isabelle/HOL:

Theorem 7.15 (winding_number_cindex_pathE).
fixes γ::"real ⇒ complex" and z 0::complex

assumes "finite_ReZ_segments γ z 0" and "valid_path γ"

and "z 0 /∈ path_image γ" and "γ 0 = γ 1"

shows "winding_number γ z 0 = - cindex_pathE γ z 0 / 2"

Proof. By assumption, we know that γ is a loop, and the point γ(0) = γ(1) can be away
from the line {z | Re(z) = Re(z0)} which makes Lemma 7.14 inapplicable. To resolve this
problem, we look for a point γ(s) on γ such that 0≤ s≤ 1 and Re(γ(s)) = Re(z0), and we
can either fail or succeed.

98 Cauchy indices on the complex plane

γ(0) = γ(1)
z0

(a)

γ(0) = γ(1)

γ(s)

z0

(b)

Fig. 7.5 To derive n(γ,z0) =− Indp(γ,z0)
2 when γ is a loop

In the case of failure, without loss of generality, we can assume Re(γ(t))> Re(z0) for
all 0≤ t ≤ 1, and the shape of γ is as illustrated in Fig. 7.5a. As the path γ does not cross the
line {z | Re(z) = Re(z0)}, we can evaluate

Indp(γ,z0) = 0

n(γ,z0) = Re(n(γ,z0)) =
Im(Ln(γ(1)− z0))− Im(Ln(γ(0)− z0))

2π
= 0

where Ln is a complex logarithm function. Hence, n(γ,z0) = − Indp(γ,z0)/2 which con-
cludes the case.

In the case of success, as illustrated in Fig. 7.5b, we have Re(γ(s)) = Re(z0). We then
define a shifted path γs:

γs(t) =

γ(t + s) if s+ t ≤ 1,

γ(t + s−1) otherwise,

such that Re(γs(0))=Re(γs(1))=Re(z0). By applying Lemma 7.14, we obtain a relationship
between Re(n(γs,z0)) and Indp(γs,z0):

2Re(n(γs,z0)) =− Indp(γs,z0),

following which we have n(γ,z0)=− Indp(γ,z0)/2, since n(γs,z0)= n(γ,z0) and Indp(γs,z0)=

Indp(γ,z0).

7.3 Evaluate winding numbers 99

7.3.2 A tactic for evaluating winding numbers

With Proposition 7.8 formalised, we are now able to build a tactic to evaluate winding
numbers through Cauchy indices. The idea has already been sketched in Examples 7.9 and
7.10. In general, I have built a tactic named eval_winding to convert goals of the form

n(γ1 + γ2 + · · ·+ γn,z0) = k, (7.17)

where k is an integer and γ j (1≤ j ≤ n) is either a linear path:

γ j(t) = (1− t)a+ tb where a,b ∈ C

or a part of a circular path:

γ j(t) = z+ rei((1−t)a+tb) where a,b,r ∈ R and z ∈ C.

The tactic eval_winding will transform (7.17) into

γ j(1) = γ j+1(0) for all 1≤ j ≤ n−1, and γn(1) = γ1(0), (7.18)

z0 ̸∈ {γ j(t) | 0≤ t ≤ 1} for all 1≤ j ≤ n, (7.19)

Indp(γ1,z0)+ Indp(γ2,z0)+ · · ·+ Indp(γn,z0) =−2k, (7.20)

where (7.18) ensures that the path γ1 + γ2 + · · ·+ γn is a loop; (7.19) certifies that z0 is not on
the image of γ1 + γ2 + · · ·+ γn.

To achieve this transformation, eval_winding will first perform a substitution step on
the left-hand side of Equation (7.17) using Theorem 7.15. As the substitution is conditional,
we will need to resolve four extra subgoals (i.e., (7.21), (7.22), (7.23) and (7.24) as follows)
and Equation (7.17) is transformed into (7.25):

finite_ReZ_segments (γ1 +++ γ2 +++ ... +++γn) z 0, (7.21)

valid_path (γ1 +++ γ2 +++ ... +++γn), (7.22)

z 0 /∈ path_image (γ1 +++ γ2 +++ ... +++γn), (7.23)

(γ1 +++ γ2 +++ ... +++γn) 0 = (γ1 +++ γ2 +++ ... +++γn) 1, (7.24)

- cindex_pathE (γ1 +++ γ2 +++ ... +++γn) z 0 / 2 = k. (7.25)

100 Cauchy indices on the complex plane

To simplify (7.21), the tactic will keep applying the following introduction rule:1

Lemma 7.16 (finite_ReZ_segments_joinpaths).
fixes γ1 γ2 :: "real ⇒ complex" and z 0 :: complex

assumes "finite_ReZ_segments γ1 z 0" and "finite_ReZ_segments γ2 z 0"

and "path γ1" and "path γ2" and "γ1 1 = γ2 0"

shows "finite_ReZ_segments (γ1+++γ2) z 0"

to eliminate the path join operations (+++) until the predicate finite_ReZ_segments is only
applied to a linear path or a part of a circular path, and either of these two cases can be
directly discharged because these two kinds of paths are proved to be divisible into a finite
number of segments by the imaginary axis:

Lemma 7.17 (finite_ReZ_segments_linepath).
"finite_ReZ_segments (linepath a b) z"

Lemma 7.18 (finite_ReZ_segments_part_circlepath).
"finite_ReZ_segments (part_circlepath z0 r st tt) z"

In terms of other subgoals introduced when applying Lemma 7.16, such as path γ1, path
γ2 and γ1 1 = γ2 0, we can discharge them by the following introduction and simplification
rules (all of which have been formally proved):

• [[path γ1; path γ2; γ1 1 = γ2 0]] =⇒ path(γ1 +++ γ2),

• path (part_circlepath z 0 r st tt),

• path (linepath a b),

• (γ1 +++ γ2) 1 = γ2 1,

• (γ1 +++ γ2) 0 = γ1 0.

As a result, eval_winding will eventually simplify the subgoal (7.21) to (7.18).
Similar to the process of simplifying (7.21) to (7.18), the tactic eval_winding will also

simplify

• (7.22) to (7.18),

• (7.23) to (7.19),

• and (7.24) to (7.18).
1Applying an introduction rule will replace a goal by a set of subgoals derived from the premises of the rule,

provided the goal can be unified with the conclusion of the rule.

7.3 Evaluate winding numbers 101

Finally, with respect to (7.25), we can similarly rewrite with a rule between the Cauchy index
(cindex_pathE) and the path join operation (+++):

Lemma 7.19 (cindex_pathE_joinpaths).
fixes γ1 γ2 :: "real ⇒ complex" and z 0 :: complex

assumes "finite_ReZ_segments γ1 z 0" and "finite_ReZ_segments γ2 z 0"

and "path γ1" and "path γ2" and "γ1 1 = γ2 0"

shows "cindex_pathE (γ1 +++ γ2) z 0 = cindex_pathE γ1 z 0 + cindex_pathE γ2 z 0"

to convert the subgoal (7.25) to (7.18) and (7.20).
After building the tactic eval_winding, we are now able to convert a goal like Equation

(7.17) to (7.18), (7.19) and (7.20). In most cases, discharging (7.18) and (7.19) is straightfor-
ward. To derive (7.20), we will need to formally evaluate each Indp(γ j,z0) (1≤ j ≤ n) when
γ j is either a linear path or a part of a circular path.

When γ j is a linear path, the following lemma grants us a way to evaluate Indp(γ j,z0)

through its right-hand side:

Lemma 7.20 (cindex_pathE_linepath).
fixes a b z 0 :: complex

assumes "z 0 /∈path_image (linepath a b)"

shows "cindex_pathE (linepath a b) z 0 = (

let c1 = Re a - Re z 0;

c2 = Re b - Re z 0;

c3 = Im a * Re b + Re z 0 * Im b + Im z 0 * Re a - Im z 0 * Re b

- Im b * Re a - Re z 0 * Im a;

d1 = Im a - Im z 0;

d2 = Im b - Im z 0

in if (c1>0 ∧ c2<0) ∨ (c1<0 ∧ c2>0) then

(if c3>0 then 1 else -1)

else

(if (c1=0 ←→ c2 ̸=0) ∧ (c1=0 −→d1 ̸=0) ∧ (c2=0 −→ d2 ̸=0) then

if (c1=0 ∧ (c2 >0 ←→ d1>0)) ∨ (c2=0 ∧ (c1 >0 ←→ d2<0))

then 1/2 else -1/2

else 0))"

Although Lemma 7.20 may appear terrifying, evaluating its right-hand side is usually
automatic when the number of free variables is small. For example, in a formal proof of
Example 7.9 in Isabelle/HOL, we can have the following fragment:

lemma

102 Cauchy indices on the complex plane

fixes R::real

assumes "R>1"

shows "winding_number (part_circlepath 0 R 0 pi +++ linepath (-R) R) i = 1"

proof (winding_eval, simp_all)

...

have " i /∈ path_image (linepath (- R) (R::complex))" by ...

from cindex_pathE_linepath[OF this] ⟨R>1 ⟩

have "cindex_pathE (linepath (-R) (R::complex)) i = -1" by auto

...

qed

where winding_eval is first applied to convert the goal into (7.18), (7.19) and (7.20), and
simp_all subsequently simplifies those newly generated subgoals. In the middle of the proof,
we show that the complex point i is not on the image of the linear path Lr (i.e., linepath
(-R) (R::complex)) in Isabelle/HOL), following which we apply Lemma 7.20 to derive
Indp(Lr, i) =−1: the evaluation process is automatic through the command auto, given the
assumption R>1.

When γ j is a part of a circular path, a similar lemma has been provided to facilitate the
evaluation of Indp(γ j,z0).

7.3.3 Subtleties

The first subtlety I have encountered during the formalisation of Proposition 7.8 is about the
definition of jumps and Cauchy indices, for which my first attempt followed the standard
definitions in textbooks [67, 78, 8].

Definition 7.21 (Jump). For f : R→ R and x ∈ R, we define

jump(f ,x) =

1 if limu→x− f (u) =−∞ and limu→x+ f (u) = +∞,

−1 if limu→x− f (u) = +∞ and limu→x+ f (u) =−∞,

0 otherwise.

Definition 7.22 (Cauchy index). For f : R→ R and a,b ∈ R, the Cauchy index of f over an
open interval (a,b) is defined as

Indb
a(f) = ∑

x∈(a,b)
jump(f ,x).

7.3 Evaluate winding numbers 103

γ(t0)

z0

(a)

γ(t0)

z0

(b)

γ(0) = γ(1)

z0

(c)

γ(t1)

γ(t0)

γ(t2)

z0
γ(0) = γ(1)

(d)

Fig. 7.6 Different ways a path γ can intersect with the line {z | Re(z) = Re(z0)}

The impact of the difference between the current definition of the Cauchy index (i.e.,
Definition 7.6) and the classic one (i.e., Definition 7.22) is small when formalising the
Sturm-Tarski theorem, where f is a rational function. In this case, the path γ intersects with
the line {z | Re(z) = Re(z0)} a finite number of times, and for each intersection point (see
Fig. 7.6a and b), by letting f (t) = Im(γ(t)− z0)/Re(γ(t)− z0), we have

jump(f , t) = jump+(f , t)− jump−(f , t),

hence

∑
x∈(a,b)

jump(f ,x) = ∑
x∈[a,b)

jump+(f ,x)− ∑
x∈(a,b]

jump−(f ,x),

provided jump+(f ,a) = 0 and jump−(f ,b) = 0. That is, the classic Cauchy index and the
current one are equal when f is a rational function and does not jump at both ends of the
target interval.

Naturally, the disadvantages of Definition 7.22 are twofold:

104 Cauchy indices on the complex plane

• The function λ t. Re(γ(0)− z0) cannot vanish at either end of the interval. That is,
we need to additionally assume Re(γ(0)− z0) ̸= 0 as in Rahman and Schmeisser’s
formulation [78, Lemma 11.1.1 and Theorem 11.1.3], and Proposition 7.8 will be
inapplicable in the case of Fig. 7.6c where Re(γ(0)) = Re(γ(1)) = Re(z0).

• The function λ t. Im(γ(t)− z0)/Re(γ(t)− z0) has to be rational, which makes Propo-
sition 7.8 inapplicable for cases like in Fig. 7.6d (if we follow Definition 7.22). To
elaborate, it can be observed in Fig. 7.6d that n(γ,z0) =−1, while we will only get a
wrong answer by following Definition 7.22 and evaluating through Proposition 7.8:

−1
2

(
∑

x∈(0,1)
jump(f ,x)

)
=− jump(f , t2)

2
=−1

2
,

where f (t) = Im(γ(t)− z0)/Re(γ(t)− z0). In comparison, Definition 7.6 leads to the
correct answer:

n(γ,z0) =−
1
2

(
∑

x∈[0,1)
jump+(f ,x)− ∑

x∈(0,1]
jump−(f ,x)

)

=−1
2
(
jump+(f , t2)+ jump+(f , t1)− jump−(f , t2)− jump−(f , t0)

)
=−1

2

(
1
2
+

1
2
− (−1

2
)− (−1

2
)

)
=−1.

Fortunately, Michael Eisermann [34] recently proposed a new formulation of the Cauchy
index that overcomes those two disadvantages, and this new formulation is what I have
followed (in Definitions 7.5 and 7.6).

Another subtlety I ran into was the well-definedness of the Cauchy index. Such well-
definedness is usually not an issue and left implicit in the literature, because, in most cases,
the Cauchy index is only defined on rational functions, where only finitely many points can
contribute to the sum. When attempting to formally derive Proposition 7.8, I realised that
this assumption needed to be made explicit, since the path γ can be flexible enough to allow
the function f (t) = Im(γ(t)− z0)/Re(γ(t)− z0) to be non-rational (e.g. Fig. 7.6d). In my
first attempt of following Definition 7.22, the Cauchy index was formally defined as follows:

definition cindex::"real ⇒ real ⇒ (real ⇒ real) ⇒ int" where
"cindex a b f = (∑x∈{x. jump f x ̸=0 ∧ a<x ∧ x<b}. jump f x)"

7.4 Counting the number of complex roots 105

and its well-definedness was ensured by the finite number of times that γ crosses the line
{z | Re(z) = Re(z0)}:

definition finite_axes_cross::"(real ⇒ complex) ⇒ complex ⇒ bool" where
"finite_axes_cross γ z 0 =

finite {t. (Re (γ t - z 0) = 0 ∨ Im (γ t - z 0) = 0) ∧ 0 ≤ t ∧ t ≤ 1}"

where the part Re (γ t - z 0) = 0 ensures that jump f t is non-zero only at a finite number
of points over the interval [0,1]. When constrained by finite_axes_cross, the function
f (t) = Im(γ(t)− z0)/Re(γ(t)− z0) behaves like a rational function. More importantly, the
path γ , in this case, can be divided into a finite number of ordered segments delimited by
those points over [0,1], which makes an inductive proof of Proposition 7.8 possible. However,
after abandoning my first attempt and switching to Definition 7.6, the well-definedness of
the Cauchy index is assured by the finite number of jump+ and jump− of f (i.e., Definition
finite_jumpFs in §7.3.1), with which I did not know how to divide the path γ into segments
and carry out an inductive proof. It took me quite some time to properly define the assumption
of finite segments (i.e., Definition finite_ReZ_segments) that implied the well-definedness
through Lemma 7.11 and provided a lemma for inductive proofs (i.e., Lemma 7.13).

7.4 Counting the number of complex roots

In the previous section, I have described a way to evaluate winding numbers through Cauchy
indices. In this section, I will further explore this idea and propose verified procedures to
count the number of complex roots of a polynomial in some domain, such as a rectangle and
a half-plane.

Does a winding number have anything to do with the number of roots of a polynomial?
The answer is yes. Thanks to the argument principle in the previous chapter, we can calculate
the number of roots by evaluating a contour integral:

1
2πi

∮
γ

p′(x)
p(x)

dx = N (7.26)

where p ∈ C[x], p′(x) is the first derivative of p and N is the number of complex roots of p
(counted with multiplicity) inside the loop γ . Also, by the definition of winding numbers, we
have

n(p◦ γ,0) =
1

2πi

∮
γ

p′(x)
p(x)

dx. (7.27)

106 Cauchy indices on the complex plane

Combining Equations (7.26) and (7.27) gives us the relationship between a winding number
and the number of roots of a polynomial:

n(p◦ γ,0) = N. (7.28)

And the question becomes: can we evaluate n(p◦ γ,0) through Cauchy indices?

7.4.1 Roots in a rectangle

a1 a2

a3a4

L1

L2

L3

L4

Fig. 7.7 Complex roots of a polynomial (red dots) and a rectangular path (L1 +L2 +L3 +L4)
on the complex plane

Let N be the number of complex roots of a polynomial p inside the rectangle defined by
its lower left corner a1 and upper right corner a3. As illustrated in Fig. 7.7, we can define
four linear paths along the edge of the rectangle:

L1(t) = (1− t)a1 + ta2

L2(t) = (1− t)a2 + ta3

L3(t) = (1− t)a3 + ta4

L4(t) = (1− t)a4 + ta1

7.4 Counting the number of complex roots 107

where a2 = Re(a3)+ i Im(a1) and a4 = Re(a1)+ i Im(a3). Combining Proposition 7.8 with
Equation (7.28) yields

N = n(p◦ (L1 +L2 +L3 +L4),0)

=−1
2

Indp(p◦ (L1 +L2 +L3 +L4),0)

=−1
2
(Indp(p◦L1,0)+ Indp(p◦L2,0)+ Indp(p◦L3,0)+ Indp(p◦L4,0)) .

(7.29)

Here, the path p◦L j : [0,1]→ C (1≤ j ≤ 4) is (mostly) neither a linear path nor a part of a
circular path, which indicates our evaluation strategies in §7.3.2, such as Lemma 7.20, will
no longer apply. Thankfully, the Sturm-Tarski theorem, which I have already formalised in
Chapter 3, come to our rescue.

As a side product of the Sturm-Tarski theorem, we can evaluate the Cauchy index of a
rational function f through some remainder sequence: let q, p ∈ R[x] be, respectively, the
numerator and denominator polynomial of f , such that f (t) = q(t)/p(t). We have

Indb
a(f) = Var(SRemS(p,q);a,b) (7.30)

where a,b ∈ R a < b and are not roots of p. SRemS(p,q) and Var(−;a,b) are, respectively,
the signed remainder sequence and the difference in the number of sign variations as stated
in Theorem 3.2 in Chapter 3.

Back to the case of Indp(p◦L j,0), we have

Indp(p◦L j,0) = Ind1
0

(
λ t.

Im(p(L j(t)))
Re(p(L j(t)))

)
and the function λ t. Im(p(L j(t)))/Re(p(L j(t))) is, amazingly, a rational function! Therefore,
by combining Equations (7.29) and (7.30) we have an idea of how to count the number of
roots inside a rectangle.

While proceeding to the formal development, the first problem I encountered is that
the Cauchy index in Equation (7.30) actually follows the classic definition (i.e., Definition
7.22), and is different from the one in Equation (7.29) (i.e., Definitions 7.6 and 7.7). Subtle
differences between these two formulations have already been discussed in §7.3.3. Luckily,
Eisermann [34] has also described an alternative sign variation operator so that our current
definition of the Cauchy index (i.e., Definition 7.6) can be computationally evaluated:

Lemma 7.23 (cindex_polyE_changes_alt_itv_mods).
fixes a b::real and p q::"real poly"

assumes "a < b" and "coprime p q"

108 Cauchy indices on the complex plane

shows "cindex_polyE a b q p = changes_alt_itv_smods a b p q / 2"

Here, cindex_polyE is the Cauchy index of a function f when f is known to be rational (i.e.,
f (t) = q(t)/p(t)):

Lemma 7.24 (cindexE_eq_cindex_polyE).
fixes a b::real and p q::"real poly"

assumes "a < b"

shows "cindexE a b (λx. poly q x / poly p x) = cindex_polyE a b q p"

where the alternative sign variation operator V̂ar is defined as follows:

V̂ar([p1, p2, ..., p3];a,b) = V̂ar([p1, p2, ..., p3];a)− V̂ar([p1, p2, ..., p3];b),

V̂ar([p1, p2, ..., p3];a) = V̂ar([p1(a), p2(a), ..., p3(a)]),

V̂ar([]) = 0,

V̂ar([x1]) = 0,

V̂ar([x1,x2, ...,xn]) = |sgn(x1)− sgn(x2)|+ V̂ar([x2, ...,xn]).

The difference between V̂ar and Var is that Var discards zeros before calculating variations
while V̂ar takes zeros into consideration. For example, Var([1,0,−2]) = Var([1,−2]) = 1,
while V̂ar([1,0,−2]) = 2.

Before implementing Equation (7.29), we need to realise that there is a restriction in our
strategy: roots are not allowed on the border (i.e., the image of the path L1 +L2 +L3 +L4).
To computationally check this restriction, the following function is defined

definition no_proots_line::"complex poly ⇒ complex ⇒ complex ⇒ bool" where
"no_proots_line p a b = (proots_within p (closed_segment a b) = {})"

which will return “true” if there is no root on the closed segment between a and b, and “false”
otherwise. Here, closed_segment a b is defined as the set {(1−u)a+ub | 0≤ u≤ 1} ⊆C,
and the function proots_within p s gives the set of roots of the polynomial p within the
set s :

definition proots_within::"’a::comm_semiring_0 poly ⇒ ’a set ⇒ ’a set" where
"proots_within p s = {x∈s. poly p x=0}"

To make no_proots_line executable, we can derive the following code equation:

Lemma 7.25 (no_proots_line_code[code]).
"no_proots_line p a b = (if poly p a ̸= 0 ∧ poly p b ̸= 0 then

(let p c = p ◦p [:a, b - a:];

7.4 Counting the number of complex roots 109

pR = map_poly Re p c;

p I = map_poly Im p c;

g = gcd pR p I

in if changes_itv_smods 0 1 g (pderiv g) = 0

then True else False)

else False)"

where ◦p is the polynomial composition operation and map_poly Re and map_poly Im, re-
spectively, extract the real and imaginary parts of the complex polynomial p c.

Proof of Lemma 7.25. Supposing L : [0,1]→ C is a linear path from a to b: L(t) = (1−
t)a+ tb, we know that p◦L is still a polynomial with complex coefficients. Subsequently,
we extract the real and imaginary part (pR and pI , respectively) of p◦L such that

p(L(t)) = pR(t)+ ipI(t).

If there is a root of p lying right on L, we will be able to obtain some t0 ∈ [0,1] such that

pR(t0) = pI(t0) = 0,

hence, by letting g = gcd(pR, pI) we have g(t0) = 0. Therefore, the polynomial p has no
(complex) root on L if and only if g has no (real) root within the interval [0,1], and the latter
can be computationally checked using Sturm’s theorem.

Finally, I define the function proots_rectangle that returns the number of complex roots
of a polynomial (counted with multiplicity) within a rectangle defined by its lower left and
upper right corner:

definition proots_rectangle::"complex poly ⇒ complex ⇒ complex ⇒ int" where
"proots_rectangle p a 1 a 3 = proots_count p (box a 1 a 3)"

where proots_count is defined as follows:

definition proots_count::"’a::idom poly ⇒ ’a set ⇒ nat" where
"proots_count p s = (∑r∈proots_within p s. order r p)"

As usual, the executability of the function proots_rectangle can be established: The
executability of the function proots_rectangle can be established with the following code
equation:

Lemma 7.26 (proots_rectangle_code1[code]).
"proots_rectangle p a 1 a 3 =

110 Cauchy indices on the complex plane

(if Re a 1 < Re a 3 ∧ Im a 1 < Im a 3 then

if p ̸=0 then

if no_proots_line p a 1 (Complex (Re a 3) (Im a 1))

∧ no_proots_line p (Complex (Re a 3) (Im a 1)) a 3

∧ no_proots_line p a 3 (Complex (Re a 1) (Im a 3))

∧ no_proots_line p (Complex (Re a 1) (Im a 3)) a 1 then

(

let p 1 = p ◦p [:a 1, Complex (Re a 3 - Re a 1) 0:];

pR1 = map_poly Re p 1; p I1 = map_poly Im p 1; g 1 = gcd pR1 p I1;

p 2 = p ◦p [:Complex (Re a 3) (Im a 1), Complex 0 (Im a 3 - Im a 1):];

pR2 = map_poly Re p 2; p I2 = map_poly Im p 2; g 2 = gcd pR2 p I2;

p 3 = p ◦p [:a 3, Complex (Re a 1 - Re a 3) 0:];

pR3 = map_poly Re p 3; p I3 = map_poly Im p 3; g 3 = gcd pR3 p I3;

p 4 = p ◦p [:Complex (Re a 1) (Im a 3), Complex 0 (Im a 1 - Im a 3):];

pR4 = map_poly Re p 4; p I4 = map_poly Im p 4; g 4 = gcd pR4 p I4

in

- (changes_alt_itv_smods 0 1 (pR1 div g 1) (p I1 div g 1)

+ changes_alt_itv_smods 0 1 (pR2 div g 2) (p I2 div g 2)

+ changes_alt_itv_smods 0 1 (pR3 div g 3) (p I3 div g 3)

+ changes_alt_itv_smods 0 1 (pR4 div g 4) (p I4 div g 4)) div 4

)

else Code.abort (STR ”proots_rectangle fails when there is

a root on the border.”) (λ_. proots_rectangle p a 1 a 3)

else Code.abort (STR ”proots_rectangle fails when p=0.”)

(λ_. proots_rectangle p a 1 a 3)

else 0

)"

The proof of the above code equation roughly follows Equations (7.29) and (7.30), where
no_proots_line checks if there is a root of p on the rectangle’s border. Note that the gcd
calculations here, such as g 1 = gcd pR1 p I1, are due to the coprime assumption in Lemma
7.23.

Example 7.27. Given a rectangle defined by (−1,2+2i) (as illustrated in Fig. 7.8) and a
polynomial p with complex coefficients:

p(x) = x2−2ix−1 = (x− i)2

we can now type the following command to count the number of roots within the rectangle:

value "proots_rectangle [:-1, -2* i, 1:] (- i) (2+2* i)"

7.4 Counting the number of complex roots 111

i

−1

2+2i

Fig. 7.8 A complex point i and a rectangle defined by its lower left corner −1 and upper right
corner 2+2i

which will return 2 as p has exactly two complex roots (i.e. i with multiplicity 2) in the area.

7.4.2 Roots in a half-plane

−r r

Cr

Lr

Fig. 7.9 Complex roots of a polynomial (red dots) and a linear path (Lr) concatenated by a
semi-circular path (Cr) on the complex plane

For roots in a half-plane, we can start with a simplified case, where we count the number
of roots of a polynomial in the upper half-plane of C:

definition proots_upper::"complex poly ⇒ int" where
"proots_upper p = proots_count p {z. Im z>0}"

As usual, our next step is to set up the executability of proots_upper. To achieve that, we
first define a linear path Lr(t) = (1− t)(−r)+ tr and a semicircular path Cr(t) = reiπt , as

112 Cauchy indices on the complex plane

illustrated in Fig. 7.9. Subsequently, let

Cp(r) = p◦Cr

Lp(r) = p◦Lr,

and by following Equation (7.28) we have

Nr = n(p◦ (Lr +Cr),0)

= Re(n(Lp(r),0))+Re(n(Cp(r),0))
(7.31)

where Nr is the number of roots of p inside the path Lr +Cr. Note that as r approaches
positive infinity, Nr will be the roots on the upper half-plane (i.e., proots_upper p), which
is what we are aiming for. For this reason, it is natural for us to examine

lim
r→+∞

Re(n(Lp(r),0)) = ?

lim
r→+∞

Re(n(Cp(r),0)) = ?.

As for the case of limr→+∞ Re(n(Lp(r),0)), we can have

Lemma 7.28 (Re_winding_number_poly_linepth).
fixes p::"complex poly"

defines "L p ≡ (λr::real. poly p o linepath (-r) r)"

assumes "lead_coeff p=1" and "∀x∈{x. poly p x=0}. Im x ̸=0"

shows "((λr. 2*Re (winding_number (L p r) 0) + cindex_pathE (L p r) 0)

−−→ 0) at_top"

which essentially indicates

lim
r→+∞

Re(n(Lp(r),0)) =−
1
2

lim
r→+∞

Indp(Lp(r),0), (7.32)

provided that the polynomial p is monic and does not have any root on the real axis.
Next, for limr→+∞ Re(n(Cp(r),0)), we first derive a lemma about Cr:

Lemma 7.29 (Re_winding_number_tendsto_part_circlepath).
fixes z z 0::complex

shows "((λr. Re (winding_number (part_circlepath z r 0 pi) z 0))

−−→ 1/2) at_top"

that is, limr→+∞ Re(n(Cr,0)) = 1/2, following which and by induction we have

7.4 Counting the number of complex roots 113

Lemma 7.30 (Re_winding_number_poly_part_circlepath).
fixes z::complex and p::"complex poly"

defines "C p ≡ (λr::real. poly p o part_circlepath z r 0 pi)"

assumes "degree p>0"

shows "((λr. Re (winding_number (C p r) 0)) −−→ degree p/2) at_top"

which is equivalent to

lim
r→+∞

Re(n(Cp(r),0)) =
deg(p)

2
, (7.33)

provided deg(p)> 0.
Putting Equations (7.32) and (7.33) together yields the core lemma about proots_upper

in this section:

Lemma 7.31 (proots_upper_cindex_eq).
fixes p::"complex poly"

assumes "lead_coeff p=1" and "∀x∈{x. poly p x=0}. Im x ̸=0"

shows "proots_upper p =

(degree p - cindex_poly_ubd (map_poly Im p) (map_poly Re p))/2"

where cindex_poly_ubd (map_poly Im p) (map_poly Re p) is mathematically interpreted
as Ind+∞

−∞(λ t. Im(p(t))/Re(p(t))), which is derived from limr→+∞ Indp(Lp(r),0) in Equa-
tion (7.32) since

lim
r→+∞

Indp(Lp(r),0) = lim
r→+∞

Indp(Lp(r),0)

= lim
r→+∞

Ind1
0

(
λ t.

Im(Lp(r, t))
Re(Lp(r, t))

)
= lim

r→+∞
Indr
−r

(
λ t.

Im(p(t))
Re(p(t))

)
= Ind+∞

−∞

(
λ t.

Im(p(t))
Re(p(t))

)
.

Finally, following Lemma 7.31, the executability of the function proots_upper is estab-
lished:

Lemma 7.32 (proots_upper_code1[code]).
"proots_upper p =

(if p ̸= 0 then

(let pm= smult (inverse (lead_coeff p)) p;

p I= map_poly Im pm;

pR= map_poly Re pm;

114 Cauchy indices on the complex plane

g = gcd p I pR

in

if changes_R_smods g (pderiv g) = 0

then

(degree p - changes_R_smods pR p I) div 2

else

Code.abort (STR ”proots_upper fails when there is a root

on the border.”) (λ_. proots_upper p)

)

else

Code.abort (STR ”proots_upper fails when p=0.”)

(λ_. proots_upper p))"

where

• smult (inverse (lead_coeff p)) p divides the polynomial p by its leading coeffi-
cient so that the resulting polynomial pm is monic. This corresponds to the assumption
lead_coeff p=1 in Lemma 7.31.

• changes_R_smods g (pderiv g) = 0 checks if p has no root lying on the real axis,
which is due to the second assumption in Lemma 7.31.

• changes_R_smods pR p I evaluates

Ind+∞
−∞

(
λ t.

Im(pI(t))
Re(pR(t))

)
by following Equation (7.30).

As for the general case of a half-plane, we can have a definition as follows:

definition proots_half::"complex poly ⇒ complex ⇒ complex ⇒ int" where
"proots_half p a b = proots_count p {w. Im ((w - a) / (b - a)) > 0}"

which encodes the number of roots in the left half-plane of the vector b−a. Roots of p in
this half-plane can be transformed to roots of p ◦p [:a, b-a:] in the upper half-plane of C:

Lemma 7.33 (proots_half_proots_upper).
fixes a b::complex and p::"complex poly"

assumes "a ̸=b" and "p ̸=0"

shows "proots_half p a b = proots_upper (p ◦p [:a, b-a:])"

And so we can naturally evaluate proots_half through proots_upper :

7.5 Limitations and future work 115

Lemma 7.34 (proots_half_code1[code]).
"proots_half p a b =

(if a ̸=b then

if p ̸=0 then

proots_upper (p ◦p [:a, b - a:])

else Code.abort (STR ”proots_half fails when p=0.”)

(λ_. proots_half p a b)

else 0)"

0

i

−1

−1+ i

Fig. 7.10 Complex roots of a polynomial (red dots) and a vector (0, i)

Example 7.35. We can now use the following command

value "proots_half [:1- i, 2- i, 1:] 0 i"

to decide that the polynomial

p(x) = x2 +(2− i)x+(1− i) = (x+1)(x+1− i)

has exactly two roots within the left half-plane of the vector (0, i), as shown in Fig. 7.10.

Despite our naive implementation, both proofs_half and proots_rectangle are appli-
cable for small or medium examples. For most polynomials with coefficient bitsize up to 10
and degree up to 30, our complex root counting procedures terminate within minutes.

7.5 Limitations and future work

There are, of course, several improvements that can be made on both the evaluation tactic
in §7.3.2 and root counting procedures in §7.4. As the tactic is intended to be applied to
winding numbers with variables, full automation with this tactic is unlikely in most cases, but
we can always aim for better automation and an enhanced interactive experience for users
(e.g., presenting unsolved goals in a more user-friendly way).

116 Cauchy indices on the complex plane

Regarding the two root-counting procedures in §7.4, a key limitation is that they do not
allow cases where any of the roots is on the border. There are two possible solutions to this
problem:

• To generalise the definition of winding numbers. The current formulation of winding
numbers in Isabelle/HOL follows the one in complex analysis:

n(γ,z) =
1

2πi

∮
γ

dw
w− z

which becomes undefined when the point z is on the image of the path γ . With other
and more relaxed formulations of winding numbers, such as the algebraic version by
Eisermann [34], we may be able to derive a more general version of the argument
principle that allows zeros on the border.

• To deploy a more sophisticated strategy to count the number of times that the path
winds. Recall that the underlying idea in this chapter is to reduce the evaluation of
winding numbers to classifications of how paths cross some line. The Cauchy index
merely provides one classification strategy, which I considered simple and elegant
enough for formalisation. In contrast, Collins and Krandick proposed a much more
sophisticated strategy for such classifications [24]. Their strategy has, in fact, been
widely implemented in modern systems, such as Mathematica and SymPy, to count
the number of complex roots.

Neither of these two solutions are straightforward to incorporate, hence I leave them for
future investigation.

Besides rectangles and half-planes, it is also possible to similarly count the number of
roots in an open disk and even a sector:

sector(z0,α,β) = {z | α < arg(z− z0)< β}

where arg(−) returns the argument of a complex number. Informal proofs of root counting
in these two domains can be found in Rahman and Schmeisser’s book [78, Chapter 11].

7.6 Remarks and potential applications

Rahman and Schmeisser’s book [78, Chapter 11] and Eisermann’s paper [34] are the two
main sources that my development is built upon. Nevertheless, there are still some differences
in formulations:

7.6 Remarks and potential applications 117

• Rahman and Schmeisser formulated the Cauchy index as in Definitions 7.21 and 7.22,
and their formulation was used in my first attempt. However, after I realised the
subtleties discussed in §7.3.3, I abandoned this formulation and switched to the one
proposed by Eisermann (i.e., Definition 7.6). As a result, the root counting procedures
presented in this chapter are more general than the ones in their book due to fewer
assumptions.

• Eisermann formulated a winding number n(γ,z0) in a real-algebraical sense where γ is
required to be a piecewise polynomial path (i.e., each piece from the path needs to be
a polynomial). In comparison, n(γ,z0) in Isabelle/HOL follows the classic definition
in complex analysis, and places fewer restrictions on the shape of γ (i.e., piecewise
continuously differentiable is less restrictive than being a piecewise polynomial) but
does not permit z0 to be on the image of γ (while Eisermann’s formulation does).
Consequently, Eisermann’s root counting procedure works in more restrictive domains
(i.e., he only described the rectangle case in his paper) but does not prevent roots on
the border.

Another point that may be worth mentioning is the difference between informal and formal
proofs: in this development, I generally treated their lemma statements as guidance and had
to devise my own proofs for those statements. For instance, when proving Proposition 7.8, I
defined an inductive data type for segments and derived an induction rule for it, which was
far away from the informal proof scripts. Such situation also happened when I justified the
root counting procedure in a half-plane.

Interestingly, the root-counting procedure in a half-plane is also related to the stability
problems in the theory of dynamic systems. For instance, let A ∈ Rn×n be a square matrix
with real coefficients and y : [0,+∞)→ Rn be a function that models the system state over
time, a linear dynamic system can be described as an ordinary differential equation:

dy(t)
dt

= Ay(t) (7.34)

with an initial condition y(0) = y0. The system of (7.34) is considered stable if all roots of
the characteristic polynomial of A lie within the open left half-plane (i.e., {z | Re(z)< 0}),
and such stability test is usually referred as the Routh–Hurwitz stability criterion [5, Section
23; 67, Chapter 9]. As has already been demonstrated in Example 7.35, counting the number
of roots in the left half-plane is within reach of the procedure proots_half. For this reason,
I believe that the development in this chapter will be beneficial to the future reasoning of
dynamic systems in Isabelle/HOL.

118 Cauchy indices on the complex plane

It is worth mentioning that root counting in a rectangle is usually coupled with a classic
problem in computer algebra, namely, complex root isolation. The basic idea is to keep
bisecting a rectangle (vertically or horizontally) into smaller ones until sub-rectangle contains
exactly one root or none (provided the target polynomial is square-free). Following this idea
it is possible to build a simple and verified complex root isolation procedure similar to Wilf’s
work [84]: we start with a large rectangle and then repeatedly apply the verified procedure to
count roots during the rectangle bisection phase. However, compared to modern complex
procedures [24, 85], this simplistic approach suffers from several drawbacks:

• My root counting procedure is based on remainder sequences, which are generally
considered much slower than those built upon Descartes’ rule of signs.

• Modern isolation procedures are routinely required to deliver isolation boxes whose
size are up to some user-specified limit, hence they usually keep refining the isolation
boxes even after the roots have been successfully isolated. The bisection strategy
still works in the root refinement stage, but dedicated numerical approaches such as
Newton’s iteration are commonly implemented for efficiency reasons.

• Modern isolation procedures sometimes prefer a bit-stream model in which coefficients
of the polynomial are approximated as a bit stream. This approach is particularly
beneficial when the coefficients are of utterly large bit-width or consist of algebraic
numbers.

• Modern implementations usually have numerous accumulated low-level optimisations,
such as highly-tuned data structures, which are almost impossible to incorporate into
verified procedures in a theorem prover.

Therefore, it is unlikely that my root counting procedures can lead to a verified root isolation
program with extremely high efficiency. Nevertheless, they can alternatively serve as internal
verified procedures to certify results from untrusted external root isolation programs, like
what I did with the previous real-root-counting procedure in §5.2 of Chapter 5.

Chapter 8

Towards certifying multivariate CAD

Due to time limitation, I was not able to certify a full (multivariate) CAD procedure. On
the other hand, I did manage to formalise the bivariate case of the projection theorem (i.e.,
Theorem 2.6 in Chapter 2), which I believe will be crucial for certifying multivariate CAD.

Chapter outline. This chapter begins with a theorem that claims continuous dependence
of polynomial roots on the coefficients (§8.1), following which a bivariate case of the
projection theorem in CAD has been formally derived (§8.2). Finally, I will briefly discuss
my current plan towards certifying multivariate CAD (§8.3).

8.1 Polynomial roots continuously depend on coefficients

Before proceeding to the projection theorem for CAD, a key prerequisite theorem we need is
the continuous dependence of polynomial roots on the coefficients.

Theorem 8.1. Let p ∈ C[x] be a non-zero polynomial of degree n:

p(z) = anzn + · · ·+a1z+a0,

and suppose p has m (m ≤ n) distinct roots z1,z2, . . . ,zm with multiplicity µ1,µ2, . . . ,µm

respectively. For any ε > 0 such that ε is small enough to allow the closed balls cball(z j,ε)

(1≤ j ≤ m) to be disjoint, there exists δ > 0 such that for any non-zero polynomial q ∈ C[x]
also of degree n:

q(z) = bnzn + · · ·+b1z+b0,

if |ai−bi|< δ for each 0≤ i≤ n, then given any 1≤ j ≤ m, q has exactly µ j roots within
the open ball ball(z j,ε).

120 Towards certifying multivariate CAD

Roughly speaking, given a function f : Cn+1→ C that maps the coefficients of a polyno-
mial p (of degree n) to one of its roots, Theorems 8.1 claims that f is continuous.

My formulation of Theorem 8.1 is as follows:

Theorem 8.2 (continuous_dependence).
fixes p::"complex poly" and ε::real

defines "n ≡ degree p"

assumes "ε > 0" and "p ̸= 0"

and "∀z ∈ proots p. proots_within p (cball z ε) = {z}"

shows "∃δ > 0. ∀q. degree q = n ∧ q ̸= 0 ∧
(∀i ≤ n. cmod(coeff q i - coeff p i) < δ)

−→ (∀z ∈ proots p. proots_count q (ball z ε) = order z p)"

where coeff p i is the coefficient of the term xi of p (i.e., ai in Theorems 8.1), proots p

is the set of (distinct) roots of p, and proots_count q (ball z ε) is the number of roots
(counting multiplicity) of q within the open ball ball z ε .

Theorems 8.1 is a classic result in algebra, and has many proofs including the ones based
on the implicit function theorem [8, Theorem 5.12] and those based on Rouché’s theorem
[67, Theorem 1.4]. Taking into account the status of Isabelle’s library, I decided to follow an
elegantly formulated proof by Alen Alexanderian [3], which utilised Rouché’s theorem:1

Proof of Theorem 8.1. Let C(−) be a circle of radius ε:

C(z) = {w | |w− z|= ε}

and V (−) and U(−) be two auxiliary functions on a circle:

V (z) = inf
w∈C(z)

|p(w)|

U(z) = sup
w∈C(z)

(
n

∑
i=0
|w|i
)

where inf and sup are, respectively, the infimum and supremum operations. Since λw. |p(w)|
is continuous on a compact set C(z), we know {|p(w)| | w ∈C(z)}= (λw. |p(w)|)(C(z)) is
a compact set, hence

V (z) ∈ {|p(w)| | w ∈C(z)}. (8.1)

Moreover, we have
∀x ∈ {|p(w)| | w ∈C(z)}.x > 0 (8.2)

1This was actually what motivated me to mechanise Rouché’s theorem in the first place.

8.2 Formal development towards the projection theorem of CAD 121

as those circles (i.e., C(z)) are disjoint and centred at roots of p. Putting (8.1) and (8.2)
together yields

V (z)> 0, (8.3)

provided z is at a root of p. As for U(z), by definition we have

U(z)> 0, (8.4)

∀x ∈

{
n

∑
i=0
|w|i | w ∈C(z)

}
.x≤U(z). (8.5)

Then, by combining (8.3) with (8.4) we can obtain δ > 0 such that

∀z ∈ Zer(p).δV (z)≤U(z) (8.6)

where Zer(p) is the set of roots of p.
Now, choose a polynomial q(z) = bnzn + · · ·+ b1z+ b0, such that deg(q) = n and for

each 1≤ i≤ n, |ai−bi|< δ . Next, for z ∈ Zer(p) and w ∈C(z), combining (8.5), (8.6), and
the definition of V (−) yields

|q(w)− p(w)|= |
n

∑
i=0

(bi−ai)wi|

≤
n

∑
i=0
|bi−ai||wi|

< δ

n

∑
i=0
|wi| ≤ δU(z)≤V (z)≤ |p(w)|.

That is, |q(w)− p(w)|< |p(w)|, with which we can invoke Rouché’s theorem (in §6.4) to
derive that p and q have the same number of roots (counting multiplicity) in the interior of
C(z), hence the whole proof can be concluded.

8.2 Formal development towards the projection theorem
of CAD

As mentioned in §2.2 of Chapter 2, Theorem 2.6 is the rationale behind the projection
operation in Collins’ CAD algorithm: it leads to a stack that is adapted to the target set of
polynomials P by relating the invariance of the number of the real roots to that of the complex

122 Towards certifying multivariate CAD

roots (of P). Therefore, I believe a formal proof of this theorem should be an ingredient of
certifying multivariate CAD.

The following is my formalised bivariate version of Theorem 2.6:

Lemma 8.3 (bivariate_CAD_proj).
fixes p q::"real bpoly" and S::"real set"

defines "p y≡λb. map_poly complex_of_real (poly_y p b)"

defines "q y≡λb. map_poly complex_of_real (poly_y q b)"

assumes "connected S"

and deg_p_inv: "(λb. degree (poly_y p b)) constant_on S"

and pzero_inv: "(λb. poly_y p b = 0) constant_on S"

and distinct_p_inv: "(λb. card (proots (p y b))) constant_on S"

and deg_q_inv: "(λb. degree (poly_y q b)) constant_on S"

and qzero_inv: "(λb. poly_y q b = 0) constant_on S"

and distinct_q_inv: "(λb. card (proots (q y b))) constant_on S"

and common_pq_inv: "(λb. degree (gcd (p y b) (q y b))) constant_on S"

shows "(λb. card (proots (poly_y (p * q) b))) constant_on S"

where

• poly_y p b and poly_y q b are polynomials with real coefficients by substituting b

for the variable y in p ∈ R[y,x] and q ∈ R[y,x] respectively.

• p y b and q y b are polynomials with complex coefficients converted from poly_y p b

and poly_y q b, respectively, by embedding their coefficients into C.

• The assumption deg_p_inv ensures the number of complex roots (counting multiplic-
ity) of p stays constant as we instantiate the variable y of p with different points in S.
pzero_inv covers an corner case of deg_p_inv where we require that p remains either
zero or non-zero as y of p varies over S.

• The assumption distinct_p_inv (distinct_q_inv) states that the number of distinct
complex roots of p (q) stays constant as y of p (q) varies over S.

• The assumption common_pq_inv requires that the number of common complex roots
(counting multiplicity) between p and q stays constant as y of p and q varies over S.

• Finally, the conclusion of Lemma 8.3 indicates that the number of distinct real roots of
p * q is constant as y varies over S.

Proof of Lemma 8.3. We can first apply the following lemma:

8.2 Formal development towards the projection theorem of CAD 123

Lemma 8.4 (locally_constant_imp_constant).
fixes S::"’a::topological_space set" and f::"’a ⇒ ’b"

assumes "connected S"

and opI: "
∧
a. a ∈ S =⇒
∃T. open T ∧ a ∈ T ∩ S ∧ (∀x ∈ T ∩ S. f x = f a)"

shows "f constant_on S"

to transform our goal into some local equality: given a ∈ S, we need to find an open
neighbourhood T of a such that for all b ∈ T ∩S, the total number of distinct real roots of
(pq)(b,x) is equal to that of (pq)(a,x). Here, (pq)(b,x) and (pq)(a,x) are polynomials with
real coefficients instantiated from pq ∈ R[y,x] by substituting b and a, respectively, for the
variable y.

Let z1,z2, . . . ,zm be the distinct complex roots of (pq)(a,x). Let v j (1 ≤ j ≤ m) be the
multiplicity of z j as a root of p(a,x), and u j (1 ≤ j ≤ m) be that of z j as a root of q(a,x).
We can first choose a small ε > 0 such that closed balls cball(z j,ε) (1≤ j ≤ m) are disjoint.
With Theorem 8.1 and the assumptions deg_p_inv and deg_q_inv, we can obtain δ > 0 such
that for each b ∈ ball(a,δ)∩S and z j (1≤ j ≤ m), the numbers of complex roots (counting
multiplicity) of p(b,x) and q(b,x) within the open ball ball(z j,ε) are v j and u j respectively.
By considering the assumptions distinct_p_inv and distinct_q_inv, we can further derive
that p(b,x) (q(b,x)) has exactly one distinct root within ball(z j,ε) when v j > 0 (u j > 0).

Note that min(v j,u j) is the multiplicity of z j of gcd(p(a,x),q(a,x)), and when min(v j,u j)>

0, by following the assumption common_pq_inv we have that gcd(p(b,x),q(b,x)) has exactly
one distinct root in C within ball(z j,ε). Then, by considering the fact that within ball(z j,ε)

the added number of distinct complex roots of (pq)(b,x) and gcd(p(b,x),q(b,x)) is equal
to that of p(b,x) and q(b,x), we end up deriving that for each 1 ≤ j ≤ m the polynomial
(pq)(b,x) has exactly one complex root w j within ball(z j,ε).

Now, let us consider the relationship between w j and z j. If w j ∈R, then z j ∈R, otherwise
w j ∈ ball(z j,ε) and w j ∈ ball(z j,ε) that contradicts the disjointness between ball(z j,ε) and
ball(z j,ε). Moreover, if w j ̸∈ R, then z j ̸∈ R, otherwise w j and w j are two distinct complex
roots within ball(z j,ε). As a result, for each 1≤ j ≤m we have w j ∈R if and only if z j ∈R,
following which the polynomials (pq)(b,x) and (pq)(a,x) have the same number of distinct
real roots, provided b ∈ ball(a,δ)∩S.

The proof above follows Basu et al.’s formulation [8, Proposition 5.13], which is actually a
proof of Theorem 2.6. For this reason, I believe my proof of Lemma 8.3 can be adapted to
derive Theorem 2.6 without much effort once we have an appropriate library of multivariate
polynomials in Isabelle/HOL.

124 Towards certifying multivariate CAD

8.3 Towards certifying multivariate CAD

Regarding the multivariate case of CAD, I will still aim for a certificate-based approach
similar to the univariate case in Chapter 5. The main rationale is efficiency: it is unlikely for
me to implement an efficient verified CAD procedure that is capable of handling non-toy
problems. In addition to that, a certificate-based design allows us to smoothly switch from
one implementation of CAD to another, considering CAD is still an active field with new
algorithms being proposed regularly [27, 17].

Following the idea of certifying univariate CAD in Chapter 5, given a first-order formula
over reals with n variables, we extract a set of polynomials P ⊆ R[x1,x2, . . . ,xn] from the
formula and pass P to external untrusted programs for CAD. With a set of sample points
Sn ⊆ Rn from the external program, we need to check if

• each sample point x ∈ Sn can indeed represent a cell in a CAD adapted to P,

• and by deciding the sign of each p ∈ P at these sample points the target formula is
indeed true.

The latter part should not be too hard, as we already have a verified sign determination
procedure for bivariate polynomials at real algebraic points (as presented in §4.2.3 of Chapter
4), which should be generalised to multivariate cases without much trouble. Therefore, the
real problem that I need to deal with is the former (i.e., these sample points are genuine
representatives).

Recall that in Algorithm 2 in Chapter 5, we explicitly check roots from external programs
are indeed all the roots of the extract polynomials, and because of the intermediate value
theorem we know those sample points (constructed from those untrusted roots) are repre-
sentative. Analogously, my current plan for the multivariate case is to check if Sn contain
all the solutions of the triangular system of equations ∏projn−1(P) = 0, ∏projn−2(P) = 0,
..., ∏proj0(P) = 0, where proj(−) is the projection operation in Algorithm 1, proj0 is the
identity function and proji+1(P) = proji(proj(P)) for all i. The idea behind this is to certify
that Sn is indeed the result of the base case and the lifting phase in Algorithm 1.

This is my rough idea at the time of writing this thesis. Subtleties are expected to appear
when I undertake the formalisation, and the plan may be revised in the process.

Chapter 9

Conclusion

Aiming at certifying multivariate CAD in Isabelle, this thesis started with a formal proof of
the Sturm-Tarski theorem (Chapter 3), which enables us to effectively compute the Tarski
query and the Cauchy index through remainder sequences. Subsequently, I proposed a library
for real algebraic numbers (Chapter 4), whose notable features include its modular design and
sign determination procedures that only require (dyadic) arithmetic. With a formalisation of
real algebraic numbers and sign determination procedures, I successfully certified univariate
CAD in a certificate-based approach (Chapter 5). To pave the way for multivariate CAD,
I formalised some results in complex analysis: Cauchy’s residue theorem, the argument
principle and Rouché’s theorem (Chapter 6), following which I built a tactic to evaluate
winding numbers through Cauchy indices and verified procedures to count complex roots
inside a rectangle and a half-plane (Chapter 7). Finally, I presented a formal proof towards
the projection theorem in CAD (Chapter 8).

The quest towards certifying multivariate CAD is still ongoing.

9.1 On formalised mathematics

Over the last four years, I spent much of my time formalising mathematics (to justify
executable procedures). The process was both fun and exhausting. Good things about
formalised mathematics (in a proof assistant) include:

• Being extremely precise. I have uncovered numerous ambiguities, hidden assumptions
and even small errors when following (informal) proofs in the literature. With my
proofs being checked by computers, I feel great confidence in their correctness (and
relaxed).

126 Conclusion

• The ability to archive mathematical theorems and proofs. Every mathematical theorem
is usually formulated by various authors in different forms, and its proofs are scattered
in the literature. With proof assistants, those theorems (and their proofs) can be
archived on a unified system, hence many of the compatibility issues can be resolved
and proofs can be compared on a common ground. Especially with structured proofs
in Isabelle, proof blocks can be folded to allow proof scripts to be presented in a
sufficiently abstract way. In fact, when looking up an unfamiliar theorem, I would
rather consult the Isabelle library, where theorems are unambiguously stated and proofs
are recorded in a human-understandable way.

• Easy to collaborate. Because of the unified system (and logic) and machine-guaranteed
preciseness, formal proofs produced by one mathematician (or computer scientist) can
be safely reused by another, as long as they stay in the same system.

The main drawback with formalised mathematics is, unsurprisingly, lack of automation:
huge effort is needed to elaborate our informal proofs so that computers can understand.
Fortunately, formalised mathematics is generally reusable, so the labour of formalising can
be considered as a process of accumulation. Besides, with recent breakthrough in machine
learning, I am optimistic about the level of automation (in proof assistants) we can achieve in
the future.

Apart from automation, I also wish we had better search, management and refactoring
tools, so that managing mechanized mathematics can be similar to maintaining a huge
codebase in software companies; in fact, I do not see much difference between them. Luckily,
with still improving proof environments (i.e., Prover IDE in Isabelle), I believe we are on the
right track.

9.2 Computer algebra in proof assistants

Besides my work, there has been a recent trend of formalising computer algebra algorithms
in proofs assistants [32, 66, 4]. Compared to commercial systems like Mathematica and
Maple, this formalisation effort has its advantages:

• The verified procedures are usually open-sourced and accompanied by formal proofs,
while commercial systems are mostly used as a black box.

• Those verified procedures are generally built within a more expressive logic, hence are
more flexible and applicable when formalising mathematics. In comparison, procedures
provided by commercial systems are mostly applicable for concrete data types (e.g.,

9.2 Computer algebra in proof assistants 127

Z, R or C). For example, suppose we want to factorise a polynomial over an integral
domain for our proof, we may want a procedure expressed in a richer logic.

• Being part of an interactive tactic, the verified procedures might offer a better experi-
ence of interactivity in complex situations (e.g., when simplifying an expression with
many open variables).

However, the largest issue with verified procedures is efficiency. Modern commercial systems
are usually highly tuned, and the sophistication of their implementations can go beyond our
current verification capabilities (or at least with reasonable effort). As a result, unverified
procedures in commercial systems are often far more efficient than our verified ones. How
can we bridge the gap of efficiency? The certificate-based approach I advocated is just
one way to alleviate this situation, and this approach also brings a new question – how
to design a good certificate? The sums-of-squares tactic represents the best-case scenario,
where almost all the hard work is delegated to external programs and certifying the results
only requires simple sign-based reasoning and rational arithmetic. As for CAD, even the
univariate case requires more mathematics (e.g., real algebraic numbers and the Sturm-Tarski
theorem) and more computation (especially for the universal case). In general, I believe that a
good certificate design needs to balance the difficulty of the formalisation effort and verified
computation required to check the certificates with the efficiency improvements offered by
offloading the construction of the certificates to high-performance external tools.

References

[1] Ahlfors, L. V. (1966). Complex Analysis: An Introduction to the Theory of Analytic
Funtions of One Complex Variable. McGraw-Hill, New York.

[2] Akbarpour, B. and Paulson, L. C. (2010). MetiTarski - An Automatic Theorem Prover
for Real-Valued Special Functions. Journal of Automated Reasoning.

[3] Alexanderian, A. (2013). On continuous dependence of roots of polynomials on coeffi-
cients.

[4] Aransay, J. and Divasón, J. (2015). Formalisation in higher-order logic and code
generation to functional languages of the Gauss-Jordan algorithm. Journal of Functional
Programming, 25:147.

[5] Arnold, V. I. (1992). Ordinary Differential Equations. Springer.

[6] Avigad, J., Hölzl, J., and Serafin, L. (2017). A Formally Verified Proof of the Central
Limit Theorem. Journal of Automated Reasoning, pages 1–35.

[7] Bak, J. and Newman, D. (2010). Complex Analysis. Springer.

[8] Basu, S., Pollack, R., and Roy, M.-F. (2006). Algorithms in Real Algebraic Geometry,
volume 10 of Algorithms and Computation in Mathematics. Springer, Berlin, Heidelberg.

[9] Bertot, Y. and Castéran, P. (2013). Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer.

[10] Boldo, S., Lelay, C., and Melquiond, G. (2014). Coquelicot: A user-friendly library of
real analysis for Coq. Mathematics in Computer Science, 9(1):41–62.

[11] Brown, C. W. (2001). Improved Projection for Cylindrical Algebraic Decomposition.
Journal of Symbolic Computing, 32(5):447–465.

[12] Brown, C. W. (2003). QEPCAD B - a program for computing with semi-algebraic sets
using CADs. ACM SIGSAM Bulletin, 37(4):97.

[13] Brown, C. W. and Davenport, J. H. (2007). The complexity of quantifier elimination and
cylindrical algebraic decomposition. In Proceedings of the 32th International Symposium
on Symbolic and Algebraic Computation, ISSAC ’07, pages 54–60, Waterloo, Ontario,
Canada. ACM Press.

130 References

[14] Brunel, A. (2011). Non-constructive complex analysis in Coq. In 18th International
Workshop on Types for Proofs and Programs, TYPES 2011, September 8-11, 2011, Bergen,
Norway, pages 1–15.

[15] Caviness, B. F. and Johnson, J. R. (2012). Quantifier Elimination and Cylindrical
Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer,
Vienna.

[16] Chaieb, A. et al. (2008). Automated methods for formal proofs in simple arithmetics
and algebra. Diss., Technische Universität, München.

[17] Chen, C. and Moreno Maza, M. (2014). Cylindrical Algebraic Decomposition in the
RegularChains Library. In Hong, H. and Yap, C., editors, Proceedings of the th Interna-
tional Congress on Mathematical Software, ICMS ’14, Seoul, South Korea. Springer.

[18] Cheng, J.-S., Gao, X.-S., and Yap, C.-K. (2007). Complete numerical isolation of
real zeros in zero-dimensional triangular systems. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC ’07, pages 92–99. ACM.

[19] Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

[20] Cohen, C. (2012a). Construction of Real Algebraic Numbers in Coq. In Beringer, L.
and Felty, A., editors, Proceedings of the 3rd International Conference on Interactive
Theorem Proving, ITP 2012, pages 67–82, Berlin, Heidelberg. Springer.

[21] Cohen, C. (2012b). Formalized algebraic numbers: construction and first-order theory.
PhD thesis, École polytechnique, Laboratoire d’informatique de l’École polytechnique -
LIX, INRIA Saclay - Ile de France, Microsoft Research - Inria Joint Centre.

[22] Collins, G. E. (1975). Quantifier elimination for real closed fields by cylindrical
algebraic decompostion. In Automata Theory and Formal Languages 2nd GI Conference
Kaiserslautern, May 20–23, 1975, pages 134–183. Springer.

[23] Collins, G. E. and Hong, H. (1991). Partial Cylindrical Algebraic Decomposition for
Quantifier Elimination. Journal of Symbolic Computing, 12(3):299–328.

[24] Collins, G. E. and Krandick, W. (1992). An efficient algorithm for infallible polynomial
complex root isolation. In Proceedings of International Symposium on Symbolic and
Algebraic Computation, ISSAC ’92, pages 189–194, Berkeley, CA, USA. ACM.

[25] Conway, J. B. (1978). Functions of One Complex Variable, volume 11. Springer, New
York, second edition.

[26] Cruz-Filipe, L., Geuvers, H., and Wiedijk, F. (2004). C-CoRN, the constructive
Coq repository at Nijmegen. In Mathematical Knowledge Management, pages 88–103.
Springer.

[27] Davenport, J. H. and England, M. (2015). Recent Advances in Real Geometric Reason-
ing. In Botana, F. and Quaresma, P., editors, Automated Deduction in Geometry: 10th
International Workshop, ADG 2014, Coimbra, Portugal, July 9-11, 2014, Revised Selected
Papers, pages 37–52. Springer, Cham.

References 131

[28] de Moura, L. and Bjørner, N. (2008). Z3 - An Efficient SMT Solver. TACAS, 4963(Chap-
ter 24):337–340.

[29] de Moura, L. and Passmore, G. O. (2013). Computation in Real Closed Infinitesimal
and Transcendental Extensions of the Rationals. In Proceedings of the 24th International
Conference on Automated Deduction, CADE ’13, pages 178–192, Berlin, Heidelberg.
Springer.

[30] Denman, W. and Muñoz, C. (2014). Automated real proving in PVS via MetiTarski. In
International Symposium on Formal Methods, pages 194–199. Springer.

[31] Divasón, J. and Aransay, J. (2013). Rank-Nullity Theorem in Linear Algebra. Archive
of Formal Proofs. http://isa-afp.org/entries/Rank_Nullity_Theorem.html, Formal proof
development.

[32] Divasón, J., Joosten, S. J. C., Thiemann, R., and Yamada, A. (2017). A formalization
of the Berlekamp-Zassenhaus factorization algorithm. In Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, pages 17–29, Paris,
France.

[33] Eberl, M. (2015). A Decision Procedure for Univariate Real Polynomials in Is-
abelle/HOL. In Proceedings of the 2015 Conference on Certified Programs and Proofs,
CPP 2015, pages 75–83, Mumbai, India. ACM Press.

[34] Eisermann, M. (2012). The Fundamental Theorem of Algebra Made Effective: An
Elementary Real-algebraic Proof via Sturm Chains. The American Mathematical Monthly,
119(9):715.

[35] Gao, S., Kong, S., and Clarke, E. M. (2014). Proof generation from delta-decisions. In
Proceedings of the 16th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2014, pages 156–163. IEEE.

[36] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux 0001,
S., Mahboubi, A., O’Connor, R., Biha, S. O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E.,
and Théry, L. (2013). A Machine-Checked Proof of the Odd Order Theorem. In Blazy,
S., Paulin-Mohring, C., and Pichardie, D., editors, Proceedings of the 4th International
Conference on Interactive Theorem Proving, ITP 2013, pages 163–179, Rennes, France.
Springer.

[37] Haftmann, F. and Bulwahn, L. (2017). Code generation from Isabelle/HOL theories.

[38] Haftmann, F., Lochbihler, A., and Schreiner, W. (2014). Towards abstract and executable
multivariate polynomials in Isabelle. In Isabelle Workshop, volume 201.

[39] Haftmann, F. and Nipkow, T. (2010). Code generation via higher-order rewrite systems.
In International Symposium on Functional and Logic Programming, pages 103–117.
Springer.

[40] Hales, T., Adams, M., Bauer, G., Dang, D. T., Harrison, J., Le Hoang, T., Kaliszyk, C.,
Magron, V., McLaughlin, S., Nguyen, T. T., Nguyen, T. Q., Nipkow, T., Obua, S., Pleso,
J., Rute, J., Solovyev, A., Ta, A. H. T., Tran, T. N., Trieu, D. T., Urban, J., Vu, K. K., and
Zumkeller, R. (2015). A formal proof of the Kepler conjecture. arXiv.org.

http://isa-afp.org/entries/Rank_Nullity_Theorem.html

132 References

[41] Harrison, J. (2007a). Formalizing basic complex analysis. In Matuszewski, R. and
Zalewska, A., editors, From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
volume 10(23), pages 151–165. University of Białystok.

[42] Harrison, J. (2007b). Verifying nonlinear real formulas via sums of squares. In
Schneider, K. and Brandt, J., editors, Proceedings of the 20th International Conference on
Theorem Proving in Higher Order Logics, TPHOLs 2007, volume 4732 of Lecture Notes
in Computer Science, pages 102–118, Kaiserslautern, Germany. Springer.

[43] Harrison, J. (2009a). Formalizing an analytic proof of the Prime Number Theorem
(dedicated to Mike Gordon on the occasion of his 60th birthday). Journal of Automated
Reasoning, 43:243–261.

[44] Harrison, J. (2009b). HOL Light: An overview. In Berghofer, S., Nipkow, T., Urban,
C., and Wenzel, M., editors, Proceedings of the 22nd International Conference on Theo-
rem Proving in Higher Order Logics, TPHOLs 2009, volume 5674 of Lecture Notes in
Computer Science, pages 60–66, Munich, Germany. Springer.

[45] Harrison, J. (2013). The HOL Light theory of Euclidean space. Journal of Automated
Reasoning, 50:173–190.

[46] Harrison, J. and Théry, L. (1998). A Skeptic’s Approach to Combining HOL and Maple.
Journal of Automated Reasoning, 21:279–294.

[47] Hölzl, J. (2009). Proving inequalities over reals with computation in Isabelle/HOL.
In International Workshop on Programming Languages for Mechanized Mathematics
Systems, pages 38–45.

[48] Hölzl, J., Immler, F., and Huffman, B. (2013). Type classes and filters for mathematical
analysis in Isabelle/HOL. 7998:279–294.

[49] Hong, H. (1990). An Improvement of the Projection Operator in Cylindrical Alge-
braic Decomposition. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, ISSAC ’90, pages 261–264, Tokyo, Japan. ACM.

[50] Huang, Z., England, M., Wilson, D. J., Davenport, J. H., Paulson, L. C., and Bridge,
J. P. (2014). Applying Machine Learning to the Problem of Choosing a Heuristic to Select
the Variable Ordering for Cylindrical Algebraic Decomposition. CICM, 8543(3):92–107.

[51] Huffman, B. and Kunčar, O. (2013). Lifting and Transfer: A modular design for
quotients in Isabelle/HOL. In Certified Programs and Proofs, pages 131–146. Springer.

[52] Jirstrand, M. et al. (1995). Cylindrical algebraic decomposition: an introduction.
Linköpings university.

[53] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S.
(2010). seL4 - formal verification of an operating-system kernel. Communications of
ACM, 53(6):107.

References 133

[54] Kumar, R., Arthan, R., Myreen, M. O., and Owens, S. (2016). Self-Formalisation of
Higher-Order Logic - Semantics, Soundness, and a Verified Implementation. Journal of
Automated Reasoning, 56(3):221–259.

[55] Lang, S. (1993). Complex Analysis. Springer.

[56] Leroy, X. (2009). Formal verification of a realistic compiler. Communications of ACM,
52(7):107.

[57] Li, W. (2014). The Sturm-Tarski Theorem. Archive of Formal Proofs. http://isa-afp.
org/entries/Sturm_Tarski.html, Formal proof development.

[58] Li, W. (2017a). Count the Number of Complex Roots. Archive of Formal Proofs.
http://isa-afp.org/entries/Count_Complex_Roots.html, Formal proof development.

[59] Li, W. (2017b). Evaluate Winding Numbers through Cauchy Indices. Archive of Formal
Proofs. http://isa-afp.org/entries/Winding_Number_Eval.html, Formal proof development.

[60] Li, W., Passmore, G. O., and Paulson, L. C. (2017). Deciding Univariate Polynomial
Problems Using Untrusted Certificates in Isabelle/HOL. Journal of Automated Reasoning,
44(3):175–23.

[61] Li, W. and Paulson, L. C. (2016a). A formal proof of Cauchy’s residue theorem. In
Blanchette, J. C. and Merz, S., editors, Proceedings of the 4th International Conference
on Interactive Theorem Proving, ITP 2013, pages 235–251, Nancy, France. Springer.

[62] Li, W. and Paulson, L. C. (2016b). A modular, efficient formalisation of real algebraic
numbers. In Avigad, J. and Chlipala, A., editors, Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2016, pages 66–75, St. Petersburg,
FL, USA. ACM.

[63] Lochbihler, A. and Züst, M. (2014). Programming TLS in Isabelle/HOL. In Isabelle
Workshop, volume 2014.

[64] Mahboubi, A. (2007). Implementing the cylindrical algebraic decomposition within the
Coq system. Mathematical Structures in Computer Science, 17(1):99–127.

[65] Mahboubi, A. and Cohen, C. (2012). Formal proofs in real algebraic geometry: from
ordered fields to quantifier elimination. Logical Methods in Computer Science, 8(1).

[66] Mahboubi, A., Melquiond, G., and Sibut-Pinote, T. (2016). Formally Verified Approx-
imations of Definite Integrals. In Blanchette, J. C. and Merz, S., editors, Proceedings
of the 7th International Conference on Interactive Theorem Proving, ITP 2016, pages
274–289, Nancy, France. Springer.

[67] Marden, M. (1949). Geometry of Polynomials. Second Edition. American Mathematical
Society, Providence, Rhode Island.

[68] McCallum, S. (1988). An improved projection operation for cylindrical algebraic
decomposition of three-dimensional space. Journal of Symbolic Computation, 5(1-2):141–
161.

http://isa-afp.org/entries/Sturm_Tarski.html
http://isa-afp.org/entries/Sturm_Tarski.html
http://isa-afp.org/entries/Count_Complex_Roots.html
http://isa-afp.org/entries/Winding_Number_Eval.html

134 References

[69] McLaughlin, S. and Harrison, J. (2005). A proof-producing decision procedure for real
arithmetic. volume 3632 of Lecture Notes in Computer Science, pages 295–314, Tallinn,
Estonia. Springer.

[70] Mishra, B. (1993). Algorithmic Algebra. Springer.

[71] Narkawicz, A., Muñoz, C. A., and Dutle, A. (2015). Formally-Verified Decision Proce-
dures for Univariate Polynomial Computation Based on Sturm’s and Tarski’s Theorems.
Journal of Automated Reasoning, 54(4):285–326.

[72] Narkawicz, A. J. and Muñoz, C. A. (2014). A formally-verified decision procedure for
univariate polynomial computation based on Sturm’s theorem. Technical Memorandum
NASA/TM-2014-218548, NASA, Langley Research Center, Hampton VA 23681-2199,
USA.

[73] Nipkow, T., Paulson, L. C., and Wenzel, M. (2016). Isabelle/HOL: A Proof Assistant
for Higher-Order Logic.

[74] Passmore, G. O., Paulson, L. C., and de Moura, L. (2012). Real algebraic strategies for
MetiTarski proofs. In Intelligent Computer Mathematics, pages 358–370. Springer.

[75] Paulson, L. C. (1994). Isabelle: A generic theorem prover, volume 828. Springer.

[76] Paulson, L. C. (2010). Three Years of Experience with Sledgehammer, a Practical Link
between Automatic and Interactive Theorem Provers. In Proceedings of the 2nd Workshop
on Practical Aspects of Automated Reasoning, PAAR-2010, Edinburgh, Scotland, UK,
July 14, 2010, pages 1–10.

[77] Platzer, A. (2008). Differential Dynamic Logics: Automated Theorem Proving for
Hybrid Systems. PhD thesis, Department of Computing Science, University of Oldenburg.

[78] Rahman, Q. I. and Schmeisser, G. (2016). Analytic Theory of Polynomials(2002).
Oxford University Press.

[79] Sagraloff, M. (2010). A general approach to isolating roots of a bitstream polynomial.
Mathematics in Computer Science, 4(4):481–506.

[80] Solovyev, A. and Hales, T. C. (2013). Formal Verification of Nonlinear Inequalities
with Taylor Interval Approximations. In NASA Formal Methods, pages 383–397. Springer.

[81] Stein, E. M. and Shakarchi, R. (2010). Complex Analysis, volume 2. Princeton
University Press.

[82] Strzeboński, A. W. (2006). Cylindrical Algebraic Decomposition using validated
numerics. Journal of Symbolic Computation, 41(9):1021–1038.

[83] Thiemann, R. and Yamada, A. (2016). Algebraic Numbers in Isabelle/HOL. In
Blanchette, J. C. and Merz, S., editors, Proceedings of the 7th International Conference
on Interactive Theorem Proving, ITP 2016, pages 391–408, Nancy, France. Springer.

[84] Wilf, H. S. (1978). A Global Bisection Algorithm for Computing the Zeros of Polyno-
mials in the Complex Plane. Journal of the ACM (JACM), 25(3):415–420.

References 135

[85] Yap, C.-K. and Sagraloff, M. (2011). A simple but exact and efficient algorithm for
complex root isolation. In Proceedings of the 36th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’11, page 353, San Jose, CA, USA. ACM Press.

	Table of contents
	List of figures
	1 Introduction
	1.1 Interactive theorem proving
	1.2 Why we need to justify algorithms in computer algebra
	1.3 Thesis overview
	1.4 Publications
	1.5 Contributions

	2 Introduction to cylindrical algebraic decomposition
	2.1 Basic idea
	2.2 The classic algorithm
	2.3 Remarks

	3 The Sturm-Tarski theorem
	3.1 Formulation
	3.2 A formal proof of the Sturm-Tarski theorem
	3.3 Remarks

	4 Real algebraic numbers
	4.1 Construction on an abstract level
	4.2 Implementation
	4.2.1 More pseudo-constructors on real numbers
	4.2.2 Univariate sign determination through the Sturm-Tarski theorem
	4.2.3 Deciding the sign of a bivariate polynomial at a real algebraic point
	4.2.4 Enable executability on algebraic reals
	4.2.5 Linking the algebraic reals to the real algebraic numbers

	4.3 Experiments
	4.4 Related work
	4.5 Remarks
	4.5.1 Modularity
	4.5.2 A potential problem
	4.5.3 Intended applications

	5 Deciding univariate polynomial problems using untrusted certificates
	5.1 A motivating example
	5.2 A sketch of the certificate-based design
	5.3 The formal development of the proof procedure
	5.3.1 Parsing formulas
	5.3.2 Existential case
	5.3.3 Universal case

	5.4 Linking to an external solver
	5.5 Experiments and related work

	6 A formal proof of Cauchy's residue theorem
	6.1 Background
	6.1.1 Contour integrals
	6.1.2 Valid paths
	6.1.3 Winding number
	6.1.4 Holomorphic functions and Cauchy's integral theorem

	6.2 Cauchy's residue theorem
	6.2.1 Residue
	6.2.2 Generalisation to a finite number of singularities
	6.2.3 Applications
	6.2.4 Remarks on the formalisation

	6.3 The argument principle
	6.3.1 Zeros and poles
	6.3.2 The main proof
	6.3.3 Remarks

	6.4 Rouché's theorem
	6.5 Related work

	7 Cauchy indices on the complex plane
	7.1 A motivating example
	7.2 The intuition
	7.3 Evaluate winding numbers
	7.3.1 A formal proof of Proposition 7.8
	7.3.2 A tactic for evaluating winding numbers
	7.3.3 Subtleties

	7.4 Counting the number of complex roots
	7.4.1 Roots in a rectangle
	7.4.2 Roots in a half-plane

	7.5 Limitations and future work
	7.6 Remarks and potential applications

	8 Towards certifying multivariate CAD
	8.1 Polynomial roots continuously depend on coefficients
	8.2 Formal development towards the projection theorem of CAD
	8.3 Towards certifying multivariate CAD

	9 Conclusion
	9.1 On formalised mathematics
	9.2 Computer algebra in proof assistants

	References

